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We study the penetration dynamics of a projectile incident normally on a substrate comprising of smaller
granular particles in three-dimensions using the discrete element method. Scaling of the penetration depth
is consistent with experimental observations for small velocity impacts. Our studies are consistent with the
observation that the normal or drag force experienced by the penetrating grain obeys the generalized Poncelet
law, which has been extensively invoked in understanding the drag force in the recent experimental data. We
find that the normal force experienced by the projectile consists of position and kinetic-energy-dependent pieces.
Three different penetration regimes are identified in our studies for low-impact velocities. The first two regimes
are observed immediately after the impact and in the early penetration stage, respectively, during which the drag
force is seen to depend on the kinetic energy. The depth dependence of the drag force becomes significant in the
third regime when the projectile is moving slowly and is partially immersed in the substrate. These regimes relate
to the different configurations of the bed: the initial loose surface packed state, fluidized bed below the region of
impact, and the state after the crater formation commences.
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I. INTRODUCTION

The problem of energy propagation and dissipation when
a high-energy projectile strikes a granular medium is of fun-
damental importance. Understanding of the channels through
which the energy of the projectile is dissipated as it moves
through a granular medium will have widespread implications
in designing efficient shock absorbers for high-velocity im-
pacts and in understanding the processes associated with the
formation of impact craters. During the past decade this loss
of energy has been extensively investigated through measure-
ments of penetration depth [1–9], crater morphology [10–12],
and evolution of force networks [13,14] in the substrate, and
so on. For low-impact energies, it is well established that the
final penetration depth scales as one-third the power of the
total fall height [1,2,15]. For larger impact energies and denser
projectiles a 1/4 power law has also been observed [11].

While the interaction between the projectile and the
substrate is rather complex and further investigations are still
required for a complete understanding, simple phenomenolog-
ical models based on experiments and computer simulations
have been proposed. The prevalent view and the unified picture
that has emerged from these studies [2,3,13,16,17] is that the
projectile motion after impact can be assumed to follow the
generalized Poncelet law,

mz̈ = mg − Fn = mg − f (z) − h(z)ż2, (1)

where Fn is the total drag or normal force acting on the
projectile and consists of two parts. At large velocities, the
normal force Fn is dominated by the kinetic energy. At small
velocities, the h(z)ż2 term becomes less important and a
depth-dependent behavior characterized by f (z) is seen. mg is
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the force due to gravity. m and z are the mass and position
of the projectile respectively. z = 0 is associated with the
location of the upper unperturbed surface of the bed. The
exact nature of these resistive forces depend on the system
parameters, geometry of the projectile, and impact regime and
are contained within the terms f (z) and h(z).

h(z) is usually assumed to be a constant, whereas different
forms for f (z) have been suggested. In Ref. [17] it is argued
that the depth dependence of the drag force for shallow impact
varies as the square of the depth and is a constant for deep
impact. Notably, the square dependence on depth, without the
velocity dependence of the drag force in Eq. (1), naturally
leads to the one-third scaling of penetration depth [17]. In
Ref. [2] an exponential depth-dependent drag force which goes
from quadratic at low penetration depth to a constant at large
depths was obtained from fits to experimental data. However, a
frictional drag force which varies linearly with depth has also
been observed [2,16,18,19].

In this paper we present results of 3D impact simulations
with particular attention devoted to the validity of Eq. (1).
The paper is laid out as follows. Details of the numerical
simulations are presented in Sec. II. In Sec. III we present
results for the scaling of the penetration depth for a large
range of impact velocities. We compare our results for the force
experienced by the projectile with Eq. (1), which enables us to
get further insight into the penetration dynamics. Conclusions
are presented at the end.

