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Our aim in the present work is to develop approximations for the collisional dynamics of traveling waves in the
context of granular chains in the presence of precompression. To that effect, we aim to quantify approximations of
the relevant Hertzian FPU-type lattice through both the Korteweg–de Vries (KdV) equation and the Toda lattice.
Using the availability in such settings of both one-soliton and two-soliton solutions in explicit analytical form, we
initialize such coherent structures in the granular chain and observe the proximity of the resulting evolution to the
underlying integrable (KdV or Toda) model. While the KdV offers the possibility to accurately capture collisions
of solitary waves propagating in the same direction, the Toda lattice enables capturing both copropagating and
counterpropagating soliton collisions. The error in the approximation is quantified numerically and connections
to bounds established in the mathematical literature are also given.

DOI: 10.1103/PhysRevE.90.022905 PACS number(s): 05.45.−a, 45.70.−n

I. INTRODUCTION

Granular crystals are material systems based on the as-
sembly of particles inside a matrix (or a holder) in ordered
closely packed configurations in which the grains are in
contact with each other [1–14]. The fundamental building
blocks constituting such systems are macroscopic particles of
spherical, toroidal, elliptical, or cylindrical shapes [15]. The
mechanical, and more specifically dynamic, properties of these
systems are governed by the stress propagation at the contact
between neighboring particles. This confers to the overall
system a highly nonlinear response dictated, in the case of
particles with an elliptical or spherical contact, by the discrete
Hertzian law of contact interaction [16–18]. Geometry and/or
material anisotropy between particles composing the systems
allows for the observation of interesting dynamic phenomena
deriving from the interplay of discreteness and nonlinearity
of the problem (i.e., anomalous reflections, breathers, energy
trapping, and impulse fragmentation) [6,7,14,19–34]. These
findings open up a large parameter space for new materials
designed with unique properties sharply departing from
classical engineering systems.

One of the prototypical excitations that have been found to
arise in the granular chains are traveling solitary waves, which
have been extensively studied both in the absence [6,7,11] (see
also Refs. [35–37] for a number of recent developments), as
well as in the presence [38] of the so-called precompression.
The precompression is an external strain a priori imposed
on the ends of the chain, resulting in a displacement of
the particles from their equilibrium position. As has been
detailed in these works, the profile of these traveling waves
is fundamentally different in the former, in comparison to the
latter case. Without precompression, waves exist for any speed,
featuring a doubly exponential (but not genuinely compact)
decay law, while in the case with precompression, waves are
purely supersonic (i.e., exist for speeds beyond the speed
of sound in the medium) and decay exponentially in space.
For a precompression displacement δ0 and a Hertzian force

interaction exponent p (for the typical example of spheres,
p = 3/2), the speed of sound, i.e., the maximal speed of linear
wave propagation is given by c = (pδ

p−1
0 )1/2.

In fact, the Fermi–Pasta–Ulam (FPU)-type lattices such
as the one arising also from the Hertzian chain in the
presence of precompression have been studied extensively (see
Ref. [39] and references cited therein for an overview of the
FPU model). It is known, both formally [40] and rigorously
[41] (on long but finite time scales) that the Korteweg–de
Vries (KdV) equation approximates FPU α-type lattices for
small-amplitude, long-wave, low-energy initial data. This fact
has been used in the mathematical literature to determine
the shape [42] and dynamical stability [43–45] of solitary
waves and even of their interactions [46]. We remark that
the above-referenced remarks in the mathematical literature
are valid “for ε sufficiently small,” where ε is a parameter
characterizing the amplitude and inverse width, as well as
speed of the waves above the medium’s sound speed. One of
the aims of the present work is to determine the range of the
parameter ε for which this theory can be numerically validated,
an observation that, in turn, would be of considerable use to
ongoing granular chain experiments.

It is that general vein of connecting the nonintegrable
traveling solitary wave interactions of the granular chain
(that can be monitored experimentally) with the underlying
integrable (and hence analytically tractable) approximations,
that the present work will be following. In particular, our
aim is to quantify approximations of the Hertzian contact
model to two other models, one continuum and one discrete
in which soliton and multisoliton solutions are analytically
available. These are, respectively, the KdV equation and the
Toda lattice. The former possesses only unidirectional waves.
Since Hamiltonian lattices are time-reversible, a single KdV
equation cannot capture the evolution of general initial data.
It is typical to use a pair of uncoupled KdV equations, one
moving rightward and one moving leftward, to capture the
evolution of general initial data [41]. On the other hand, the
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Toda lattice has several benefits as an approximation of the
granular problem. First, it is inherently discrete, hence it is not
necessary to use a long-wavelength-type approximation that
is relevant for the applicability of the KdV reduction [42,47].
Second, the Toda lattice admits two-way wave propagation,
hence a single equation can capture the evolution of all (small
amplitude) initial data.

