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Controlled energy dispersion in two-dimensional decorated granular crystals
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The present study describes a way to control the dispersion of an impulse in a two-dimensional square
granular crystal with tapered beads. The control is through the redirection of the characteristic load transfer
path by controlling the shape of the scattering of wavefront. The main goal is to contribute to the development
of appropriately designed granular media to mitigate impacts. The crystal is constituted of spherical granules
with a wide range of radii. Interstitial particles are strategically positioned to allow a large number of collisions
per unit area. The waves are produced by a striker that collides against the crystal. We analyze how material
combinations, number of layers, tapering parameter, and disorder affect the decay of the wave amplitude. Our
studies suggest that ∼90% impulse attenuation can be accomplished using a system thickness of 5 grains.
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I. INTRODUCTION

There are several scenarios where it may be desirable to
attenuate impacts. These include the protection of buildings
against seismic shocks, vehicle surfaces, bullet proof vests,
and areas to control explosions. Granular crystals are tunable,
diverse, scalable, and simple systems where shock absorption
features have been observed in a variety of studies. In fact,
there is a growing literature even for 1D systems, where
exhaustive reviews were reported by Sen et al. [1,2] and
A. Rosas and K. Lindenberg [3]. One such family is the
so-called decorated, tapered granular chains [4–6]. Chains
are alignments of elastic spheres barely touching each other.
Decoration is the inclusion of small spheres between larger
spheres. While tapered chains are made with spheres that
progressively shrink its radii. Many studies based on exper-
iments [6–8], analytical methods [4–6,9–13], and simulations
[14,15] have discussed the rapid dispersion of impulses and
shock waves. Another important configuration is called the
granular container [16–20]. It is a granular region built using
monodispersed chains with different densities and different
contact force laws. These aspects work together to effectively
confine impulses.

However, arrays in 2D and 3D are natural candidates
to provide better mitigation of propagating disturbances. A
pioneering work by Shukla et al. [21,22] reported experi-
mental and numerical investigations of wave propagation in
a monodispersed chain, body-centered cubic arrangement,
and hexagonal cubic arrangement using photoelastic disks.
Extensive studies have shown the ability of granular media to
redirect waves using proper arrangements [23–25]. Another
series of works have shown how to change the shape of the
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wavefront using proper material combinations [26–28]. The
influence of the number of layers, and post-impact movement
for projectile impacting a 2D granular medium have also been
studied [29]. More recently, a study of efficient dispersion
in 2D arrangements showed significant attenuation of the
incident energy [30]. While a study suggests the influence of
interfaces between media in 3D with different densities [31].
There are rich possibilities in impact dispersion in 2D and 3D
systems.

As we shall see, here we present a 2D decorated crystal that
is different in the sense that unlike in previous studies, this
system can accomplish remarkable impact dispersion using
just a small number of layers. Hence, we believe that the
current work may be useful in many contexts such as in
making thin impact dispersion systems which may be useful
in developing safer helmets. We numerically investigate the
wave propagation in two-dimensional tapered granular sys-
tems subject to impulsive loading. Among issues addressed
in this study are material combinations and how the tapering
along the crystal improve the attenuation of the propagating
momentum and energy. We close with some comments about
disorder (random radii) and the angle of impact of the striker.

The paper is organized as follows: Sec. II details the
granular arrangement, initial conditions, and the equations of
motion. In Sec. III we discuss the dynamic response for the
impact problem in a bidispersed and polydispersed granular
system. Finally, Sec. IV presents a summary and description
of continuing work.

II. MODEL

We study granular crystals as presented in Fig. 1. These ar-
rangements are composed of two types of spherical granules:
the main granules and interstitial granules. The main granules
form a square array with the radii decreasing exponentially in
each new layer. Similar to other works [11,13,15], the radii
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FIG. 1. Two-dimensional square arrangement constructed using two types of spherical granules: main and interstitial. The main granules
form the square array and the interstitial granules are central particles strategically positioned in the interparticles spaces within the square
array. There are no gaps and no pre-compression. Panel (a) and (b) correspond to q = 0 and 0.09, respectively, in Eq. (1). The striker is the
only particle moving at t = 0. The secondary impact direction (SID) is a load transfer path to redirect the wave propagation from the impact
line.

are given by

Rl = R(1 + q )1−l , (1)

where R is the radius of the largest granules, q is the tapering
parameter, and l = 1, 2,..., N is the position of the layer
in the crystal. The striker and those granules forming the
first layer are the largest ones. All granules in each layer
are identical. The main granules are primarily responsible
for the perturbation propagation. The decrease in radii, and
consequently the mass, is employed to help the momentum
and force decay. These are expected behaviors that been
observed in one-dimensional cases [7,8,11,13,15,32,33]. In
addition, all granules can move freely at the crystal ends. We
impose free boundary conditions at the edges.

