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We present the detailed dynamics of the particles in the �-Fermi–Pasta–Ulam–Tsingou
(FPUT) chain after the initiation of a localized nonlinear excitation (LNE) by squeez-

ing a central bond in the monodispersed chain at time t = 0 while all other particles
remain in their original relaxed positions. In the absence of phonons in the system, the

LNE appears to initiate its relaxation process by symmetrically emitting two very weak

solitary waves. The next stage involves the spreading of the LNE and the formation of
nonsolitary wave-like objects to broaden the excitation region until a stage is reached

when many weak solitary wave-like objects can be emitted as the system begins its jour-

ney to quasi-equilibrium and then to equilibrium. In addition to being of fundamental
interest, these systems may be realized using cantilever systems and could well hold the

key to constructing the next generation of broadband energy harvesting systems.

⇤Calculations and analyses have been performed by Kashyap and Westley. Datta was involved in
the code development and the theory work. Sen was involved in designing the study and in the

analyses of the results. All four authors participated in writing the manuscript.
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1. Introductory Remarks

Study of the dynamics of the monodispersed mass spring chain model with the
springs represented by harmonic and nonlinear (e.g., quartic) nearest-neighbor
interactions in the potential energy is given by

H =
NX

i=1

p2i /2m+
NX

i=1

[↵(xi+1 � xi)
2 + �(xi+1 � xi)

4] , (1)

where m is the mass, ↵ and � are constants, was initiated by Fermi, Pasta, Ulam
and Tsingou (FPUT) in 1955.1 We typically use N = 100 in our studies discussed
here. Equation (1) uses nomenclature and terms slightly di↵erent from those in the
original FPUT study where ↵ and � are defined di↵erently.2

Energy dispersion in this model can be slow or fast depending upon the initial
conditions.3–8 The system accommodates phonons (for ↵ > 0).2 For ↵ = 0 and
� > 0, solitary waves and metastable localized nonlinear excitations (LNEs)9–13

are commonly encountered. In addition, a variety of excitations that are neither
solitary waves nor LNEs, but are strongly nonlinear in nature may also appear for
finite times. Additionally, phonons may also be present for � > 0 and ↵ > 0.2,14

The LNEs and related localized excitations are sometimes referred to as intrinsic
localized modes (ILMs),9 breathers (for stable oscillations which do not break down
see Refs. 15 and 16), etc. Though in existence for 60 plus years, it remains hard to
understand how LNEs behave, even at early times, in the FPUT chain and this is
the main focus of the paper.

It should be mentioned for the sake of putting the present work in perspective
that there is a tremendous amount of literature on breathers that we refrain from
here. The mathematics community has worked extensively on nonlinear equations
obtained in the continuum approximation that can generate stable, localized, non-
linear oscillations (breathers) (see for example in Refs. 15 and 16). Likewise, there
is a modest body of literature on how breathers and solitary waves/solitons actually
break down in time and the system ends up in equilibrium at large enough times
(see for example in Refs. 17–22).

The present paper builds on studies reported in Ref. 2 and has been influenced
by the experimental works of Sievers et al., and the simulational and theoretical
studies of Vulpiani, Ru↵o, Dauxois, Lindenberg, Lichtenberg and others.

LNEs can be regarded as regions with significant amounts of trapped energy
for su�ciently long times. Hence, realization of mechanical systems that behave
like FPUT systems or systems that are largely similar to FPUT systems can be
useful for precipitating LNEs that could be useful for practical purposes such as for
constructing novel sensors and for various energy harvesting applications. Cantilever
systems have proven to be among those that can realize FPUT-like systems.23–29
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Section 2 describes the time evolution of the system based upon simple argu-
ments. Section 3 presents the details of numerical simulations with the results being
described in Sec. 4. The summary and conclusions are presented in Sec. 4.

2. Time Evolution Simple Arguments

Since ↵ = 0 in Eq. (1), our goal is to consider the following equation of motion:

mẍi = 4�[(xi+1 � xi)
3 � (xi � xi�1)

3] . (2)

In the simulational studies below, we will start with the initial condition that the
central bond in the chain is squeezed by some amplitude 2A with each mass being
moved towards each other by A. The rest of the particles would remain in their
relaxed positions. However, this particular condition is not the most convenient
one to work with for theoretical analyses for which we assume that particles i and
i+ 1 are given large symmetric velocity perturbations (i.e., either moving towards
each other, or away from each other) at t = 0. This initial condition results in the
vibration of the central bond. The central bond carries all the energy at initiation
and the dynamics of particle i or i + 1 which sits at the extremities of the central
bond can be readily described as follows30:

ẍi + 36�x3
i = 0 , (3)

where we have assumed that xi+1 = �xi and that xi � xi�1.
Equation (3) can be solved in terms of Jacobi elliptic functions:

xi(t) = A sn(At
p
18�,�1) , (4)

xi(0) = 0 , (5)

ẋi(0) = A2
p
18� (6)

with initial conditions chosen such that the total energy in the system is E = 9�A4

and where A is the amplitude of the motion. It is interesting to note that lowering
� would stretch out the time evolution of the LNE whereas raising � would have
the opposite e↵ect.

