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We examine the long-term behaviour of non-integrable, energy-conserved, 1D systems of macro-
scopic grains interacting via a contact-only generalized Hertz potential and held between stationary
walls. We previously showed that in homogeneous configurations of such systems, energy is equipar-
titioned at su�ciently long times, thus these systems ultimately reach thermal equilibrium. Here we
expand on our previous work to show that heterogeneous configurations of grains also reach thermal
equilibrium at su�ciently long times, as indicated by the calculated heat capacity. We investigate
the transition to equilibrium in detail and introduce correlation functions that indicate the onset of
the transition.

I. INTRODUCTION

In previous works [1, 2], we showed that 1D homo-
geneous systems of discrete macroscopic grains interact-
ing via a power-law contact potential and held between
fixed walls thermalizes an initial solitary wave (SW), ulti-
mately transitioning to an equilibrium phase. The prop-
erties of this phase are well-predicted by treating the
chain at long times as a 1D gas of interacting spheres in
a microcanonical (NV E) ensemble [3]. In the present
manuscript, we look more closely at the transition to
equilibrium by using statistical tests to show that the
long-term dynamics is ergodic, examine the behaviour
of various correlation functions close to the onset of the
transition, and extend the analysis to heterogeneous sys-
tems.

The discrete, non-integrable systems under consider-
ation have been the focus of a number of recent in-
vestigations [4–53]. Such systems are of broad in-
terest primarily because of their usefulness for a vari-
ety of physical applications, ranging from shock mit-
igation [23, 27, 28, 32, 33, 41] to energy localization
[34, 47, 53, 54]. Their usefulness for these applica-
tions stems from their ability to support the propagation
of non-dispersive travelling disturbances such as SWs,
which are a notable feature of many power-law interact-
ing systems [29, 52, 55].

A propagating SW is initiated in an uncompressed
chain by a simple edge impulse. However unlike solitons
in continuum systems, SWs in these discrete systems suf-
fer from weak interactions with each other [17, 21, 31]
and with system boundaries [25, 29–31] since grains are
capable of breaking contact. These interactions lead to
SW-breakdown processes, the creation of secondary soli-
tary waves (SSWs) [17, 21, 31], and subsequent energy
exchanges [38, 48] in SW-SW collisions.

Long after singular perturbations to the chain, the sys-
tem reaches an equilibrium-like, ergodic phase [25, 29, 30,
38, 39, 48, 51] marked by a large number of SSWs that
are equally likely to be moving in either direction, called
quasi-equilibrium (QEQ). This phase exhibits unusually
large [25, 29, 30, 38, 39, 48, 51] and occasionally persis-

tent (rogue) [56] fluctuations in system kinetic energy,
which impedes energy equipartitioning among all grains
in the system, making it distinct from true equilibrium.
To the time scales previously considered in dynamical
studies, QEQ was observed to be a general feature of
systems with no sound propagation [25, 29, 48]. Until
very recently, the question of whether QEQ is the final
phase for such systems was a long-open problem. How-
ever, it has now been well-established [1, 2, 57] that such
systems with power-law interactions can indeed achieve
thermal equilibrium after su�ciently long times, and that
the time scale to equilibrium increases with the degree of
nonlinearity in the interaction potential.
In homogeneous Hertzian chains, equilibrium was

proved primarily by demonstrating energy equipartition-
ing among the independent degrees of freedom in the sys-
tem. This was accomplished by illustrating that the cal-
culated finite heat capacity of the system agreed with
the value predicted by Tolman’s generalized equiparti-
tion theorem [58]. Beyond this, it was shown that kinetic
energy fluctuations relax to finite values in finite inter-
acting systems. Such values are influenced by the heat
capacity in a NV E ensemble [59, 60] and are governed
by the exponent on the interaction potential.
Hence, in finite systems in equilibrium, each grain does

not have exactly the same kinetic energy at any instant in
time. Rather, each grain’s kinetic energy fluctuates ac-
cording to the same probability density function (PDF).
In our previous work [1] we derived approximations to the
analytic form of the velocity and kinetic energy PDFs,
di↵erent from hard spheres, and which incorporate the
finite interaction potential, and these were found to agree
well with results of particle dynamics simulations. In the
current manuscript, we expand on our previous work to
include heterogeneous systems, such as diatomic, where
band gaps in the dispersion curve form, and tapered and
random-mass chains, where many inertial mismatches
leads to energy dispersion.
The remainder of the paper is organized as follows. In

Sec. II we introduce the model for the Hertzian chains
and review the approximate PDFs for grain velocity and
grain and system kinetic energies. We also introduce the
correlation functions used to monitor the onset of the
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transition to equilibrium. Then we give the details of the
simulation parameters in Sec. III. In Sec. IV, we present
the results, and finish with some concluding remarks in
Sec. V.

II. MODEL AND THEORY

The specific systems under consideration are heteroge-
neous 1D chains of N grains, where each grain is char-
acterized by mass m

i

and radius R
i

. Adjacent grains
interact via a Hertz-like contact-only potential [61]. The
Hamiltonian describing the system is:

H = K + U =
1

2

NX

i=1

m
i

v2

i

+
N�1X

i=1

a
i,i+1

�n

i,i+1

, (1)

where v
i

is the velocity of grain i and �
i,i+1

⌘ R
i

+
R

i+1

� (x
i+1

�x
i

) � 0 is the overlap between neighbour-
ing grains, located at position x

i

. If �
i,i+1

< 0, there is
no interaction. In the above expression, the exponent n
is shape-dependent (n = 2.5 for spheres), and a

i,i+1

con-
tains the material properties of the grains and the grain
radii [62]. The grain interactions with the fixed walls
adds two terms to the Hamiltonian [52].