Once these approximations are established, we will “trans-
late” two-soliton solutions, as well as superpositions of
one-soliton solutions of the integrable models into initial
conditions of the granular lattice and will dynamically evolve
and monitor their interactions in comparison to what the
analytically tractable approximations (KdV and Toda) yield
for these interactions. We will explore how the error in
the approximations grows, as a function of the amplitude
of the interacting waves, so as to appreciate the parametric
regime where these approximations can be deemed suitable
for understanding the intersoliton interaction. We believe that
such findings will be of value to theorists and experimentalists
alike. On the mathematical and theoretical side, they are
relevant for appreciating the limits of applicability of the theory
and the sharpness of its error bounds. On the experimental
side, these explicit analytical expressions provide a yardstick
for quantifying solitary wave collisions (at least within an
appropriate regime) in connection to the well-characterized by
now direct observations [48].

Our presentation will be structured as follows. In Sec. II,
we will present the analysis and comparisons for the KdV
reduction. In Sec. III, we will do the same for the Toda lattice,
examining in this case both copropagating and counterpropa-
gating soliton collisions. Finally, in Sec. IV, we will summarize
our findings and present some conclusions, as well as some
directions for future study. In the Appendix, we will present
some rigorous technical aspects of the approximation of the
FPU solution by the Toda lattice one.

II. CONNECTING THE GRANULAR CHAIN AND ITS
SOLITON COLLISIONS TO THE KDV

Our starting point here will be an adimensional, rescaled
form of the granular lattice problem, with precompression δ0

[7,38] that reads

ÿn = [δ0 + yn−1 − yn]p+ − [δ0 + yn − yn+1]p+, (1)

where yn is the displacement of the nth particle from equilib-
rium, and [x]+ = max{0,x}. Defining the strain variables as
un = yn−1 − yn, we obtain the symmetrized strain equation

ün = [δ0 + un−1]p+ − 2[δ0 + un]p+ + [δ0 + un+1]p+. (2)

In the context of the KdV approximation [42–45] (see
also more recently, and more specifically to the granular
problem, Ref. [47]), we seek traveling waves at the long
wavelength limit, which is suitable for the consideration of
a continuum limit. We thus use the following spatial and

temporal scales: X = εn, T = εδ
p−1

2
0 t . Assuming then a strain

pattern depending on these scales, un(t) = A(X,T ), we get

δ
p−1
0 ∂2

T A = ∂2
X[(δ0 + A)p] + ε2

12
∂4
X[(δ0 + A)p]

+ ε4

360
∂6
X[(δ0 + A)p] + · · · , (3)

while by consideration of the variable B = A
δ0

< 1 measuring
the strain as a fraction of the precompression, we can also use
the expansion of the nonlinear term as

(δ0 + A)p = δ
p

0 (1 + B)p

= δ
p

0

[
1 + pB + 1

2p(p − 1)B2 + · · · ]. (4)

This finally yields

∂2
T B = ∂2

X

[
pB + 1

2
p(p − 1)B2 + · · ·

]

+ ε2

12
∂4
X

[
pB + 1

2
p(p − 1)B2 + · · ·

]

+ ε4

360
∂6
X

[
pB + 1

2
p(p − 1)B2 + · · ·

]
+ · · · . (5)

Now consider B(X,T ) = B(ξ,τ ), with ξ = X − cT , c = √
p,

τ = αcT , with α a small parameter, we get

0 = (
2α∂ξ∂τ − α2∂2

τ

)
B + ∂2

ξ

[
1

2
(p − 1)B2 + · · ·

]

+ ε2

12
∂4
ξ

[
B + 1

2
(p − 1)B2 + · · ·

]

+ ε4

360
∂6
ξ

[
B + 1

2
(p − 1)B2 + · · ·

]
+ · · · . (6)

We now proceed to drop lower-order terms such as O(α2B),
O(ε2B2), O(B3), O(ε4B), and thus obtain the KdV approxi-
mation of the form

2α∂τB + 1

2
(p − 1)∂ξ (B2) + ε2

12
∂3
ξ B = 0. (7)

Equation (7) after the transformations τ̃ =
2− 6

5 3− 2
5 (p − 1)

3
5 α−1ε− 2

5 τ , B = 2
1
5 3

2
5 (p − 1)−

3
5 ε

2
5 B̃,

ξ̃ = 2
3
5 3

1
5 (p − 1)

1
5 ε− 4

5 ξ , can be converted to the standard
form

B̃τ̃ + 3∂ξ̃ (B̃2) + ∂3
ξ̃
B̃ = 0, (8)

which has one-soliton solutions as

B̃ = 2k2sech2[k(ξ̃ − 4k2τ̃ )], (9)

as well as two-soliton solutions given by:

B̃ = 8
k2

1f1+k2
2f2+2(k2 − k1)2f1f2+m

(
k2

2f
2
1 f2 + k2

1f1f
2
2

)
(1 + f1 + f2 + mf1f2)2

.

