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After a review of the coupled Newton’s equations for a small alignment of grains with a
fixed reflecting end wall, the equations are put into block diagrams of Simulink. Simulink

simulations are given for 6 grain systems for cubic and Hertz intergrain potentials.
The expected granular solitary waves are seen in the simulations. The block diagrams
hence convert a single impulse into a traveling energy bundle of fixed width. This work
forms the necessary first step for the eventual realization of the mathematical system
represented by the granular chain as a Very Large Scale Integrated (VLSI) circuit.
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1. Introduction

The physical system under consideration comprises a one-dimensional chain of sym-

metric identical elastic grains in contact with a rigid reflecting wall at one end such

that an input pulse travels through compression along the chain. By experiment1,2

through simulations,3 and by series approximations,4,5 the pulses are known to be

able to form into solitary waves and since action potentials are solitary waves, these
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are similar to the signals used by biological neurons (Ref. 6, p. 42) and of consider-

able interest for mimicking neural information processing. Therefore, these granular

alignments can be seen as an alternate means of forming the pulses used in silicon

based pulse coded neural networks.7 Alternatively, their equations can be put into

a form which allows for an equivalent transistor structure having the key properties

of the elastic spherical grains. Consequently, with an ultimate goal of mimicking

the behavior of the grains in transistor circuits, in this paper we present a Simulink

model of these grains in a form that allows for future conversion into VLSI circuits.

As is to be seen, the system converts a shock pulse into a non-dispersive bundle

of energy that is a solitary wave of fixed width with its velocity dependent on the

energy of the shock pulse.

2. Describing Equations

Figure 1 gives a one-dimensional representation of the granular spheres which we

here assume all have the same radius R. We consider N grains with qi being the

coordinate of the center of the ith grain. For i = 1 an external impulse-like force

is assumed applied while for the final grain, at xN , a rigid wall is assumed. We

use the Hamiltonian, H(p, q) representation where p = momentum N -vector and

q = position N -vector and H is the sum of the kinetic and the potential, V (., .),

energies. Thus

H(p, q) =

N∑
i=1

(
1

2m
p2i + V (qi−1, qi)

)
(1a)

pi = m
∂qi
∂t

, (1b)

V (qi−1, qi) = k[(qi−1 +R)− (qi −R)]r+1
+ . (1c)

Here qi is the position of the center of the ith grain measured from an origin

q1 − R = 0. The potential energy depends on the overlap, 2R− (qi − qi−1), of two

adjacent grains if positive (and is zero if there is no overlap). As the rest position

is qio = (2i − 1)R and the displaced position is xi = qi − qio then the overlap is

xi−1 − xi, which gives the potential energy V if positive with V being zero if there

is no overlap; in terms of the xi, V is seen to be independent of the radius R. So

following Ref. 3, the modified symbol [x]+ = (x+ |x|)/2 = (1 + sign(x))x/2 is used

in (1) to designate x if x > 0 and zero if x < 0. The power r+1 is due to the Hertz

-->
......

Fig. 1. Chain of grains of equal radii R with a rigid wall placed at the Nth end.
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law or any generalization of the same8,9 and is known to be 5/2 for elastic spheres

though we simulate with other r values as well;9 especially r = 2 is convenient for

analytic investigations. We set up the equations with r as a parameter which then

becomes easy to change in Simulink. The mass of a grain is m and k comprises

various constants including Young’s modulus.8,9

Simulink realizations are most easily obtained through the state variable equa-

tions which in this case are the Hamilton differential equations.

∂qi
∂t

=
∂H

∂pi
=

1

m
pi , (2a)

∂pi
∂t

= −∂H

∂qi
= m

∂2qi
∂t2

. (2b)

By the choice of xi = qi − qio and zi = pi/m, and introducing possible loss (by

the parameter kloss) we recast these into the following state-variable form which

are the actual ones we put into Simulink in the following paragraphs.

dxi

dt
= zi , (3a)

dzi
dt

=
d(dxi

dt )

dt

=

(
k(r + 1)

2rm

)
{((1 + sign(xi−1 − xi))(xi−1 − xi))

r

− ((1 + sign(xi − xi+1))(xi − xi+1))
r} − klosszi . (3b)

Equations (3) are for i = 2, . . . , N while at i = 1 an additive input term, f(t), is

to be added and the x term omitted fixing the input end boundary, via x = 0,

while for the Nth grain a fixed boundary is imposed by fixing xN+1 = 0, for

qN+1 = (2N+1)R. The factor k′ = k(r+1)/(2rm) can be considered a scale factor

on time in which case it will be normalized to 1, though we allow other values in the