In typical numerical simulations, the system is per-
turbed by giving an end grain an initial velocity directed
into the chain at time t = 0. This initiates the forma-
tion of a propagating SW, which eventually breaks down
into a sea of secondary solitary waves (SSWs) after nu-
merous collisions with boundaries. This breakdown pro-
cess, which happens su�ciently long after the initial per-
turbation to the system, is facilitated by the formation
of transient inter-grain gaps and can be modelled as a
transition from a non-ergodic (SW) phase to an ergodic
(equilibrium) phase. Since this late-time phase is charac-
terized by a large number of SSWs traversing the system
in either direction, energy is, on average, shared equally
among all the grains. For systems with zero energy dis-
sipation, a NV E ensemble is hence established. This
means that the long-term dynamics of Hertzian chains is
best described by the statistics of a 1D gas of interacting
spheres in thermodynamic equilibrium.

A. NV E distribution functions

It has been previously established that the PDF of par-
ticle velocity of a d-dimensional, finite sized NV E en-
semble is not a Maxwell-Boltzmann distribution [3, 63].
Rather, the probability distribution across the phase
space occupied by an NV E ensemble is:

⌦
E

=
� (E �H)

⌦
, (2)

where �(x) is the dirac delta function, and the normal-
ization integral is found from the hypersurface defined by

the shell with total energy H = E in a 2dN -dimensional
phase space,

⌦ =

Z
� (E �H)

NY

i=1

dY

✏=1

dx
i,✏

dp
i,✏

. (3)

The integral in Eq. (3) is taken over all grain momenta p
and all grain positions x. For indistinguishable particles,
multiplication of the integral by the pre-factor 1/(N !hdN )
gives the classical density of states. Integration over the
grain momenta is accomplished by scaling the momenta
as p̃

i,✏

= p
i,✏

/
p
2m

i

, and then introducing the spheri-

cal change of variable P̃ 2 =
P

N

i=1

P
d

✏=1

p̃2
i,✏

. Subsequent
evaluation of the scaled momentum integrals gives the
surface area of a dN -dimensional hypersphere of radius
(E�U)1/2, leaving the remaining integral over the grain
positions:

⌦ =
(2⇡)dN/2

�(dN/2)
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, (4)

where �(x) = (x � 1)! is the Gamma function and ⇥(x)
is the Heaviside step function.
An exact analytic solution for the Hamiltonian in

Eq. (1) for a finite system with U 6= 0 may be exceedingly
di�cult to derive. Thus, in our previous work [1], we
approximated the integral over grain positions by using
the virial theorem to replace (E � U) with (E � hUi

v

) =
hKi

v

, where h. . . i
v

denotes the expected virial value, i.e.
hKi

v

= n

n+2

E, with K the total system kinetic energy.
Thus the constant hKi

v

can come out of the integral
in Eq. (4), and the integral proceeds as previously de-
scribed [3, 63, 64].
This substitution restricts the maximum momentum

for each individual grain i to a unique value based on its
individual inertial mass, |p

i

|
max

= (2m
i

hKi
v

)1/2. How-
ever, the value of hKi

v

is of course, an average of the
ensemble, and there are certainly grains with kinetic en-
ergy that, at times, are slightly greater than this value.
Nevertheless, such fluctuations decrease with increasing
N , guaranteeing that the number of phase space states
beyond this limit is quite small, and we showed previ-
ously [1] that the virial theorem value turns out to be a
very good approximation for N & 10.
The resulting PDF of per-grain velocities v

i

in 1D
is then obtained by marginalization of the joint PDF,
Eq. (2), giving [3]
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i

) / (2hv
i

i
v

) ,

=
1

2hv
i

i
v

✓
�(↵+ �)

�(↵)�(�)
(ṽ
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with hv
i

i2
v

= 2hKi
v

/m
i

, and ↵ = � = (N � 1)/2. In
the above expression, B(↵,�, ṽ

i

) is the beta distribution,
and � is the gamma function. Since ṽ

i

must lie in the
interval [0, 1], it follows that v

i

2 [�hv
i

i
v

, hv
i

i
v

]. Conse-
quently, grains with di↵erent masses are characterized by
di↵erent velocity distributions. Specifically, each veloc-
ity distribution is centred around v

i

= 0, but the width
(variance) depends on the grain mass.

In the limit N � 1, Eq. (5) becomes the familiar
Maxwell-Boltzmann 1D normal distribution

PDF(v
i

) = N
�
µ,�2

i

; v
i

�
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p
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e�(vi�µ)

2
/2�

2
i (7)

with mean µ = 0 and variance �2

i

= 2hKi
v

/(Nm
i

).
While the variance of the distribution of grain ve-

locities depends on grain mass, the distribution of ki-
netic energy per-grain K

i

is identical for each grain, re-
gardless of its mass. The PDF of K

i

is obtained by
making the replacement v

i

=
p

2K
i

/m
i

in PDF(v
i

)
and further employing the relation PDF(K

i

)dK
i

=
2PDF(v

i

)(dK
i

/dv
i

)�1dK
i

, which gives the resulting beta
distribution [3, 64]

PDF (K
i

) = B
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↵,�; K̃

⌘
/hKi

v

, (8)

where K̃ = K
i

/hKi
v

, ↵ = 1/2, and � = (N � 1)/2. For
N � 1, this becomes the familiar Maxwell-Boltzmann
distribution for kinetic energy, a gamma distribution
G(↵,�,K

i

):

PDF (K
i

) = G(↵,�,K
i

) =
�↵

�(↵)
K↵�1

i

e��Ki , (9)

where ↵ = 1/2 and � = N/(2hKi
v

). Both distri-
butions predict an average kinetic energy per grain of
K

i

= hKi
v

/N , and a variance that is independent of
grain mass.