(10)

Here, fi = e2ki (4k2
i τ̃−ξ̃+si ), and m = [(k2 − k1)/(k2 + k1)]2;

see, e.g., Refs. [49,50], as well as the more recent work of
Ref. [51], for more details on multisoliton solutions of the
KdV. If the initial positions of the two solitons satisfy s1 < s2,
we need k1 > k2 for the two solitons to collide.

A typical example of the approximation of collisional
dynamics of the solitons in the granular chain through the KdV
is shown in Figs. 1 and 2. Figure 1 shows select snapshots of
the profile of the two waves in the strain variable un, presenting
the comparison of the analytical KdV approximation shown
as a dashed (blue) line with the actual numerical granular
chain evolution of Eq. (2) [shown by solid (red) line]. In
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FIG. 1. (Color online) We consider the comparison of the collision of two copropagating solitary waves for the case of parameters chosen
as: p = 3

2 , δ0 = 1, α = 0.1, ε = √
0.1. The initial condition consists of a two-soliton solution containing waves of amplitude of 0.1 and 0.05

centered at −20 and 20, respectively. From top to bottom, left to right snapshots at different times of the collisional evolution are shown, namely:
t = 0, 50, 750, 5 000, 7 500, 15 000. The solid (red) line represents the actual (nonintegrable) granular lattice numerical evolution dynamics,
while the dashed (blue) line stems from the qualitatively (and even semiquantitatively) accurate integrable KdV two-soliton approximation.

this, as well as in all the cases that follow, we use the
rescalings developed above (and also for the Toda lattice
below) to transform the integrable model solution into an
approximate solution for the granular chain and initialize
in our granular crystal numerics that solution at t = 0; i.e.,
the analytical and numerical results share the same initial
condition and their observed and measured differences are
solely generated by the dynamics. It is clear that the KdV limit
properly captures the individual propagation of the waves and
is proximal, not only qualitatively but even semiquantitatively,
to the details of the intersoliton interaction, as is illustrated
from the middle and especially the bottom panels of the

figure. Nevertheless, there is a quantitative discrepancy in
tracking the positions of the solitary waves, especially so
after the collision. Figure 2 shows a space-time plot of the
very long scale of the observed time evolution. It is clear
from the latter figure that small amplitude radiation (linear)
waves are present in the actual granular chain, while such
waves are absent in the KdV limit, due to its integrable,
radiationless soliton dynamics. The linear waves are ones
of small amplitude, where nonlinear terms are effectively
irrelevant and hence they satisfy the corresponding linear
(discrete) wave equation ün = c2(un+1 + un−1 − 2un), where
c = (pδ

p−1
0 )1/2 is the speed of sound mentioned above. Plane
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FIG. 2. (Color online) Here, the parameters and initial data are
the same as in Fig. 1, but the space-time contour plot of the strains
is shown for the granular lattice evolution. Notice the long time
scale of the interaction, the exchange of the relative positions of the
solitary waves, and the nontrivial presence (and thus impact on the
interaction) of small amplitude linear radiation waves stemming from
the nonintegrability of the model. Periodic boundary conditions have
been employed.

wave solutions of this equation with un ∼ ei(kn−ωt) are subject
to the linear dispersion relation ω2 = 4c2 sin2(k/2) between
their frequency ω and wavenumber k. It is wavepackets from
these linear small amplitude waves that we observe in the
relevant simulations. In fact, these linear radiation waves
are also clearly discernible as small amplitude “blips” in
Fig. 1. We believe that the very long time scales of the
interaction of the waves enable numerous “collisions” also
with these small amplitude waves thereby apparently reducing
the speed of the larger waves in comparison to their KdV
counterparts, as is observed in the bottom panels of Fig. 1. In
that light, this is a natural consequence of the nonintegrability
of our physical system in comparison to the idealized KdV
limit. Nevertheless, we believe that the latter offers a very
efficient means for monitoring the solitary wave collisions even
semiquantitatively. As a final comment on this comparison, we
would like to point out that because of the very slow (long time)
nature of the interaction, we are monitoring the dynamics in a
periodic domain, merely for computational convenience.