II. NUMERICAL METHOD

We study the impact dynamics of the projectile by per-
forming three dimensional discrete element method (DEM)
simulations. The numerical simulations have been performed
using the open-source DEM software YADE [20]. The target
granular bed is first prepared by creating a loose random
packing of spheres in a rectangular container surrounded by
hard walls. The sides of the container are of length 30 cm and
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FIG. 1. Distribution of coordination number for the granular bed.
f (nc) is the fraction of particles with nc contacts.

height 20 cm. The spheres are then allowed to deposit under the
action of gravity until the desired packing is obtained. In our
numerical simulations the granular bed consists of grains made
from glass particles of density ρg = 1520 kg/m3, Young’s
modulus E = 6.47 × 1010 Pa, and Poisson ratio ν = 0.3.
The angle of repose was kept at θr = 24◦, for which the
friction coefficient μ = 0.45. The diameter dg of the grains
are uniformly distributed around the mean 4 mm and lies
between 3.2 and 4.8 mm. The total number of grains in the
bed is 123 758. After gravity deposition, the height of the
granular bed is 8.5 cm and the packing fraction is 56.44%.
In the experiments carried out by Jerkins et al. [21] for a
monodispersed system the lowest packing fraction in the low
pressure regime is 55%. Our simulated bed is consistent with
this in the low-pressure environment. The distribution function
f (nc) of coordination number nc follows a Gaussian with mean
≈4.6 (Fig. 1).

A projectile made of the same material as the bed particles
but with diameter D much larger than the mean diameter
of the bed particles is incident normally at the center of
the bed. For the numerical integration of the equations of
motion we use the Hertz-Mindlin [22] no-slip interaction
model. In this model, the interaction force between two spheres
in contact is decomposed into an elastic normal force and
an incremental shear force. The normal contact force fn is
given by Hertz’s law, fn = knξ

3/2
n . ξn here is the normal

overlap distance between the two spheres. The normal stiffness
constant kn = 4

3E
√

R, where the equivalent radius of the two
particles R = R1R2

R1+R2
and Young’s modulus E = 1

1−ν2
1

E1
+ 1−ν2

2
E2

. In

the shear direction, a linear relationship is assumed between
the shear force and the tangential displacement. The tangential
contact force fs = ks

√
ξn�s. �s is the tangential displace-

ment increment between the two particles. The tangential
contact stiffness ks = 2

√
4R G

2−ν
. G is the average of the

Shear modulus and ν is the average of the Poisson ratio of
the two spheres. The maximum shear force that develops
at a point in contact is determined by the Mohr-Coulomb

criterion [fs = min(fs,μfn)]. In the simulations we have fixed
the time step �t at 0.6 × 10−8 s, which is much smaller than
the contact time obtained from Hertzian theory for elastic
contact [23]. A small damping factor of 0.01 which sets the
restitution coefficient as 0.99 has also been considered. For
the low-pressure conditions used here and impact velocities
considered, our preliminary tests did not show any significant
difference in the results for restitution values in the range 0.9 to
0.99. At this stage we use this granular bed for different impact
speeds and restrict our current analyses to understanding the
dynamics of the projectile as it moves through this granular
bed.

To ensure our results are valid for different granular beds,
we have also carried out numerical experiments on a bed
with the same mean radius consisting of 119 584 particles of
packing fraction 56% and average coordination number 4.3.
Since both the simulations reveal the same physical behavior
we choose to show the results for one of the beds.

To obtain a description of the drag forces and the depen-
dence of the coefficients in Eq. (1) on granular beds of a range
of packing fractions, extensive simulations of the behavior
of the drag force acting on the impacting particle should be
done on many beds with different packing fractions [24,25],
polydispersities, and restitutions. Such a study is a formidable
undertaking and is currently being pursued.

III. RESULTS

Our simulation results shown in Fig. 2 displays the typical
dynamics observed in projectile impact studies [5]. For a
range of different initial velocities, the projectile motion
shows regimes characterized by large deceleration at impact,
followed by slow penetration and then the final stopping inside
the granular bed.

Figures 2(a) and 2(b) show respectively the time evolution
of the position z(t) and velocity v of the projectile inside
the granular bed. The positive position and velocity values in
Figs. 2(a) and 2(b) are along the downward direction inside
the bed. The penetration depth increases with time until the
projectile stops. The velocity shows a rapid decline initially
followed by a gradual decrease. The stopping time tstop also
does not show any significant dependence on the initial speed.
This can be observed in the inset of Fig. 2(b), where the data
shows that the variations in stopping time are almost negligible
at higher impact speeds (v0 � 2 m/s). It should be noted that
to avoid any inconsistency we have defined a threshold in the
ratio v/v0 in calculating the stopping time. In this context, see
Fig. 1(b) in Ref. [2], where the authors mention that while the
stopping time increases with velocity at small impact speeds,
it remains almost constant for large impact speeds. In Fig. 2(b)
this threshold is taken to be 10−3. This behavior is also borne
out in Fig. 2(c).