In our previous work, we derived an approximation to
the distribution of system kinetic energy K =

P
N

i=1

K
i

from statistical theory by treating K
i

as independent and
identically distributed (i.i.d.) variates drawn from the
distribution of Eq. (9). Using this method, the result is
PDF (K) = G(N/2, N/(2hKi

v

);K), which has the cor-
rect mean; however, the variance predicted by this dis-
tribution does not agree with the variance predicted by
the finite system heat capacity. After trial-and-error, a
better approximation was found to be

PDF (K) = G

✓
n+ 2

2

N

2
,
n+ 2

2

N

2hKi
v

;K

◆
. (10)

This distribution not only gives an excellent match to the
distribution calculated from molecular dynamics (MD)
simulation [1], but it also has the correct variance as pre-
dicted by the equilibrium specific heat capacity in the
NV E ensemble.

B. Specific heat

An equilibrium value for the specific heat for Hertzian
chains in the thermodynamic limit was derived previ-
ously [1, 2] from an application of Tolman’s generalized
equipartition theorem [58] to the Hamiltonian, Eq. (1).
The result is

CEq

V

=

✓
n+ 2

2n

◆
k
B

, (11)

which evidently depends only upon the exponent in the
potential, i.e. there is no dependence on grain (or wall)
material, grain size, or temperature. Eq. (11) gives the
expected value of the specific heat in a NV E in the limit
N � 1 when energy is equipartitioned among the degrees
of freedom.
This equilibrium specific heat also gives a prediction

for the equilibrium fluctuations in total system kinetic
energy, through the relation first derived by Lebowitz et
al., which relates the two quantities in one-dimensional
systems as [59, 60]

h�K2i
hKi2 =

2

N

✓
1� 1

2C
V

◆
, (12)

where C
V

is in units of k
B

. When combined with
Eq. (11), it follows that the expected variance in system
kinetic energy is

h�K2i = 2

N

✓
2

n+ 2

◆
hKi2, (13)

from which the factor of (n + 2)/2 < 1 appears, which
has been included as part of the distribution variance of
Eq. (10). From Eq. (13), it is clear that, in the equi-
librium phase, h�K2i/hKi2 is absent of material depen-
dence. This has been observed previously in MD simula-
tions [1, 2, 52].
Inverting Eq. (12) provides one way to calculate the

specific heat per grain from an MD simulation. Alterna-
tively, one can use the exact formula for the microcanon-
ical specific heat obtained by taking an energy derivative
of the so-called microcanonical temperature, which in 1D
gives [60]

C
V

=
k
B

N

✓
1� (N � 4)h1/K2i

(N � 2)h1/Ki2

◆�1

. (14)

In Sec. IV, we use Eqs. (12) and (14) to calculate the
specific heat from MD data for comparison with the pre-
dicted Eq. (11).

C. Correlation functions

The approximate form for the distribution of system
kinetic energy was derived under the assumption of sta-
tistical independence between physical quantities, such
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as grain velocities. Here we introduce three grain corre-
lation functions which we will later use with MD data to
justify this assumption.

We begin by looking for correlations in the time do-
main, and define the velocity auto-correlation function
as:

C(t) =
NX

i=1

C
i

(t) =
NX

i=1

hv
i

(0)v
i

(t)i, (15)

where the angular brackets denote a convolution integral:

C
i
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(⌧) ⇤ v
i

(�⌧)) (t)

=

Z
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0

v
i

(t+ ⌧)v
i

(⌧)d⌧, (16)

with T the length of the sampling interval. In practice,
the integral in Eq. (16) is typically computed using the
convolution theorem, which gives (v

i

(⌧) ⇤ v
i

(�⌧)) (t) =
F�1 (F(v

i

) · CC[F(v
i

)]), with F the fourier transform
and F�1 its inverse, and CC[. . . ] denoting the complex
conjugate. This function is used to indicate correlations
in the time domain since any periodicity or history de-
pendence in the grain velocity data will appear in the
correlation function.

Similarly, we introduce a correlation function to quan-
tify the amount of correlated motion in the spatial do-
main, i.e. between neighbouring grains. The neighbour
momentum correlation function is defined by

p
c

(t) =
N�1X

i=1

p
i

(t)p
i+1

(t), (17)

and the sign of the neighbour correlation function,

sgn (p
c

(t)) =
1

N � 1

N�1X

i=1

sgn (p
i

(t)) sgn (p
i+1

(t)) , (18)

where p
i

= m
i

v
i

denotes the momentum of grain i.
Both these correlation functions give an estimate of
the amount of correlated motion between neighbouring
grains, which could result from SW propagation. (Note
that we have chosen to monitor the correlations among
grain momenta rather than grain velocities since we will
be investigating heterogeneous chains comprised of grains
with di↵erent masses.)

In the non-ergodic SW phase, one expects there to be
a large amount of correlated motion among the moving
grains as the SW spanning several grains sweeps across
the chain. In contrast, in the symmetric equilibrium
phase, one expects there to be as many correlated as anti-
correlated motions among neighbouring pairs of grains.
Hence, we expect p

c

(t) to be non-zero early on, and drop
to fluctuations about zero later on, indicating the onset
of the equilibrium phase. Likewise, by only using the
sign of the momentum in Eq. (18), the actual fraction of
interface exhibiting correlated motion can be quantified,
regardless of the amplitude of the momentum.