The position shifts of the KdV two-soliton solution after
the collision are given by 1

k1
ln k1+k2

k1−k2
and − 1

k2
ln k1+k2

k1−k2
for the

faster and slower solitons, respectively [51]. If we use the
position shift in KdV to predict the relevant position shifts

in the granular lattice, for the parameters used in Fig. 1, the
shift should be 1

k1
(ln k1+k2

k1−k2
)/[2

3
5 3

1
5 (p − 1)

1
5 ε− 4

5 ]/ε = 7.88 and

− 1
k2

2
(ln k1+k2

k1−k2
)/[2

3
5 3

1
5 (p − 1)

1
5 ε− 4

5 ]/ε = −11.15 for the fast
and slow soliton, respectively. Numerically, we compare the
soliton position with and without the collision, by tracing the
peak of the soliton, and accordingly obtain a position shift of
8.2 for the fast soliton and −11.2 for the slower soliton, in line
with our comments above about a semiquantitative agreement
between theory and numerics.

III. CONNECTING THE GRANULAR CHAIN AND ITS
SOLITON COLLISIONS TO THE TODA LATTICE

The Toda lattice model has the well-known form [52–54]

ẍn = e[xn−1−xn] − e[xn−xn+1]

= [
1 + (xn−1 − xn) + 1

2 (xn−1 − xn)2

+ 1
6 (xn−1 − xn)3 + · · · ] − [

1 + (xn − xn+1)

+ 1
2 (xn − xn+1)2 + 1

6 (xn − xn+1)3 + · · · ]
= (xn−1 − 2xn + xn+1) + 1

2 [(xn−1 − xn)2

− (xn − xn+1)2] + · · · . (11)

In the second and third equalities above, we have expanded the
lattice into an FPU-α type form (i.e., maintaining the leading
order nonlinear terms). On the other hand, a similar expansion
(notice that now no long wavelength assumptions are needed)
of our granular chain model reads

ÿn = [δ0 + yn−1 − yn]p − [δ0 + yn − yn+1]p

= δ
p

0

[
1 + p

yn−1 − yn

δ0
+ 1

2
p(p − 1)

(
yn−1 − yn

δ0

)2

+ · · ·
]

− δ
p

0

[
1+p

yn − yn+1

δ0
+1

2
p(p − 1)

(
yn − yn+1

δ0

)2

+ · · ·
]

= pδ
p−1
0

{
(yn−1 − 2yn + yn+1) + 1

2

(p − 1)

δ0

× [(yn−1 − yn)2 − (yn − yn+1)2] + · · ·
}
. (12)

Then, rescaling time and displacements according to τ =
t

√
pδ

p−1
0 and ỹn = p−1

δ0
yn, the relevant Eq. (12) becomes

ỹ ′′
n = (ỹn−1 − 2ỹn + ỹn+1)

+ 1
2 [(ỹn−1 − ỹn)2 − (ỹn − ỹn+1)2] + · · · , (13)

where ′ is the derivative with respect to τ . Hence, Eqs. (13)
and (11) agree up to second order, and thus the leading order
error in our granular chain approximation by the Toda lattice
will stem from the cubic term (for which it is straightforward
to show that it cannot be matched between the two models;
i.e., we have expended all the scaling freedom available within
the discrete granular lattice model).

To see the closeness of the two models, we define the error
term Y by the relation ỹn = xn + εYn. Here Y will remain of
order one or smaller and ε controls the size of the error term.
We proceed by using the evolution for Y to control how small
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FIG. 3. (Color online) In this example, the parameter values p = 3
2 , δ0 = 1, k = 0.3 are used. The initial condition consists of two solitons

of the same amplitude at −50 and 50. Here, the granular crystal (nonintegrable) dynamics is also compared to the mere addition of two
one-soliton solutions of the Toda lattice. From left to right, top to bottom the snapshots shown are at t = 0, 30, 37, 40, 50, 150. The (red) solid
line is for the actual (numerical) granular lattice dynamics, the (blue) dashed line is the plain superposition of two Toda one-soliton solutions
of Eq. (15), and the green dash-dotted line represents the numerical evolution of the Toda chain. The three curves are nearly coincident for all
the times considered.

we can choose ε while keeping Y of order one over timescales
of interest. We compute

Ÿn = ε−1( ¨̃yn − ẍn) = Yn+1 + Yn−1 − 2Yn

+ ε−1R + L(x)Y + ε−1N (εY ). (14)

Here L(x) is a linear operator with a norm that scales roughly
like ‖x‖, N is quadratic, and the residual given by the disparity
between the interaction potential for Toda and that for the

granular chain is

R = exn−1−xn − exn−xn+1 − p − 1

p

[
1 + xn−1 − xn

p − 1

]p

+ p − 1

p

[
1 + xn − xn+1

p − 1

]p

= 1

6

(
1 − p − 2

p − 1

)
[(xn−1 − xn)3 − (xn − xn+1)3]

+O [(xn−1 − xn)4 + (xn − xn+1)4].
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FIG. 4. (Color online) In this contour plot, space-time evolution of the strains, the parameters, and initial data are the same as those of
Fig. 3. The left panel represents the dynamical evolution of two colliding solitary waves of the granular lattice. The right panel shows the
difference between the granular lattice and the superposition of two one-soliton solutions of the Toda lattice. The very small magnitude of the
difference (to be quantified further below) in the colorbar in comparison to the left panel illustrates the relevance of our approximation.