Simulink blocks. Note also that the xi are distances so measured in meters and that

due to the differencing the actual radius R cancels out of Eq. (3). For solitary waves

of velocity c, we have xi(t) = u(xi − ct). Following normalizations of Chatterjee,3

this gives the second order differential equation for the solitary wave

ü = [u(t+ 1)− u(t)]r+ − [u(t)− u(t− 1)]r+ . (4)

Nesterenko1 solved this equation using a long wavelength approximation and by

drawing parallels between this problem and the Korteweg–deVries problem.10 From

these, Chatterjee3 shows MatLab simulations indicating the existence of solitary

waves while Sen and Manciu4 give a series solution approximation. In detail,5 with

α = xi − ct and n a parameter.

u(α, n)) =
A

2
(1− tanh(F (α(n))) (5a)
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F (α, n)) =
1

2

∞∑
q=0

C2q+1(n)α
2q+1 . (5b)

The C2q+1 have been evaluated for q = 0, . . . , 5 and the results shown to be solitary

type waves (see Fig. 3.1 of Ref. 5). In short, these grains are known to support

solitary waves.

Consequently, we know that we can obtain solitary waves from the state variable

equations (3) so it is to them we turn for possible transistor realization. Toward

that we obtain next a suitable block diagram realization.

3. Simulink Block Diagrams

In the following, we explain in some detail the basic functioning of the block dia-

grams. Although we have simulated for much larger N , for convenience of illus-

trating details, the top of Fig. 2 shows a Simulink block diagram for N = 6 stages

of grains. The very left square is a Simulink block for the pulse used as the force

input and to the right of it are four blocks of constants and another one for adding

the input pulse with any possible feedback via the lower right triangle gain block

(which is set to 0 in the absence of feedback for this paper). At the very bottom are

two Simulink scope blocks, the left one for display of the velocity of grains 2 and 5

and the right one for displacement of the same two grains (the heavy vertical lines

feeding the scopes are multiplexer blocks which allow the simultaneous display of

two signals). The left most large rectangle represents the input grain and has seven

inputs as labeled (on the left) and one output (the position) on the right. The right

most large rectangle represents the end grain, again with seven inputs and one used

output. The middle square represents four grains and is expanded in the bottom

of Fig. 2 into four sub-blocks, for grains numbered i = 2, 3, 4, 5 with each having

internal structure being given in detail by Fig. 3. In Fig. 3, the rounded rectangles

(numbered 1–6 with labels such as ln r) represent input terminals for constants and

positions of the grains to the left and the right; the other two rounded rectangles

represent the grain’s position and velocity as outputs of the Simulink block for the

grain. The 1/s square blocks on the lower right are integrator blocks for taking

the integrals of Eq. (3), with IC denoting initial conditions. The circles are blocks

which perform addition and subtraction and the |u| block takes the absolute value,

as used for {·}+ as mentioned in the text below Eq. (1c). The two square blocks

in the upper middle raise u to the power v. u is the signal on the top input lead

and comes from the amplifier of gain 0.5. These blocks are used to raise the signal

in the top left lead to the power r where r comes from the input labeled ln r [see

Eq. (3b)]. This allows us to observe the velocity, vi, as well as the displacement xi.

We have also allowed for the choice of actual position, q, by input of grain radii

but choose R = 0 when x is taken as displacement around equilibrium, that is,

the choice of xi as being equal to qi results when nonzero R is inserted in these

blocks. Using the same Simulink components the input, i = 1, and output, i = N ,
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Fig. 2. Simulink 6 grains block connection (top) with Subsystem 4 expanded (bottom).

stages are expanded as shown in Figs. 4 and 5. Figure 3 realizes Eq. (3) while the

input and output stages, are simple modifications reflecting their different loading.

In Fig. 2 an input pulse of amplitude 10−6 is applied for normalized t = 0.05, on

the left to the input stage. As seen in Fig. 3, different initial conditions can be set in

the integrators, though the presented runs are for all IC = 0. And as seen in Fig. 2,

the velocities are multiplexed so that two of them can be observed simultaneously

on the one scope (to also be read into Matlab via the Simplot (scope#) command

for editing).