Since the grain momenta are not constant, and are
rather described by a static probability distribution func-
tion in the equilibrium phase, it follows that p

c

(t) has
an associated probability distribution function. When
the grain momenta p

i

, p
i+1

follow a normal distribution,
which is the case for N � 1, the exact analytic form
for the distribution of neighbour correlations can be de-
rived from statistical theory for homogeneous (i.e. single
grain species) or diatomic (i.e. two species) chains, see
the Appendix, with the result

PDF(p
c

) =
|q| r�1

2 K r�1
2

(|q|)

�
p1�p22

r�1
2
p
⇡�

�
r

2

� , (19)

where q = p
c

/(�
p1�p2) (with �

pi the standard deviation
of the PDF of momentum for grain species i), K

s

(q)
is a modified Bessel function of the second kind of or-
der s, and r = N � 1. Homogeneous chains correspond
to �2

p1
= �2

p2
= 2mhKi

v

/N , while diatomic chains have
�2

p1
= 2m

1

hKi
v

/N 6= �2

p2
= 2m

2

hKi
v

/N . Interestingly,
Eq. (19) gets wider with larger N when N � 1.
As a final measure of the correlations in Hertzian

chains, we introduce the configurational temperature T
c

,
which for 1D systems is defined by [65]

1

k
B

T
c

=

D
�
P

N

i=1

@Fi
@xi

E

⌦P
N

i=1

F 2

i

↵ , (20)

where k
B

is Boltzmann’s constant, and F
i

is the net force
acting on particle i. The angular brackets denote an en-
semble average, or equivalently, a time average in ergodic
systems. This definition of temperature utilizes the con-
figurational information contained within the particle in-
teractions, rather than the kinetic information, to deter-
mine the temperature of the system. In equilibrium for
su�ciently dense systems, T

c

should equal the standard
kinetic energy temperature [65].
We hypothesize that, neglecting the averaging in

Eq. (20) and monitoring the time dependence of the re-
sulting rational quantity, the configurational temperature
can act as a measure of the correlations and indicator
to the onset of the transition to equilibrium in Hertzian
chains. Particularly, early on in the erratic SW phase,
the configurational temperature will exhibit large fluctu-
ations, and will later relax to smaller fluctuations about a
constant value as the system approaches the equilibrium
phase. This relaxation should correspond to the onset of
the transition to equilibrium in Hertzian chains.

III. METHODS

To examine the very long-time dynamics of Hertzian
chains and closely inspect the transition to equilibrium,
we ran MD simulations of various 1D configurations of
N grains held between fixed walls and described by the
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Hamiltonian in Eq. (1). These configurations include ho-
mogeneous (monatomic), diatomic, tapered, random ra-
dius, and random mass chains.

In the monatomic chains, the grains are made of steel
and 6 mm in radius, corresponding to a mass of 7075.4
mg. In diatomic chains, one of the species is comprised of
steel grains 6 mm in radius, and the second grain species
is comprised of grains whose Young’s modulus and Pois-
son’s ratio are equivalent to those of steel, but whose
density has been altered to achieve the desired mass ra-
tio. In the tapered chains, all grains are made of steel,
and the largest grain is 6 mm in radius. A tapering per-
cent (which controls the ratio of the radii of neighbouring
grains) between 1-5% is considered. Finally, in random
radius and random mass chains, the Young’s modulus
and Poisson’s ratio of all grains are equivalent to those
of steel. For the random radius chains, the masses of all
grains are kept constant at 7075.4 mg, while the radii are
set by choosing random numbers between a fixed interval
of 0.5-8 mm. Similarly, in the random mass chains, the
grain radius is kept constant at 6 mm, while the masses
are set with a random number generator within the range
of 35-7075.4 mg.

Fixed walls comprised of steel are implemented in
all systems, which adds two terms to the Hamiltonian
as described in [1, 2, 52]. We do not apply any pre-
compression, or squeezing of the chains, but rather each
grain is initially just touching its neighbour between walls
which are a distance of

P
N

i=1

2R
i

apart.
We consider values of the potential exponent n from 2

(harmonic) to 4, and system sizes from N = 20 to 100.
A standard velocity Verlet algorithm is used to integrate
the equations of motion with a 10 ps timestep, and no dis-
sipation is included. The grains are set into motion with
an asymmetric edge perturbation (initial velocity given
to the first grain only, directed into the chain), causing a
single initial SW to propagate through the system. The
initial SW breaks down in collisions with boundaries and
in the formation of gaps, creating numerous secondary
solitary waves (SSWs). After a period of time, the num-
ber of SSWs increases to a point where the system enters
into quasi-equilibrium [25, 29, 30, 48, 51]. We allow the
system to evolve for a substantial amount of time past
this phase change. The system energy is constant to 10
significant digits for the entire simulation.

The time scale to QEQ onset is determined by the po-
tential exponent n [39], so we used the method described
in Ref. [2] to get an estimate for the optimal velocity per-
turbation for reaching equilibrium as quickly as possible.
In most cases, it was necessary to collect at least one sec-
ond of real time data, and even longer for larger values
of n. Data of grain position and velocity are recorded
to file every 10-100 µs, though we re-sample the data at
time intervals beyond the dampening of velocity autocor-
relation; typical sampling intervals were of the order of a
few hundred µs. We call the last 20% of each simulation
the equilibrium interval, and all further analysis is car-
ried out with data from this interval. Here the deviation

from the expected virial hKi
v

= n/(n + 2)E was < 1%
for all systems.