Since the discrete wave equation conserves the l2 norm
exactly, the l2 norm of Y , for time scales on which ‖L(x)‖T �
1, will be bounded above by a constant times T ε−1 times the
l2 norm of [(xn−1 − xn)3 + (xn − xn+1)3]. In other words, Y

remains of order one on timescale T so long as

ε � T

{∑
n

[(xn−1 − xn)3 − (xn − xn+1)3]2

}(1/2)

.

In the sequel we will consider solutions for which (xn −
xn+1) ∼ k2e−kn over timescales k−1. Thus, (xn−1 − xn)3 −
(xn − xn+1)3 ∼ k7e−kn and we obtain an upper bound on the
approximation error of ε � k−1(

∑
n

k14

1−e−k )1/2 ∼ k5.5. We note
that this improves on the estimate of k3.5, which appears,
e.g., in Refs. [41,46]. (A number of details toward making
this argument rigorous are presented in the Appendix.) After
describing the single- and multiple-solitary-wave solutions of
the Toda lattice, we will return to the numerical examination
of the validity of this concrete prediction.

In starting our comparison of the evolution of Toda
lattice analytical solutions with the granular crystal dynamical
evolution, we consider the single-soliton solution of the Toda
lattice of form

xn = − ln

{
1 + exp[−2kn ± 2(sinh k)t]

1 + exp[−2k(n − 1) ± 2(sinh k)t]

}
. (15)

By setting towards collision two counter propagating solitons
we get a typical dynamical evolution such as the one presented
in Figs. 3 and 4. Once again (as in the KdV case), the former
represents the snapshots at specific times, while the latter the
contour plot of the strain variable evolution (as will be the
case in all the numerical experiments presented herein). The
figure contains the comparison of three waveforms. The solid
(red) one is from the time integration of the granular chain
dynamics. The dashed (blue) line is a plain superposition of
two one-soliton solutions of the Toda lattice, while the dash-
dotted (green) line shows the evolution of the Toda lattice.
Detailed examination of the latter two suggests that the dashed
and the dash-dotted curves do not perfectly coincide (although

such differences are not straightforwardly discernible in the
scale of Fig. 3). This is the well-known feature of the presence
of phase shifts as a result of the solitonic collisions in the
integrable dynamics. It is, however, relevant to add here that
admittedly not only qualitatively but even quantitatively the
Toda lattice appears to be capturing the counter-propagating
soliton dynamics of our granular chain, before, during, and
after the collision.

The two-soliton solution of the Toda lattice is of the form
[53]

xn = Sn−1 − Sn, (16)

with

Sn = ln{1 + A1 exp[2(k1n − β1t)] + A2 exp[2(k2n − β2t)]

+ exp[2(k1 + k2)n − 2(β1 + β2)t]}, (17)

where β2
i = sinh2 ki and A1A2 = (β1+β2)2−sinh2(k1+k2)

sinh2(k1−k2)−(β1−β2)2 . The re-
sults of this evolution are very similar to the ones illustrated
above and hence are not shown here.

In order to appreciate the role of the wave amplitude (and
thus of the speed in this monoparametric family of soliton
solutions) in the outcome of the interaction, we have also
explored higher amplitude collisions, as shown in Figs. 5 and 6.
In these cases, the small amplitude wakes of radiation traveling
(at the speed of sound) behind the supersonic wave are more
clearly discernible. Nevertheless, once again the Toda lattice
approximation appears to capture accurately the result of such
a collision occurring at strain amplitudes of about half the
precompression. Figure 6 again illustrates not only the granular
chain evolution but also the relative error between that and the
corresponding Toda lattice evolution. Here, it is more evident
that the eventual mismatch of speeds of the waves between the
approximation and the actual evolution yields a progressively
larger difference between the two fields.

As a systematic diagnostic of the “distance” of the nu-
merical granular crystal and approximate Toda-lattice-based
solutions (and as a check of our theoretical prediction
presented above), we have measured the l∞ norm (maximum
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FIG. 5. (Color online) In this dynamical evolution, the parameters were chosen as p = 3
2 , δ0 = 1, k1 = k2 = 0.5, A1 = A2 = 1.04. The

initial conditions consisted of a two-soliton solution with waves of the same amplitude centered at −100 and 100 at the Toda lattice level. From
left to right, top to bottom, the snapshots at times t = 0, 50, 80, 100, 150, 200 are shown. Once again, the solid (red) line denotes the numerical
granular chain evolution dynamics while the dashed (blue) line stems from the exact Toda lattice two-soliton solution of Eq. (16).