1350093-5



May 3, 2013 11:35 WSPC/147-MPLB S0217984913500930 6–10

L. Sellami, R. W. Newcomb & S. Sen

Fig. 3. Simulink ith internal grain stage, i = 2.

Fig. 4. Detailed Simulink input grain stage, i = 1.
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Fig. 5. Detailed Simulink output grain stage, i = N .
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Fig. 6. Simulation results of velocity dx/dt for r = 2 at 5th grain for N = 6 for a 15,000 time
run, y axis in meters/normalized seconds.

4. Simulation Results

Figure 6 gives a plot of dx/dt at the fifth stage for r = 2 and k′ factor normalized

to 1, showing solitary waves as well as their reflection from the N = 6 end wall.

For more details, in the top panel of Fig. 7 are shown the displacement around

equilibrium for the 2nd and 5th grains while in the bottom panel are the velocities

of those grains. For Figs. 6 and 7, the square input pulse is of amplitude 10−6 and
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Fig. 7. Velocity (top panel) and displacement (bottom panel) curves comparing 2nd and 5th
stage signals for a 30,000 time run.

pulse width t = 0.05. This results in a delayed traveling velocity wave to within

the accuracy of Matlab. A reflected wave can be seen via the negative velocity

signal. A similar situation is shown for the Hertz, r = 1.5, case in Fig. 8 where

it is seen that the signals are sped up over the square law, r = 2, case. In both

cases, numerical instabilities appear to result, being earlier for smaller r. In these

simulations the ODE45 equation solver of Simulink was used. If other than zero R is

chosen, the xi become the qi and the latter increase around 2iR so we find the use of

xi as displacement around equilibrium to be more convenient and numerically more

stable than using qi. We have also added up to 51 grains but find that the numerical

error becomes a problem when running Matlab, as pointed out by Chatterjee.3

5. Discussion

For obtaining Simulink models we have put the grains differential equations into

state variable form, in (3) above. From these we are able to set up block diagrams
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Fig. 8. Results for r = 3/2, for velocities of 2nd (solid line) and 5th (dotted line) grains for a
2,000 time run.

which use only integrators, multipliers, powers (including square roots), and sum-

mers. These are conveniently put into Simulink through which we have again shown

that solitary types of signals can be observed in the grain velocities. In the case of

grains satisfying the Hertz potentials these blocks necessitate square roots in ob-

taining the 3/2 power. However, from the simulations we obtain similar results for

powers of r = 2 as well as 3/2, though with a different time scaling as for example

the 4th stage peak occurs at t = 200 for r = 3/2. We have normalized to k′ = 1

and considered xi as the displacement around equilibrium, but we can consider it

alternatively as the absolute center position, qi, of the ith grain for which the value

of the radius R is needed (with R = 0 chosen for the right wall). If we choose to

work with the qi the positions increase with i and become less accurate numeri-

cally. In the Simulink system we do have the capability of choosing different R’s

for the different grains as well as using any real r along with the added possibility

of including loss, though it is not present in the basic grains equations or in the

simulations presented. By fixing the boundaries, via x = xN+1 = 0 the grains can

bounce back and forth as clearly seen in the simulations.

The above can be generalized to also allow for different materials of different

individual grains within the system, these being allowed for by separate ports in

the individual grain cell blocks.

It should be noted that one of the difficulties in working with these grains is

that the potential energy of a grain loses a term when there is separation from an

adjacent grain, this being handled by the use of the [·]+ terms in the equations,

and these being handled by the middle portions seen in Figs. 3–5.

Some useful additional references are included (Refs. 11–21). For example, there

are other effects which can be included, one of which uses the “coefficient of

restitution”,12 while generalization to higher dimensions is possible, such as for
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sand at the beach. Also the above equations are normalized though denormaliza-

tion is easily carried out. (Ref. 21 gives material constants for various materials.)

Since the state-variable equations (3) are readily realizable by transistor circuits,

these granular chain systems are also amenable to VLSI fabrications. For that the

Simulink blocks have been set up in a form suitable for realization by integrated

CMOS transistor circuits. In that case the choice of r = 2 is most convenient since

it can be realized by squaring circuits. And due to the absolute value in Eq. (3b)

the squaring circuits need only be two quadrant, rather than four quadrant, ones.

Also the presented results are for lossless grains while in actual ones there would be

dissipation; certainly transistor circuits can realize lossless, as well as lossy systems,

since they take bias power to compensate for loss. Nevertheless, we have included

in the Simulink blocks provision for inclusion of loss.
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