IV. RESULTS AND DISCUSSION

We begin by exploring several possible prerequisites
to establishing equilibrium. There is no a priori reason
to assume the presence of ergodicity, or the absence of
correlation or bias in systems with n > 2, where energy
can be transmitted via SWs whose width span several
grains. In noisy data, such as the recorded velocity of
a single grain, we must illustrate the validity of these
common assumptions.
Ergodicity is defined as the equivalence of ensemble

and time averages of physical observables. It is thought
that the QEQ phase in Hertzian systems is ergodic. One
therefore might expect that the equilibrium phase is also
ergodic, and we indeed establish this by a more rigorous
statistical test than has been applied before.
In homogeneous chains, under the null hypothesis, the

time-domain velocity evolution of a single grain, and the
velocities of the ensemble (i.e. all grains in the chain) at a
given timepoint, should come from the same distribution.
Furthermore, that distribution is nearly normally dis-
tributed. Thus to rigorously show ergodicity in homoge-
neous chains, we run repeated two-sample Kolmogorov-
Smirnov tests (KS), and Welch’s t-tests (WT), with both
the single grain and ensemble time-point chosen at ran-
dom. We plot a histogram of the distribution of 2500
p-values, shown in Figs. 1(i-a)-(iv-a) for four represen-
tative homogeneous systems. Under the null hypoth-
esis of both tests, i.e. the system is ergodic, the p-
values are uniformly distributed, which is the expected
case if the underlying distribution is approximately nor-
mal [66]. The average densities for both tests, calculated
as the weighted means of the distributions presented in
Figs. 1(i-a)-(iv-a), are very close to one, as expected.
There may be a minute upwards trend in the KS test,
which might be indicative of slight skew in the underly-
ing distribution. These e↵ects are likely a result of the
grain interactions with the confining walls.
In comparison, in heterogeneous chains where the

grains do not all have the same masses, the velocity dis-
tributions of each grain are not equivalent. Hence the
velocities of the ensemble of grains (i.e. all grains in
the chain) do not come from the same distribution as
the time-domain velocity of any single grain. In other
words, there is no equivalent grain which samples the
same phase space as the ensemble comprised of all grains
in the heterogeneous chain. While the velocity of each
individual grain will be ergodic, as verified by statistical
test in homogeneous chains, one cannot apply a statisti-
cal test simultaneously to all grains in the heterogenous
chain to verify ergodicity.
Since we aim to establish the absence of bias and corre-

lations in the equilibrium phase in Hertzian chains, prior
to further analysis below, we now remove bias in the time
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FIG. 1. (Color online) (a) Distribution of p-values for the two-sample KS- and WT-tests used to establish ergodicity in
homogeneous Hertzian chains. Solid lines indicate the expected average value of the density, and dashed lines indicate the
larger of the standard deviation, �KS/WT , of either test. The average densities of both tests are included in the top right
corner of each plot. (i) n = 2.0, N = 100; �KS = 0.167, �WT = 0.145; (ii) n = 2.5, N = 38; �KS = 0.134, �WT = 0.138; (iii)
n = 3.0, N = 30; �KS = 0.143,�WT = 0.104; (iv) n = 4.0, N = 10; �KS = 0.164,�WT = 0.095. (b) Velocity autocorrelation
function, Eq. (16), for grain 1 computed over the entire equilibrium interval for various heterogeneous Hertzian chains. Data
is re-sampled at time intervals where C1(t)/C1(0) = 0 to ensure independence in the time domain. (i) n = 2.5, N = 38
homogeneous chain; (ii) n = 2.5, N = 38 diatomic chain with mass ratio m1/m2 = 2; (iii) n = 4, N = 20 tapered chain with
tapering percent of 2.5%; (iv) n = 3, N = 20 random-mass chain. Curves are not smooth in the last two plots because data
was recorded to file at larger time intervals for these systems.

domain by computing the velocity autocorrelation func-
tion, Eq. (15), for each system. Since the grain velocities
depend on grain mass, see Eqs. (5)–(7), in heterogeneous
systems it is more appropriate to consider the autocor-
relation function of individual grains, Eq. (16), rather
than the sum over all grains. We present this correla-
tion function for grain 1 (which is typically the largest
and slowest moving grain) for four representative sys-
tems in Figs. 1(i-b)-(iv-b). We subsequently re-sample
MD data for all systems at time intervals where velocity
autocorrelation has vanished; typically of the order of a
few hundred µs.

While correlations in the time domain have been ac-
counted for, we also test for correlated motion between
neighbouring grains. Such correlations can be measured
by monitoring various quantities, including the maximum
absolute momentum of any grain in the chain, |p

max

|,
as a function of time. This quantity is computed from
t = 0 for four representative systems in Figs. 2(i-a)-(iv-

a). In homogeneous (monoatomic) chains, Fig. 2(i-a),
|p

max

| initially oscillates about a maximal value as the
initial SW travels through the granular chain. Periodi-
cally, when the initial SW reaches a boundary and most
of the system’s energy converts to stored potential energy
in the walls, |p

max

| drops to a small value. Some time
after the initial velocity perturbation, |p

max

| relaxes to
noisy oscillations about a much smaller value, denoting
the onset of the QEQ phase.

In diatomic chains, Fig. 2(ii-a), this relaxation hap-
pens much sooner due to the inertial mismatches between
neighbouring grains. The SW breaks down much quicker
since energy is both reflected and transmitted in succes-
sive collisions between neighbouring grains in such sys-
tems. In tapered chains, Fig. 2(iii-a), the progressive
decrease in the radius and mass of the grains also causes
the amplitude of the SW to decay more quickly than an
equivalent homogeneous chain. This is reflected in the
behaviour of |p

max

|, though it should be noted that in
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Fig. 2(iii-a), the time scale is longer since n = 4 for this
system, and the time scale to equilibrium increases with
n. Finally, in random mass chains, Fig. 2(iv-a), |p

max

|
drops to noisy oscillations about a small value almost
immediately, which insinuates that random mass chains
do not support SW propagation.