The interstitial granules are extra granules with specific
sizes and are strategically placed among the main granules to
form a smaller array (see Fig. 1). The presence of interstitial
granules should lead to no precompression and no gaps. To
satisfy this scenario their radii increase according to

rl,l+1 =
√

(2R)2 + (Rl + Rl+1)2 − (Rl + Rl+1)

2
. (2)

Note that all the interstitial granules between the l and l + 1
layers are identical and they have the same radii. These extra
granules are important to increase the number of particles
per unit area. Among the main differences of the present ar-
rangement is the inclusion of these localized non-uniformities
in the medium. The dynamic response is expected to be
comparable to what has been described in other studies [15].
The interstitial granules trap part of the perturbation (energy
and momentum) in the form of vibration. The rest of the
perturbation is dispersed (scattered) into other degrees of free-
dom along the system. The resultant system hence effectively
mitigates waves.

However, as a consequence of how we position the gran-
ules, the number of layers forming the crystal must be limited
to keep the crystal initially in the equilibrium state. Other-
wise, there will be an overlap or precompression between the

granules, i.e., initial local compressive forces in the contact
lattice. A system like that has not been studied here. The
number of layers is necessarily small by construction.

The crystals in Fig. 1 have the following initial conditions:
the granules only touch each other, without precompression
and without gaps, and all but the striker are at rest. The latter
condition is responsible for imparting energy and momentum
to the system that propagates as waves. The way those waves
are scattered along the crystal is our central theme.

To model the time evolution we neglect the dissipation and
rotation effects. We have observed that the influence of these
effects are small for the wave dispersion in the present 2D
crystal. Thus, the multiple elastic collisions in a very short
crystal with high polydispersity are sufficient to reduce the
wave amplitude. We model the interaction of ith granule when
compressed against the j th granule following the Hertzian
contact law. There is no interaction when the particles are
separated. The equation of motion represents the granules,
upon contact, as point masses interacting via nonlinear elastic
springs [1–3,24] and can be written as

mi

dVi

dt
= −

∑
j

αij (δ+
ij )3/2n̂ij , (3)

where mi , Vi , and t are the mass, velocity vector, and time,
respectively. The expoent 3/2 is to model spheres. For disks or
parallel cylinders the force is linear, with harmonic potential.
The sum is performed over the neighbors of granule i, δ+

ij is
the normal compression between granule i and its neighbor j

(see Fig. 1), and αij is the elastic coefficient described by

αij =
4YiYj

√
RiRj

Ri+Rj

3Yi

(
1 − ν2

j

) + 3Yj

(
1 − ν2

i

) . (4)

Yi , Yj , νi , νj , Ri , and Rj represent the Young’s modulus,
Poisson’s ratio, and radii of spheres, respectively. The unit
vector n̂ij , point toward granule j in the direction connecting
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TABLE I. The material parameters [24,27,34].

Elastic Poisson’s Density
Beads modulus [GPa] ratio [kg/m3] mstriker [g]

Tungsten carbide 628 0.28 14980 6.76
Stainless steel 200 0.28 7800 3.5
Aluminum 69 0.3 2740 1.2
PTFE 0.5 0.46 2200 0.9
Delrin 3.1 0.35 1400 0.6

the centers of granules i and j , and is given as

n̂ij = rj − ri

|rj − ri | . (5)

Finally, ri is the location vector of the center of particle i

relative to the origin of the system at the center of the leftmost
granule when t = 0.

A fourth-order Runge-Kutta method with time step �t =
10−8 s has been employed to integrate the Eq. (3). The accu-
racy of the method was tested by monitoring the conservation
of mechanical energy and momentum. The relative errors
were smaller than 10−12, 10−14, and 10−20 for the energy and
the momentum in the x direction and y direction, respectively,
across 105 time steps. In the next section we present our
numerical results.

III. NUMERICAL RESULTS

We numerically integrated Eq. (3) using the material pa-
rameters presented in Table I.