Let us now consider the particle adjacent to the center. To leading order, once
again assuming xi � xi�1 � xi�2, Eq. (2) becomes

ẍi�1 = 4�x3
i = 4�

�
A sn(At

p
18�,�1)

�3
. (7)

Once again, we may solve exactly by using appropriate energy-conserving initial
conditions and the property of the Jacobic elliptic function,31,32

sn3(t,�1) =
1

2

✓
sn(t,�1)� d2

dt2
sn(t,�1)

◆
, (8)

giving

xi�1(t) =
A

9
sn
�
At

p
18�,�1

�
. (9)
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Note that at some point, the assumption of xi�j � xi�j�1 no longer holds. How-
ever, it is instructive to examine the pattern for the next several neighbors. By
the reasoning followed above, with sn(·) representing sn(At

p
18�,�1), we obtain

xi�2 = A
94 sn(·), xi�3 = A

913 sn(·), xi�4 = A
940 sn(·), etc. So, we could separate the

solutions order-by-order in powers of ✏ = 1
9 .

Based on the Du�ng equation [see Eq. (3)], the dynamics of particle i is expected
to be oscillatory with several dominant frequencies among an infinite set. Particles
i � 1 and i are connected by a nonlinear spring in which i undergoes very rapid
oscillations and with significant energy content whereas particle i � 1 is barely
starting to move. The enormous energy di↵erence between the two particles would
prompt particle i � 1 to eventually catch up with particle i though this is not
attainable in short time. Early time behavior of particle i� 1 hence is expected to
be largely periodic, but with abrupt reversals in the direction of motion and with
a smaller amplitude than that of i. The energy transfer that can happen to i � 2,
i � 3, etc. is also expected to be interesting with expected abrupt reversals in the
direction of motion.

We observe that the energy contained in the LNE would swing periodically be-
tween being purely potential and purely kinetic as in a harmonic oscillator. At this
point, let us address in which direction the energy leaking out of the LNE would
predominantly move in. We recall the virial theorem of classical mechanics,33,34

which states that hKi = 2hUi, where K, U denote the kinetic and potential ener-
gies, respectively, and h· · · i denotes time average. Then, for ↵ = 0 in Eq. (1), we
get hKi = 2

3E, where E is the total energy. Thus, the energy in the LNE would
predominantly become kinetic as the energy begins to leak out of it, which means
that the structure of the LNE must break down in time as suggested by Fig. 1. For
this to happen, energy flow when looked over long enough times must be outward
from the LNE. We would hence expect that the predominant direction in which

Fig. 1. Plot of total potential (U) and kinetic (K) energies as function of time with total energy

E being shown in black. Initially the K and U alternate in time. The complexity in the behavior
of U is linked to the emission of the various structures between t ⇠ 500 and t ⇠ 1000. Observe

that K always remains quite high.
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particles i, i� 1, i� 2, etc., would move would be away from the LNE and toward
the boundary. The same would be true for the particles on the opposite side of the
LNE.

Thus, biased and small displacements experienced by particles farther away
from the LNE at early times are to be expected. Given Eq. (2), we would expect
symmetric emission of very weak solitary waves out of the smallest short lived
perturbations in the direction away from the LNE. At later times, when the energy
reaches the sites that are several sites away from i, we would initially expect the
formation of irregular spatio-temporal clumps of energy. These clumps would break
down farther away from the LNE into solitary waves. Since solitary waves move
in velocities that are related to the energies carried, it is likely that the emissions
will progressively carry higher energies and generate higher energy solitary waves
as the LNE evolves in time. Interactions between the various solitary waves, the
original LNE and the existing clumps are expected to generate more solitary waves,
metastable but weaker LNEs and clumps as the entire system ultimately evolves
to an equilibrium-like state (which we call the quasi-equilibrium state35) at late
enough times.

3. The Dynamical Simulations

For all the numerical studies reported here, we use the velocity Verlet algorithm36

to integrate the equations of motion given by Eq. (2) above for each i. We set
↵ = 0, � = 1 and m = 1 for our calculations. The values that appear in the graphs
are hence in system units. The parameter A will be used to define the amount by
which a mass is shifted from its equilibrium position at time t = 0 and hence sets
the energy scale of the perturbation in the study. We will use 0 < A < 1 with
typical values being no more than 0.3 or so. A time step of 10�6 used throughout
is found to conserve energy to about 1 part in 107 over the lengths of the runs.
Lowering the energy below this point does not give us any more benefits. We set
the boundaries to be perfectly reflecting.