Interestingly, in random radius chains in which the
grain masses are the same, the behaviour of |p

max

| is
closer to the behaviour exhibited by homogeneous chains.
In particular, the relaxation is apparent since it happens
over a longer timescale, implying that the random ra-
dius chains do support SW propagation. Similarly, in
diatomic chains in which the grain masses are the same
but the two grain species di↵er in their radii, the be-
haviour of |p

max

| is nearly identical to that observed in
the equivalent homogeneous chain. This indicates that it
is the di↵erences in grain inertia, and not the grain shape,
that play a major role in the SW breakdown processes in
these systems.

To further monitor the grain correlations, we also cal-
culate the neighbour momentum correlation function,
Eq. (17), from t = 0 for all of our systems, and results are
shown for the four representative systems in Figs. 2(i-b)-
(iv-b). It is clear from these figures that the relaxation
of p

c

identically mirrors that of |p
max

|, and that p
c

drops
to oscillations about zero as the system enters into QEQ,
as expected. We also present the results for the sign of
the neighbour correlation function, Eq. (18), computed
from t = 0 in Figs. 2(i-c)-(iv-c) for the same systems. In-
terestingly, sgn(p

c

) has already dropped to zero roughly
by the time that p

c

and |p
max

| are beginning to relax.
As evident from all the plots in Fig. 2, grain-grain cor-

relations die out early in the simulation, indicating the
onset of the equilibrium phase. We see that sgn (p

c

) fluc-
tuates between extremes of about ±0.5, values that rep-
resent the di↵erence in the number of interfaces between
neighbouring grains whose motion are correlated (grains
moving parallel) versus anti-correlated (grains moving
anti-parallel). From these maxima, as much as 75% of in-
terfaces at times are either correlated or anti-correlated.
The appearance of a large number of anti-correlated in-
terfaces start very early in the simulation, and may trig-
ger the onset of the equilibrium phase.

We conclude from the presence of equal amounts of
correlated and anti-correlated grain motion that SSWs
do not add correlated bias to the motions of neighbour-
ing grains in the equilibrium phase. These results also
confirm that the single-grain quantities can be treated as
i.i.d. random variables drawn from the distributions of
Eqs. (5) or (7) for grain velocity, and Eqs. (8) or (9) for
grain kinetic energy.

As a final probe of the correlations among grains, we
compute the configurational temperature, Eq. (20), for
all of the systems. To monitor the convergence of T

c

over
time, we drop the averaging, and the results are shown for
the four representative systems in Fig. 3. For the systems
which support SW propagation, T

c

has an exponential
decay to fluctuations about a constant value. Moreover,

the behaviour of T
c

computed in this way mimics the
behaviour of |p

max

| and p
c

. In particular, T
c

starts to
settle to fluctuations about the long-term constant value
at roughly the same time that |p

max

| and p
c

have decayed,
indicating the onset of equilibrium. Thus T

c

computed
in this way also provides a reliable way to measure grain-
grain correlations in Hertzian chains.
We see from Fig. 3 that the long-term constant value

of the configurational temperature, T
c,1, agrees with the

kinetic temperature defined by k
B

T
K

= 2hKi
v

/N , as
well as the microcanonical temperature defined by [60]
1/(k

B

T
R

) =
�
(N � 2)/2

�
h1/Ki, within the error bars.

The agreement is better when N is large, see Figs. 3(i)
and (ii). For smaller values of N , Figs. 3(iii) and (iv),
the agreement is less since T

c

and T
K

are only accurate
to O(1/N). The drastic increase in the size of the error
for the systems in Figs. 3(iii) and (iv) is a consequence
of both the small system size and the large initial pertur-
bation (a larger initial perturbation was given to these
systems since n is larger).
Now that we have demonstrated the absence of correla-

tions in the long-term phase of Hertzian chains, we show
that this phase is indeed an equilibrium phase. To accom-
plish this, we check the distributions of grain velocities
and kinetic energy, as well as the equipartitioning of en-
ergy among all grains via the specific heat. First we test
the grain distribution functions presented in Sec. II A,
and show the agreement between the expected PDFs
(Eqs. (5), (7)–(10)) and MD data for three representa-
tive heterogeneous systems in Fig. 4. In each system,
the per-grain velocity data agrees with the beta distri-
bution, Eq. (5), which is nearly identical to the normal
distribution, Eq. (7), for large N , see Figs. 4(i-a)-(iii-a).
The grain kinetic energy distributions are presented in

Figs. 3(i-b)-(iii-b), illustrating agreement between MD
results and Eq. (8) for large N . The di↵erence between
Eqs. (8) and (9) looks fairly pronounced in the log scale
with smaller N , where the beta distribution generally has
a cuto↵ before the tail of the MD data. The area under
the MD histogram past the beta-distribution cuto↵ at
hKi

v

illustrates the earlier point of the small number
of states beyond the limits of phase space used to derive
Eq. (8). However, this area is exaggerated in the log scale
plots; it was found previously [1] that for homogeneous
systems with N = 10, P (K

i

> hKi
v

) . 0.05%, while for
larger N it’s even less.
The sensitivity of Eqs. (5) and (8) to n and N are also

shown in Figs. 4(i-a)–(iii-a) and (i-b)–(iii-b), by plotting
curves of incorrect values of n + 1 or 1.1N . They do
not agree as well with the data, and illustrate that the
predicted distributions are indeed the best fit to the data.
Figs. 4(i-c)–(iii-c) contain the distributions of system

kinetic energy from MD simulations, along with the cor-
responding Eq. (10), for the three representative het-
erogeneous systems. The agreement between MD data
and the expected result is very good for N = 38, see
Fig. 4(i-c); however there is a slight skew in Eq. (10)
when N = 20, Figs. 4(ii-c) and (iii-c), which was also ob-
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FIG. 2. (Color online) Grain-grain correlation functions for the four representative systems of Fig. 1(b). Plots labelled (i)
correspond to the n = 2.5, N = 38 homogeneous chain, (ii) corresponds to the n = 2.5, N = 38 diatomic chain, (iii) to the
n = 4, N = 20 tapered chain, and (iv) to the n = 3, N = 20 random mass chain. (a) labels the maximum absolute momentum
of any grain in the chain as a function of time, (b) the neighbour momentum correlation as a function of time, Eq. (17), and
(c) the sign of the neighbour momentum correlation as a function of time, Eq. (18). All quantities are computed from t = 0.