The crystal was excited by the leftmost granule, which we
call the striker. This granule is identical to those granules in
the first layer. We consider the radii equal to R = 4.76 mm.
The initial velocity of the striker was varied between 1 and
30 m/s. We observe the same dynamic behavior for both
velocities, but in different time scales. For high velocities
the wave propagation is faster. The results will be presented
for 1 m/s, because this value is close to that in several
experimental works [8,24,27]. We identify a specific direction
along the crystal and call it the secondary impact direction
(SID); see Fig. 1. The SID will be important to understand
how we can control the way in which the wavefront spreads
as it moves forward. By varying the radii of the granules, and
hence the coordination number in the granular crystal, we can
construct systems with the desired wave dispersion properties.

Crystals made with different material combinations are
considered. We simulate systems where the main and the
interstitial granules are made of different materials. To facil-
itate our discussion, we list the material combinations used
in Table II. Each case is identified from 1 to 6. We focus on
the outcomes for spherical granules, but it is easily possible
to broaden our discussions to include the harmonic potential
(cylindrical granules) as will be shown later. Therefore the
present granular arrangement may be adapted for a different
experimental setup. The wave attenuation is observed primar-
ily due to differences in the elastic constants of the materials
used and the system geometry that has been invoked.

The results are reported as follows. In Sec. III A, we discuss
wave propagation in a bidisperse crystal; see Fig. 1(a). This

TABLE II. Material combinations analyzed are listed below.
mi/mm is the approximate mass ratio of the interstitial and main
granules.

Material
combination Main granules Interstitial granules mi/mm

Case 1 Tungsten Delrin 0.006
Case 2 Stainless steel PTFE 0.02
Case 3 Stainless steel Stainless steel 0.071
Case 4 Aluminum Stainless steel 0.202
Case 5 Delrin Stainless steel 0.395
Case 6 Delrin Tungsten 0.76

case is an opportunity to: (i) check if our outcomes are in
agreement with other works, (ii) analyze a good material com-
bination to optimize the shock absorption, and (iii) compare
the results when we consider the polydispersity. The numeri-
cal results for the tapered crystal, see Fig. 1(b), and compar-
isons with the bidisperse case are presented in Sec. III B. In
Sec. III C, we comment on how the disorder in the radii affects
the impact attenuation and what happens when the collision
between the striker and the crystal is not head-on.

A. Granular crystal with bidispersity

In this section, we analyze a crystal where q = 0 [Eq. (1)];
see Fig. 1(a). The radii of interstitial granules are r =
R(

√
2 − 1) and of the main granules are equal to R. This

arrangement will be used as a reference scenario to inspect the
influence of material combinations and for future discussions
about the role of polydispersity (q > 0). Next, we will present
a series of graphs to capture our findings on how the kinetic
energy propagates through each of the material combinations
listed in Table II. The dynamics for cases 1 to 6 are shown
in Figs. 2 to 5. All crystals are made of 100-by-100 main
granules (i.e., 99-by-99 central particles) with ∼20 000 beads
total.

In Figs. 2 to 5, there are some panels showing the same
things in all cases. Panels (a) and (b) present snapshots for
wavefront shapes when t = 0.3 and 0.9 ms, respectively. Pan-
els (c(i)), (d(i)), and (e(i)) show the contour plots describing
the propagation of the kinetic energy along the granules in
specific directions, such as the SID and the chains bordering
the impact direction. Along the same directions, panels (c(ii)),
(d(ii)), and (e(ii)) show profiles of kinetic energy when t =
0.3 and 0.9 ms. The insets in each panel identify, through
a schematic arrangement, the granules under analysis (black
circles).

Also, in Figs. 2 to 5 we observe the following basic dynam-
ics. The striker collides with the crystal, imparting momen-
tum and mechanical energy. The perturbation propagates like
nonlinear waves. The wavefront shape and dynamics behind
the leading wave are affected dramatically by the material
parameters. The striker rebounds with a negative momentum
(as we will discuss in Fig. 7). The energy spreads over the
entire crystal attenuating the leading wave amplitude. We
observe two simultaneous processes that are involved in the
evolution of the wave: a part of the energy is distributed
across a larger area, and another part ends up as secondary
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FIG. 2. Several panels show the evolution of kinetic energy in a bidisperse square crystal. The main and interstitial granules are made with
tungsten and delrin, respectively. This material combination is identified as case 1. See comments regarding case 2 in the text. Snapshots at
(a) 0.3 and (b) 0.9 ms show the energy along the whole crystal. The x and y axes represent the particle position. The distances are normalized
by the radius of the largest sphere. The color scale indicates the normalized kinetic energy. Panels (c(i)), (d(i)), and (e(i)) are contour plots
along specific granules. Profiles along the same specific granules at 0.3 and 0.9 ms are shown in panels (c(ii)), (d(ii)), and (e(ii)). Schematic
diagrams highlight the granules under analysis (black circles). The energy propagates as a quasi-1D nonlinear wave.

waves with small amplitudes. The leading wave for each case
is different, i.e., the dynamic-load-transfer phenomena de-
pends on the materials involved. However, closer inspection
reveals that some pairs of material compositions present sim-
ilarities in dynamics and will be analyzed together.