The motion seen in Fig. 2(c) can be roughly separated into
three different regimes. Immediately after impact a large 〈F ′

n〉
is followed by a regime in which it decays very slowly [see the
inset of Fig. 2(c) for the time between 0.005 s and up to the
vicinity of 0.025 s] and beyond which the force becomes very
small. The boundary between the regimes is not necessarily
sharp but, as we shall see, thinking of three different regimes
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FIG. 2. Time evolution of the (a) position and (b) velocity of
the projectile for different initial velocities. From top to bottom the
different initial velocities are |v0| = 1,3,6, and 8 m/s, respectively.
z = 0 is the position of the projectile when it comes in contact with
the granular bed. (c) Averaged normal force acting on the projectile,
normalized to its maximum value for v0 = 5 m/s. Inset in (b) shows
the variation of stopping time with initial speed of the projectile,
while the inset in (c) shows the average normal force during the slow
penetration region. Time is measured in seconds. The diameter of the
projectile D = 10dg . F ′

n is the drag force normalized to its maximum
value and 〈· · · 〉 denotes the time average, where the time averaging
window used is 25 μs.

allows us to relate our observations to Eq. (1) in a natural
manner.

Figure 3 shows the scaling of the penetration depth d

[d = z(t → ∞)] obtained from numerical simulations as

a function of the total falling distance H = v2
0

2g
+ d, for

projectile diameter 10 times and 5 times the mean diameter
of the bed particles. The dashed line is the 1/3 power-law
experimental fit [1] [d = (0.14/μ)(ρp/ρg)1/2D2/3H 1/3], ρp

being the density of the projectile.
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FIG. 3. Penetration depth d as a function of total falling distance
for two different sphere diameter D = 10dg (◦) and D = 5dg (
),
where dg is the mean diameter of the grains. The dashed line is the
1/3 power-law fit. The points for D = 10dg are for initial velocities
v0 = 1,2,3,4,5,6,7,8,9, and 10 m/s, while the initial velocities for
D = 5dg are 1,2,3,6,7,8,10,11,12, and 15 m/s.

With increasing velocity we see departures from this
scaling. This disagreement is even more pronounced for the
smaller diameter projectile, for which the maximum impact
velocity is 15 m/s. The maximum velocity for the larger sized
projectile is 10 m/s. Since the dynamics for all the different
initial conditions are the same, this deviation in penetration
depth should be a natural consequence of the various pieces of
the drag force that acts on the projectile.

Figures 4(a) and 4(b) provide strong indication of the
validity of Eq. (1) in the low-packing-fraction regime. In
Fig. 4(a) we show the variation of the average normal force
〈Fn〉 with respect to velocity. The two dashed lines fits are
obtained from Eq. (1) with only the quadratic drag force but
with two different coefficients of proportionality h [in this
context it is important to note that there may still be some
weak velocity dependence on h as borne out by Figs. 4(a)
and 4(b)].

As the velocity of the projectile decreases below 2 m/s it
is difficult to determine the exact nature of the drag force. To
understand this we invoke the depth-dependent drag force in
Eq. (1) and assume it to vary linearly with depth as f (z) = kz.
As shown in Fig. 4(b) we indeed obtain an impressive fit for
the entire range by incorporating the depth-dependent term
[note that in the ordinate of Fig. 4(b) the depth-dependent
drag force is reduced from the average normal force]. We
can therefore imagine three different regimes in penetration
based on the nature of the drag force acting on the projectile.
The regimes consist of a velocity-squared dependence with
different strengths in the first two regimes and both a depth
and velocity dependence in the third regime. Our results
are consistent with the recently reported scaling h(z) = h ∼
(mμ

D
)( ρg

ρp
) and k ∼ 1

μ
( ρp

ρg
)1/2 mg

D
[18], and we use these in our

studies. The same parameter dependence is also observed for
other impact velocities but the proportionality constants are
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FIG. 4. (Color online) Semilog plots of (a) average normal force
〈Fn〉 and (b) the velocity-dependent part of the average normal force
(〈Fn〉 − kz), acting on the projectile, plotted against velocity. The
dashed lines are numerical fits corresponding to 〈Fn〉 ∝ v2, with
different values of the proportionality constant. The diameter of the
projectile is 10 times the mean diameter of the particles in the bed.

seen to differ. The proportionality constants for the two dashed
line fits in Fig. 4 are found to be 
9.1 and 
3.3, respectively.