served in homogeneous systems [1]. For comparison, we
also present the distribution without the variance cor-
rection, G(N/2, N/(2hKi

v

);K), which we call the hard-
sphere limit, and clearly does not agree with any MD
data of interacting grains.

Lastly, we compute the specific heats of MD simulation
data using both Eqs. (12) and (14) to address the issue
of equipartitioning of energy in these systems. These
calculated results are directly compared with CEq

V

pre-
dicted by Eq. (11) in Table I for various heterogeneous

chains. It is evident that for larger N , the values cal-
culated by Eqs. (12) and (14) agree very well with the
theory. Moreover, even for small (N . 20) systems, the
deviation from theory is no more than⇠ 5%, and improve
with additional data points in the averaging.

The fact that the calculated specific heat agrees with
the value predicted by the generalized equipartition the-
orem for N � 1 provides evidence that energy is indeed
equipartitioned in the heterogeneous Hertz chain at long
enough times. This establishes that the very long-time
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n N CEq
V /kB CV /kB CV /kB

Eq. (11) Eq. (12) Eq. (14)
Diatomic chains

2.5 38 0.900 0.887 0.870
2.5 100 0.900 0.910 0.896
3 20 0.833 0.797 0.846
3 50 0.833 0.834 0.843
4 20 0.750 0.751 0.753
4 100 0.750 0.748 0.731

Tapered chains
2.5 20 0.900 0.908 0.863
2.5 50 0.900 0.914 0.909
3 50 0.833 0.831 0.809
4 20 0.750 0.749 0.747

Random mass chains
2.5 20 0.900 0.909 0.908
2.5 38 0.900 0.898 0.901
3 20 0.833 0.811 0.828
3.25 15 0.808 0.803 0.806
3.5 25 0.786 0.797 0.787

TABLE I. Specific heat capacity calculated from MD simulation data for various heterogeneous chains using Eq. (14) and (the
inverted) Eq. (12). For comparison, we present the expected equilibrium value in the thermodynamic limit, Eq. (11).

dynamics of 1D heterogeneous granular chains with zero
dissipation is a true equilibrium phase [48].

While we have presented results for heterogeneous
chains given asymmetric perturbations, it should be
noted that these results are unchanged when the systems
are given symmetric edge perturbations. The exception
to this is when the symmetric edge perturbations induce a
mirror reflection symmetry about the centre of the chain,
such as in a homogeneous chain or an odd-N diatomic
chain. This symmetry results in a loss of degrees of free-
dom in the system, as discussed in Refs. [1] and [2], and
the microcanonical specific heat and the PDF of system
kinetic energy must be modified to account for this. In
this case, it is important to stress that energy is equipar-
titioned among the independent degrees of freedom in the
system at long times. In systems in which there is no
mirror reflection symmetry, the number of independent
degrees of freedom and the number of grains are equiva-
lent, thus such a distinction is not required.

V. CONCLUSIONS

We have illustrated that the long-term dynamics of 1D
granular systems between fixed walls and with zero dissi-
pation is a true equilibrium phase [48]. In particular, we
first used statistical tests to rigorously establish that the
long-term dynamics is ergodic. Then we monitored corre-
lations among grains via the neighbour momentum corre-
lation functions and the configurational temperature. We
showed that that correlations among grains vanish early
on, indicating the onset of the transition to equilibrium.

Moreover, we expanded on our previous work [1, 2]
to include heterogeneous chains, and showed that grains
of di↵erent masses are characterized by di↵erent veloc-

ity distributions. We also showed that the approximate
distribution functions for grain velocity, grain kinetic en-
ergy, and system kinetic energy that were derived pre-
viously for interacting particles in a microcanonical en-
semble [1, 2] agree well with MD data for various hetero-
geneous systems, including diatomic, tapered, and ran-
dom mass chains. Lastly, we illustrated that energy is
equipartitioned at long times in these systems by show-
ing agreement between calculated specific heat capacities
from MD data and expected equilibrium values.
Most interestingly, we provided evidence that, apart

from the degree of nonlinearity in the system, the config-
uration of masses influences the timescale of the transi-
tion to equilibrium. In particular, the transition can be
accelerated by introducing inertial mismatches between
grains. This is best demonstrated by the random mass
chains, which do not support SW propagation and are
therefore seen to start to equilibrate much sooner than
homogeneous chains with the same degree of nonlinearity
in the contact potential. This result may be useful for
physical applications such as shock disintegration.
It would be interesting to see how these ideas extend

to systems with driving and dissipation.
Appendix: Derivation of PDF (p

c

)
To obtain an analytic expression for PDF(p

c

), assum-
ing the underlying distribution of particle velocities is
given by Eq. (7), it is easiest to proceed in two steps.
First, we determine the distribution function for the
product of two neighbouring grain momenta. Then we
determine the distribution function for the sum of such
products.
In the limit N � 1, Eq. (5) (and Eq. (7)) predicts