Figure 2 depicts case 1, where in Figs. 2(a) and 2(b) we
see the inability of the crystal to transfer tensile loads along
the y direction and the propagation takes place mainly in line
with the striker. Almost all the energy propagates along the
impact line. Thus we call the leading wave supported for this
case as quasi-1D nonlinear wave. Shukla et al. have conducted
experimental investigations [21,22] using arrays of disks, with
a geometry similar of Fig. 1(a) without interstitial granules.
They had reported that the wave-propagation phenomenon
is identical to that of a single chain and no energy was
transferred to other chains. We see a comparable phenomenon
in Fig. 2, because the main granules in the leading wave
carry the energy. The interstitials granules carry almost no
energy, due to the mass ratio (see Table II). Moreover, the
load transfer produces secondary waves that propagates in
diagonal directions [see Figs. 2(a) and 2(b)] which form
triangular structures behind the leading wave. The origin of
these structures lies in the fact that the wave propagation
occurs through multiple collisions. The leading edge of the
propagating wave has a width of several granules at any given
instant of time. These granules first move forward, then the
same granules move backward to collide with the interstitial
granules located behind the wavefront. The load transfer paths
for secondary waves in diagonal directions is related to the
positions of interstitial granules in the arrangement.

In Fig. 2(c(i)), we observe the leading wave (colored line)
followed by low-amplitude waves. The main and interstitial
granules neighboring the impact direction also support waves
with amplitudes very close to zero as shown in Figs. 2(d(i))
and 2(e(i)). A well defined pulse in line with the striker
composed of five granules is presented in Fig. 2(c(ii)). For
that pulse most of the energy is located in the three central
granules. The pulse amplitude decays with the propagation
distance. There are no pulses in other directions such as even
in chains close to impact direction. For case 2 (see Table II)
we also observed propagation as a quasi-1D nonlinear wave
(not shown). The differences with respect to the previous case
are that the leading wave has a lower amplitude and slower
wave speed. More details will be discuss later, in Figs. 6 and 7.

The dynamic response for cases 3 and 4 are presented in
Figs. 3 and 4, where we see in panels (a) and (b) that the
wave propagation is characterized in two-dimension. We call
the leading waves seen for these cases as two dimensional
nonlinear waves. The dynamic load transfer for case 3 has
an anisotropic characteristic. For that case the wavefront
propagation is faster along the impact direction. For case 4
the dynamic load transfer becomes more isotropic and adopts
an almost circular wavefront. Our results show that the mass
ratio plays an important role in the shape of the wavefront (see
Table II). Since the first few granules are compressed stronger
against each other in these cases, more energy is transmitted
through interstitial granular contacts when compared to cases
1 and 2. As a result, more energy propagates along the SID
[see Fig. 1(a)]. This explains why the wavefront shape is
completely different.
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FIG. 3. Several panels show the evolution of kinetic energy in a bidisperse square crystal. All granules are made with stainless steal. This
material combination is identified as case 3. Snapshots at (a) 0.3 and (b) 0.9 ms show the energy along the whole crystal. The x and y axes
represent the particle position. The distances are normalized by the radius of the largest sphere. The color scale indicates the normalized kinetic
energy. Panels (c(i)), (d(i)), and (e(i)) are contour plots along specific granules. Profiles along the same specific granules at 0.3 and 0.9 ms are
shown in panels (c(ii)), (d(ii)), and (e(ii)). Schematic diagrams highlight the granules under analysis (black circles). The energy propagates as
a 2D nonlinear wave.