The velocity of the projectile with depth in Fig. 5 (top)
has the typical change from concave-down to concave-up as
seen in the recent experiment by Katsuragi and Durian [18].
It is reassuring that our simulation clearly recovers this
behavior. The vertical dashed lines approximately separate
the regions with different drag forces for v0 � 2 m/s, viz.
a strong velocity-dependent drag force resulting in rapid
decrease of velocity immediately after impact, a relatively
weaker velocity-dependent drag force corresponding to the
slow penetration stage, and an additional depth-dependent drag
force which results in the ultimate rapid decrease of velocity
to zero. Moreover, the second vertical dashed line is seen to
separate the concave-down and -up trends.

The different drag regimes also correspond to different
configurations of the particles in the granular bed. Figure 5
(bottom) shows snapshots of the cross section of the force
chains at different times. Here Fig. 5(i) shows that immediately
after impact, when the original force chains of the granular bed
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FIG. 5. (Color online) (Top) Velocity of the projectile as a func-
tion of position (solid line). The vertical dashed line is the boundary
separating the different drag force experienced by the projectile.
(Bottom) Cross section of the force chains at (i) 3.06 × 10−5 s,
(ii) 1.01 × 10−3 s, (iii) 1.20 × 10−3 s, and (iv) 4.87 × 10−3 s. The
color bar shows the normal force acting on the particles, normalized to
its maximum value at each time instant. The diameter of the projectile
is 10 times the mean diameter of the particles in the bed and the initial
velocity is v0 = 5 m/s.

are still intact, the shock propagates in a hemispherical region
surrounding the point of contact. At impact the projectile has
to work against this force chain network and this results in the
initial rapid decrease of energy. In Figs. 5(ii) and 5(iii) we see
that as the projectile penetrates, the force chain beneath the
projectile is broken and the bed particles in the hemispherical
region are fluidized. A weaker velocity-dependent drag force
acts on the projectile in this region. Finally, Fig. 5(iv) shows the
force chain network once the crater opening forms. A fraction
of the projectile is now surrounded by the bed particles and this
is the phase in which the depth-dependent drag force becomes
significant.

IV. CONCLUSIONS

In conclusion, our three-dimensional numerical simulations
have shown that the temporal dynamics of the projectile is
consistent with other simulations and experimental observa-
tions. With increasing impact velocity, however, the scaling
of the penetration depth deviates from the one-third law.
The dynamical behavior, on the other hand, is qualitatively
the same for the entire velocity range and is seen to obey
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Eq. (1). The coefficient of the velocity-dependent drag, h(z),
however, is not a constant but takes two different values. These
correspond to prefluidized and fluidized force chain network
of the bed as shown in Fig. 5. The behavior in Fig. 5 has
also been observed recently [18], where it was also shown that
Eq. (1) does not provide an accurate fit for lighter projectiles.
Our present analyses concur with these observations, and the
two different coefficients for the velocity-squared-dependent
drag force also help explain the concave down behavior. In
situations, such as heavy projectile impact, the force chains
become fluidized at a much shorter time scale, and, therefore,
a single value of h(z) is sufficient. The depth-dependent drag
force, as expected, assumes significance only at a later stage.
For high impact velocity it approximately coincides with the
onset of crater formation. We also expect Eq. (1) to provide

a more accurate estimate for penetration depth over a wider
range of impact velocities.
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[20] V. Šmilauer, E. Catalano, B. Chareyre, S. Dorofeenko, J. Duriez,

A. Gladky, J. Kozicki, C. Modenese, L. Scholtès, L. Sibille,
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