�2

i

⌘ var(v
i

) = 2hKi
v

/(Nm
i

), which immediately reveals
that �2

pi
⌘ var(p

i

) = 2m
i

hKi
v

/N . We assume the grain
momenta can be treated as i.i.d random variates drawn
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FIG. 3. (Color online) Configurational temperature, Eq. (20)
(with averaging neglected), for the four representative sys-
tems in Figs. 1(b) and 2. For plots (i)-(iii), the curves fit
to an exponential function which decays to a nonzero con-
stant value. This long-term constant value is denoted as Tc,1
and is presented on each plot (for the random mass chain in
(iv), Tc,1 was obtained from a constant fit to the data). We
also present the values of the kinetic temperature TK corre-
sponding to kinetic energy hKiv, as well as the microcanonical
temperature TR introduced by Rugh [60] (see text for more
details). Note that Tc,1, TK , and TR are presented in units
of kB . (Plots (i)-(iii) are zoomed in to clearly show the size
of the long-term fluctuations.)

on a normal distribution with zero mean and variance
�2

pi
, i.e. p

i

= X ⇠ N (0,�2

p1
) and p

i+1

= Y ⇠ N (0,�2

p2
).

These represent the momenta of the even and odd num-
bered grains. We are then first interested in the distri-
bution of the product Z ⌘ XY .

To compute the distribution of Z, we consider the char-
acteristic function of the distribution of X (or equiva-
lently of Y ). For a scalar random variable X, the char-
acteristic function '

X

(t) is defined as the expected value
of exp(itX):

'
X

(t) = E
�
eitX

�
⌘

Z 1

�1
eitxf

X

(x)dx, (21)

where i =
p
�1, t 2 R, and f

X

(x) is the proba-
bility density function. From Eq. (21), it is evident
that '

X

(t) is simply the inverse Fourier transform of
f
X

(x), where f
X

(x) = N (0,�2

p1
) in this case. The in-

verse Fourier transform of a Gaussian is a well-known
result, thus for the momentum distributions we have
'
X

(t) = exp(��2

p1
t2/2).

Using the law of total expectation [67], it follows that
E(X) = E(E(X|Y )), where E(X|Y ) denotes the con-
ditional expectation value, i.e. the expected value of
X given that Y = y. Now E

�
eitXY

��Y = y) is sim-
ply exp(��2

p1
t2Y 2/2), and from the law of total expec-

tation it follows that the characteristic function of Z,
'
Z

(t) ⌘ '
XY

(t) = E
�
eitXY

�
, is given by:

'
Z

(t) = E
�
E

�
eitXY |Y = y

��

= E
�
exp(��2

p1
t2Y 2/2)

�

=
1p

2⇡�
p2

Z 1

�1
e�(�p1 ty)

2
/2e�y

2
/(2�

2
p2

)dy

=
1q

1 + �2

p1
�2

p2
t2
. (22)

We obtain PDF(Z) by inverting its characteristic func-
tion, which is equivalent to taking the Fourier transform
of '

Z

(t):

PDF(Z) =
1

2⇡

Z 1

�1
e�izt'

Z

(t)dt,

=
1

⇡�
p1�p2

K
0

✓
|z|

�
p1�p2

◆
, (23)

where K
0

(z) is the modified Bessel function of second
kind and order zero, and Eq. (22) was used in obtaining
the final expression. Eq. (23) is the well-known product
normal distribution.

The neighbour momentum correlation function in
Eq. (17) involves the sum of terms like Z, so we now
let Q =

P
r

j=1

Z
j

be the sum of N = r + 1 indepen-
dent variates Z

j

drawn from PDF(Z). By definition, the
characteristic function of Q is

'
Q

(t) = E
�
eitQ

�
= E

⇣
eit

Pr
j=1 Zj

⌘

=

Z

Rr

✓
rY

j=1

eitzj
◆
f
Z1,...,Zr (z1, . . . , zr)dz

r, (24)

where f
Z1,...,Zr (z1, . . . , zr) is the joint probability density

function of all Z
j

, i.e. P (Z
1

= z
1

, . . . , Z
r

= z
r

), and dzr

denotes the product dz
1

. . . dz
r

. The integral is taken
over the r-dimensional real space Rr. The statistical
independence of Z

j

implies that f
Z1,...,Zr (z1, . . . , zr) =
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FIG. 4. (Color online) Distribution of grain velocity, grain kinetic energy, and system kinetic energy for the three heterogeneous
systems in Figs. 1(b), 2, and 3. Results of MD simulations are shown as filled circles. In columns (a) and (b), solid lines are
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slightly changed to illustrate the sensitivity of Eqs. (5) and (8). In column (c), solid curve is the theoretical prediction Eq. (10),
and dashed line is the corresponding hard-sphere distribution.

⇧r

j=1

f
Zj (zj), thus from Eq. (24),

'
Q

(t) =

Z

Rr

✓
rY
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eitzjf
Zj (zj)

◆
dzr

=

✓Z 1

�1
eitzf

Z

(z)dz

◆
r

=
�
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p1
�2

p2
t2
�� r

2 , (25)

where Eq. (22) was used in obtaining the last expression.

Finally, the distribution function for Q, i.e. PDF(p
c

), is
obtained from a Fourier transform of this last equation.

We show agreement between the predicted PDF(p
c

)
and MD data for a homogeneous chain (�2

p1
= �2

p2
=

2mhKi
v

/N) in Fig. 5(i) and for a diatomic chain (�2

p1
=

2m
1

hKi
v

/N 6= �2

p2
= 2m

2

hKi
v

/N) in Fig. 5(ii). Sym-
metric and centred at zero, it is clear that the data agrees
very well with Eq. (19).
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