absolute value in space and time) and the maximum of the
l2 norm in space of (ỹn−1 − ỹn) − (xn−1 − xn) till the two
counterpropagating solitons are well separated. We measured
this quantity as a function of the parameter k (with k = k1 =
k2, A1 = A2) and report it as a function of the amplitude
of (xn−1 − xn) in Fig. 7. As shown in Fig. 7, both graphs
indicate a power law growth of the relevant error, with an
exponent of 3.0010 and 2.7557 for the l∞ and l2 norm of the
error, respectively. These results can be connected with the
theoretical expectations for this power law. In particular, as
we saw above the theoretical prediction for ε scales as k5.5,

while the amplitude, A, of the solution is proportional to k2,
hence the scaling of the quantity measured in our numerics is
theoretically predicted as A2.75. The close agreement with our
numerics suggests that the theoretical estimate is tight; i.e.,
there is no normal form transformation that could push the
residual between FPU and Toda to higher order.

Last, we explore the case of the Toda lattice approximation
for the case of two copropagating solitary waves; i.e., recalling
that one of the advantages of the Toda lattice approximation
is not only its discrete nature, but also its ability to capture
both copropagating and counterpropagating solutions, we use
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FIG. 6. (Color online) The parameters and initial data have been chosen the same as in Fig. 5, and the space-time contour plot of the
granular lattice evolution, as well as the difference of that from the two-soliton solution of Toda lattice are shown.

the two-soliton solution of Toda lattice as in Eq. (16). For
the waves propagating in the same direction we can write Sn

as

Sn = ln{cosh[k1(n − n1) − β1t]

+B cosh[k2(n − n2) − β2t]}, (18)

with β1 = 2 sinh k1
2 cosh k2

2 , β2 = 2 sinh k2
2 cosh k1

2 , and B =
sinh k1

2 / sinh k2
2 [52]. The result of a typical example of the

dynamical evolution is shown in Figs. 8 and 9. It can be
clearly observed here that the copropagating case yields a
far less accurate description than the counterpropagating one.
This is presumably because of the shorter (nonintegrable)
interaction time in the latter in comparison to the former.
Furthermore, notice that again the disparity between the
two evolutions is far more pronounced for large amplitude
waves, as the small amplitude one is accurately captured
throughout the collision process. Nevertheless, once again our
integrable approximation is quite useful in providing at least
a qualitative, essentially analytical handle on the interaction
dynamics observed herein.

IV. CONCLUSIONS AND FUTURE CHALLENGES

We believe that the present work provides an insightful and
meaningful (not only qualitative but even quantitative, where
appropriate) way for considering the interactions of solitary
waves in the realm of granular crystal dynamics. What makes
this work particularly timely and relevant is that the granular
chain problem is currently both theoretically interesting and
experimentally, as well as computationally, tractable. Two
types of approximations were proposed herein for developing
a qualitative and even semiquantitative understanding of such
collisions. The first was based on the well-known KdV
equation. While this is a useful approximation, some of
its limitations were discussed, the most notable being the
continuum, long-wavelength nature of the approximation, as
well as the unidirectional character of the interaction (i.e.,
copropagating waves). To avoid these constraints, a second
approximation, based on the Toda lattice, was also presented.
The latter provided a high-quality description especially of
counterpropagating wave collisions, while its two-soliton
solutions can also be used for capturing copropagating cases,
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FIG. 7. (Color online) The left panel shows the l∞ norm of the error (i.e., difference of granular evolution from the Toda lattice two-soliton
solution) until the two solitons are well separated after the collision, versus the amplitude of the initial data. The right panel is the l2 norm of
the same quantity. Both clearly represent a power law with a best fit exponent of 3.0010 and 2.7557, respectively (shown in red dashed line).

022905-8



CHARACTERIZING TRAVELING-WAVE COLLISIONS IN . . . PHYSICAL REVIEW E 90, 022905 (2014)

−200 −100 0 100 200
−0.1

0

0.1

0.2

0.3

0.4

n

u n

−200 −100 0 100 200
−0.1

0

0.1

0.2

0.3

0.4

n

u n

−200 −100 0 100 200
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

n

u n

−200 −100 0 100 200
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

n

u n

−200 −100 0 100 200
−0.1

0

0.1

0.2

0.3

0.4

n

u n

−200 −100 0 100 200
−0.1

0

0.1

0.2

0.3

0.4

n

u n

FIG. 8. (Color online) The case of p = 3
2 , δ0 = 1, k1 = 0.3, k2 = 0.5, with an initial condition of two solitons at −100 and −80 propagating

in the same direction (to the right) is shown. From left to right, top to bottom, the snapshots of t = 0, 400, 1000, 1300, 1600, 3000
are shown. The (red) solid line represents the granular lattice evolution and the (blue) dashed line the Toda two-soliton solution of
Eq. (16).

at least qualitatively. It is relevant to note here that at the
level of δ0 = 0 (i.e., when the precompression is absent) such
collisions have already been studied in Refs. [22,55,56]. It
thus seems that an extension of that work to experimentally
consider collisions in the more theoretically and analytically
tractable case of finite precompression would be possible, as
much as it would be desirable.