Figure 2 plots the kinetic energy (in gray scale) as functions of position and
time for the study. At t = 0, the compression of the central bond and its subsequent
release produces the LNE. It is important to note that the kinetic energy is shown
on a logarithmic scale. On a linear scale, it would be di�cult to see the details
of how energy leaks out of the LNE. Indeed, as we noted in the discussions below
Eq. (9), the energy carried by the individual particles falls rapidly at early times
as one moves away from the perturbed bond.

At the earliest times, we see that the energy that is slowly leaking outward from
particles 50 and 52 eventually leads to the formation of a solitary wave on each
side of the LNE. Figure 3 shows the velocities of particles 50 through 43. The weak
solitary wave forms at particle 46 and propagates forward in time as seen by looking
at the velocities of particles 45, 44 and 43. This behavior is expected based upon
the discussions in Sec. 2 above.
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Fig. 2. We plot the kinetic energy per particle as a function of time where the energy plotted is
shown on a logarithmic scale. With ↵ = 0, there are no phonons in the system. The system is not

in equilibrium even at the latest times shown. The state beyond the dispersion of the LNE has

been referred to as the quasi-equilibrium state which is populated by a large number of solitary
waves and related transient entities.

Fig. 3. The velocity versus time data are shown for selected particles as one moves from the LNE

(particle 50) toward the wall near particle 1. The magnitude of velocity shown along the y-axis
suggests that the energy moving outward from the LNE is very, very small at early enough times.
The formation of a solitary wave is clearly seen in the dynamics of particle 46 at t ⇠ 50.

Observing Figs. 2 and 3 in the time interval between t = 0 and 1800 reveals
insights into the rich dynamics that we find in the FPUT system. This can be seen
in the panels in Fig. 4. The dynamics of particle 50 is strongly oscillatory and carry
a multitude of frequencies, as one may expect from Eq. (3). The energy leaks out
of particle 50 very slowly though a fraction of the energy excites particle 49 as
discussed above in Sec. 2. The frequencies accessible to particle 49 are lower and
fewer, again consistent with the discussions in Sec. 2 (see Figs. 3 and 4). Further,
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Fig. 4. (Color online) Kinetic energy versus time for particles 50–46, 42, 40 and 39.

particle 49’s oscillations are characterized by abrupt turns which can be seen in
Fig. 3 and on a phase diagram for the same (not shown here). The dynamics of
particles 48–42 are overall quite similar and hence to save space not all are shown
here. What we find is that a lump of energy is slowly pushing away from the LNE,
a part of this moves faster than the other (see 48 at t between 600 and 800, 47 at t
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between 800 and 900 and 46 at t between 900 and 1200 or so) slowly merging into a
formidable amount of energy which then slows down and gets essentially localized
as one can see by examining particles 40 and 39 [Figs. 4(c)–4(h)]. The localization
of the energy into a region around particles 39–40 can be thought of in terms of
the formation of an LNE which lasts between t around 1000 and t around 1800. As
before, our studies suggest that the regions of LNE carry a significant amount of
potential energy relative to the kinetic energy, i.e., locally, the ratio of K̄/Ū < 2,
where K̄ and Ū denote local averages of K and U . The LNEs tend to disperse into
mobile chunks of energy, be they in terms of solitary waves or disorganized energy
bundles.

As shown in Fig. 2, the time evolution of the LNE continues well beyond the
times discussed above. The slow energy leakage from the LNE leads to the emissions
of lumps of energy that do not quite become solitary waves, that can slow down
and form metastable LNE-like structures and also in turn emit weak solitary waves.
Eventually, enough energy leaks out such that locally and all over hKi/hUi ⇡ K̄/Ū

ends up being close to 2, at which point the system reaches the quasi-equilibrium
state and eventually a smoother version of the same, the equilibrium state (which
we do not attain in the simulations shown in Fig. 2).37

4. Summary and Conclusion

We have attempted to describe the very slow dispersion of the potential energy
embedded in a squeezed central bond in an FPUT chain in the absence of harmonic
interactions, i.e., when the system is in a sonic vacuum. Absence of phonons have a
profound e↵ect on the system’s dynamics. Energy can only leak out of the LNE in
terms of purely nonlinear excitations such as solitary waves and in terms of not-so-
well-formed solitary waves, which we have called lumps of energy (for the lack of
a better name for them). These solitary waves and lumps evolve to become highly
metastable LNEs and so on. Eventually, the repeated interactions between these
entities and the LNE result in the ultimate breakdown of the LNE. The system
slowly proceeds to quasi-equilibrium and then to equilibrium.

As one would expect, the system size has an important role to play in influencing
the lifetime of the LNE. If the boundaries are near enough, such that solitary
wave formation can be severely suppressed, the LNEs may have significantly longer
lifetimes than shown here. Further, the entry of phonons into the system could also
suppress the tendency to form solitary waves and solitary wave-like structures and
that too will increase LNE stability as discussed in earlier work by Mohan and Sen
and others. These systems will be discussed separately in the near future.
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