We believe that this line of thinking, and especially the
approximation of using a discrete model such as the Toda
lattice, could provide a useful tool for understanding different
forms of solitary wave interactions in Hertzian systems

[25–27,33,34]. A more ambitious generalization would in-
volve the consideration of two-dimensional lattices and the
potential reduction thereof to Kadomtsev-Petviashvilli con-
tinuum models (i.e., two-dimensional generalizations of the
KdV) or perhaps to other lattice models in order to understand
the dynamics of higher-dimensional such chains. Another
challenging problem would be to obtain some analytical
understanding of the collisions without precompression; the
difficulty in that case stems from the absence of a well-
established, yet analytically tractable (discrete or continuum)
description for capturing multisoliton interactions. Such direc-
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FIG. 9. (Color online) Same as the previous figure but now
through the space-time evolution shown in a contour plot.

tions are currently under consideration and will be presented
in future publications.
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APPENDIX: ESTIMATES IN THE SMALL
AMPLITUDE REGIME

To obtain rigorous estimates it is first useful to write the
general FPU chain as a first-order system. Observe that the
chain of oscillators,

q̈n = V ′(qn−1 − qn) − V ′(qn − qn+1),

can be rewritten as the system

ṙn = pn−1 − pn
(A1)

ṗn = V ′(rn) − V ′(rn+1)

upon making the change of variables pn = q̇n, rn = qn−1 − qn.
Both the granular chain and the Toda lattice are special cases
with V ′(q) = (δ0 + q)p and V ′(q) = eq , respectively. Writing
the Hamiltonian H (r,p) = ∑

n
1
2p2

n + V (rn) and the operator
J defined by [J (r,p)]n = (pn−1 − pn,rn − rn+1), Eq. (A1) is
rewritten as the system of Hamiltonian ODEs:

d

dt

(
r

p

)
= JH ′

[(
r

p

)]
.

Notice that in the above expression {H ′[(r

p)]}n = [V
′(rn)
pn

].
Having provided this general setup for our Toda and granular
Hamiltonian chains, we now proceed to present the proposition
that estimates the proximity between the two-soliton solutions
of these two models for small amplitude initial data (quantified
by δ below) and long times (quantified by k−1 below).

Proposition 1. Let H∗ denote the Toda Hamiltonian
and let [r∗(t ; k1,k2,γ1,γ2),p∗(t ; k1,k2,γ1,γ2)] denote its four-
parameter family of two-soliton solutions. Let V be a general
smooth interaction potential satisfying V (0) = V ′(0) = 0 as
well as V ′′(0) > 0 and V ′′′(0) 	= 0, and let (r,p) denote the
solution of the corresponding FPU lattice with initial condition
[r∗(0),p∗(0)].

There is a δ > 0 such that so long as |kj | < δ for j = 1,2,
then for any η ∈ (0,1) the estimate

‖r(t) − r∗(t)‖ + ‖p(t) − p∗(t)‖ < Ck5.5−2η

holds for 0 � t � k−(1+η).
In the case of counterpropagating solitary waves, the time

scale k−1 is sufficiently long for the waves to pass through
each other. The content of the proposition is that the amount
of energy that is transferred from coherent modes to radiative
modes is very small compared to the energy in the coherent
modes.

The proposition can be regarded as a corrolary of three
lemmas. Before we embark into their technical description,
let us give a brief outline of the physical significance of each
one. Lemma 3 below shows that in the context of the Toda
two-soliton solution, the interaction of two broad shallow
waves does not produce high (i.e., order greater than k)
frequency ripples, i.e., “radiation” corresponding to such
wavenumbers. Lemma 1 makes use of lemma 3 to quantify
the “local truncation error” for the scheme given by evolving
a Toda two-soliton in lieu of FPU; i.e., when we evolve with
Toda two-soliton initial conditions in our FPU (nonintegrable)
lattice instead of the integrable Toda one, there is a local
truncation error stemming from the difference between the two
lattice dynamics. This lemma quantifies this difference as a
function of the solution amplitude (represented by δ). Finally,
lemma 2 estimates how the difference of our FPU-type lattice
and the Toda lattice evolves over time on the basis of the
above local truncation error and how the latter “accumulates”
over a long interval of time T (characterized by k−1).

Lemma 1. Let x∗ denote a Toda two-soliton solution. Let
J , H , and H∗ be defined as above. Define F (x) = JH ′(x) and
define F∗(x) = JH ′

∗(x). Let κ1 and κ2 be fixed numbers and
let the amplitude parameters for x∗ be given by k1 = δκ1 and
k2 = δκ2.
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There is a δ1 so that for all positive δ < δ1 the following
hold:

‖F ′(x∗) − J‖ � C‖Jx∗‖ � Cδ2.5

‖F ′′(x∗)‖ � 1 + sup
n

V ′′′(x∗) � C

‖F (x∗) − F∗(x∗)‖ � C‖Jx3
∗‖ � C‖Jx‖‖x‖2

∞ � Cδ6.5

Here the half powers of k arise because of the slow decay
in the tails of the solitary wave. More explicitly a solitary
wave satisfying xn ∼ Ck2e−kn satisfies ‖x‖2 � Ck4

1−e−2k ∼ k3

and similarly ‖J nxm‖ � Ckm+ n
2 .

Lemma 2. Let the following be given: A Hilbert space H
with inner product 〈·,·〉 and associated norm ‖ · ‖, an open
subset U ⊂ H , C3 functions F and F∗ from U to H, with
identical and symplectic linear part, i.e., J := F ′(0) = F ′

∗(0)
satisfying 〈Jv,v〉 = 0 for all v ∈ H.

There exist positive constants δ0 and C0 such that if the
estimates

sup
t∈[0,T ]

‖F ′(x∗) − J‖H→H <
δ0

T
,

sup{‖F ′′(v)‖H→L(H ) | ‖v‖H � 2‖x∗‖} < C0,

and

sup
t∈[0,T ]

‖F (x∗) − F∗(x∗)‖ <
1

C0δ
2
0T

2

hold for some solution ẋ∗ = F∗(x∗) on some time interval
[0,T ], then the following hold:

Any solution y to the differential equation ẏ = F (y) whose
initial condition satisfies

‖y(0) − x∗(0)‖ <
1

supt∈[0,T ] ‖F∗(x∗(t)) − F (x∗(t))‖ ,

in fact satisfies

‖y(t) − x∗(t)‖ <
C1

supt∈[0,T ] ‖F (x∗) − F∗(x∗)‖ .

Proof. Introduce the new variable Y by the equation y =
x∗ + εY . The proof will proceed by deriving first an evolution
equation for Y , and then an evolution equation for E := 1 +

〈Y,Y 〉, using a bootstrapping argument to show that if E(0) is
not too large, then E(t) remains not too large for t ∈ [0,T ].

We begin by computing

Ẏ = ε−1[F (x∗ + εY ) − F∗(x∗)] = JY + [F ′(x∗) − J ]Y

+ ε

∫ 1

0

∫ 1

0
F ′′(x∗ + ερ1ρ2Y )(Y,Y )dρ1dρ2

− ε−1[F∗(x∗) − F (x∗)].

The first term is the linearization about zero. The second term
is the linear part owing to the fact that the linearization about
x∗ is not equal to the linearization about zero. The third term
incorporates all of the quadratic and higher-order terms in F

and the fourth term owes to the fact that x∗ and y satisfy
different DEs.

In particular we have

‖Ẏ − JY‖ � δ0

T
‖Y‖ + εC0‖Y‖2 + ε−1‖F (x∗) − F∗(x∗)‖.

(A2)

Define the almost conserved quantity E = 1
2‖Y‖2 + 1 and

compute Ė = 〈Ẏ ,Y 〉 = 〈Ẏ − JY,Y 〉.
Thus, |Ė| � ‖Ẏ − JY‖‖Y‖ � ‖Ẏ − JY‖E, (using x <

x2 + 1) and hence

E(t) � E(0)esupt∈[0,T ] ‖Ẏ−JY‖t

for 0 � t � T . In light of Eq. (A2) we see that

E(t) � 2exp
(
δ0 sup

t

‖Y (t)‖ + C0T ε‖Y‖2

+ T ε−1‖F (x∗) − F∗(x∗)‖).
Now let τ be the largest time for which supt∈[0,τ ] E(t) � 2�e4�.
The hypotheses of the lemma guarantee that each of the terms
δ0‖Y (t)‖, C0T ε‖Y (t)‖2, δ0‖Y (t)‖ and T ε−1‖F (x∗) − F∗(x∗)‖
are bounded above by one, hence the exponential of the sum
is bounded above by e4. In particular, E(t) < E0e

4 for as
long as E(t) < 2�e4� and also t ∈ [0,T ]. Thus, the inequality
E(t) < E0e

4 holds for all t ∈ [0,T ]. �
Lemma 3: Let r denote a Toda two-soliton solution. There is

a constant C such that rn+1 − rn < Ck3e−Ckn with the constant
C uniform in k and in |t | < k−1.

This follows from a direct computation of the sec-
ond and third differences of the quantity Sn given in
Eq. (17).
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