FIG. 4. Several panels show the evolution of kinetic energy in a bidisperse square crystal. The main and interstitial granules are made
with aluminum and stainless steal, respectively. This material combination is identified as case 4. Snapshots at (a) 0.3 and (b) 0.9 ms show
the energy along the whole crystal. The x and y axes represent the particle position. The distances are normalized by the radius of the largest
sphere. The color scale indicates the normalized kinetic energy. Panels (c(i)), (d(i)), and (e(i)) are contour plots along specific granules. Profiles
along the same specific granules at 0.3 and 0.9 ms are shown in panels (c(ii)), (d(ii)), and (e(ii)). Schematic diagrams highlight the granules
under analysis (black circles). The energy propagates as a 2D nonlinear wave. The wavefront is almost circular.
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FIG. 5. Several panels show the evolution of kinetic energy in a bidisperse square crystal. The main and interstitial granules are made with
delrin and tungsten, respectively. This material combination is identified as case 6. Snapshots at (a) 0.3 and (b) 0.9 ms show the energy along
the whole crystal. The x and y axes represent the particle position. The distances are normalized by the radius of the largest sphere. The color
scale indicates the normalized kinetic energy. Panels (c(i)), (d(i)), and (e(i)) are contour plots along specific granules. Profiles along the same
specific granules at 0.3 and 0.9 ms are shown in panels (c(ii)), (d(ii)), and (e(ii)). Schematic diagrams highlight the granules under analysis
(black circles). The energy propagates as a 2D nonlinear wave.

It can clearly be seen from panels (c(i)) of Figs. 3 and 4
that the leading wave’s amplitude along the impact direction
decreases rapidly after a few granules. The slope of the
curve that identifies the leading wave increases with wave
propagation. Consequently more time is needed to cover the
same distance or number of layers. A similar behavior is
observed in the SID as shown in panels (d(i)) and (e(i)) of
Figs. 3 and 4. We see that the wave propagation is primarily
supported by the main granules. A pulse with wavelength
of five granules and decreasing amplitude with propagation
distance is shown in panels (c(ii)) of Figs. 3 and 4. An
analysis regarding the wave amplitude reveals that the role
of interstitial granules is to spread the leading wave and the
main granules is to support the wave propagation, as shown
in panels (d(ii)) and (e(ii)) of Figs. 3 and 4.

Finally, the dynamic load transfer for case 6 is presented
in Fig. 5, where we observe 2D nonlinear waves. When we
compare with all previous cases, the case 6 carries more
energy along the SID. This behavior allows highly effective
shock dispersion. The same behavior was observed for case 5
with a similar wavefront shape (not shown). The differences
are less energy along the SID, the leading wave with higher
amplitude, and faster wave speed. Some details will be pre-
sented in Figs. 6 and 7. We analyzed the wavefront shapes
from cases 1 to 6 and noted that the closer the mass ratio
is to one (see Table II) slower is the wavefront speed, lower
is the wavefront amplitude along the impact direction, and
shorter is the propagation distance to attenuate the leading
wave. Particularly, case 6 is the one that shows the mass ratio

closest to one and it is more effective in redirecting the initial
energy from impact line to the SID [see Fig. 5(b)].

We can analyze the energy dispersion measuring the wave
propagation distance as a function of time as shown in
Figs. 5(c(i)), 5(d(i)), and 5(e(i)). The slope of the curve
corresponding to the wavefront increases with propagation
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guides to the eye. (b) Decay of the momentum wave amplitude as a
function of layers, where the curves that best fit the data are described
in Table III. Among the materials tested the best combination to
attenuate impacts is the case 6; see Table II.
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The decay of the amplitude is affected by the material parameters.
There are secondary waves that surpass the wavefront for cases 5
and 6.

distance. The time for the wavefront to cover the same dis-
tance also increases. The interstitial particles change their
roles to that of distributing energy to ever-larger areas to
disperse the propagating energy. The energy profiles reveal
the capacity of appropriate granular arrangements to attenuate
disturbances using material combinations as in cases 5 and
6, shown in Figs. 5(c(ii)), 5(d(ii)), and 5(e(ii)). For these
cases we see very low amplitudes after a short propagation
distance. Regarding case 6, less than 1% of the initial energy
is measured in the leading wave after a few layers. It is worth
mentioning that the attenuation of wave amplitude in line with
the striker is listed in increasing order from cases 1 to 6 [see
panels (c(ii)) of Figs. 2–5]. More details about the wave char-
acteristics along the impact direction will be discussed next.

Some previous studies that focused on the role of mass
and stiffness (Young’s modulus) in a centered square granular
crystal reported similar results regarding the wavefront shapes
[26–28]. Awasthi and co-workers have explained the existence
of two propagation regimes. They have predicted theoretically
both dynamics with a wave propagation map using kinematic
and energetic arguments in Ref. [26]. We are calling these

TABLE III. The functional fit for the data in Fig. 6(b), where l =
layer. The constants are listed for each material combination.

Case f (l) a b

1 ae−bl 0.691317 0.00346807
2 ae−bl 0.698735 0.0102147
3 al−b 1.47445 0.860849
4 al−b 1.17123 0.840328
5 al−b 0.366767 0.621549
6 al−b 0.271303 0.696246

regimes as quasi-one and two-dimensional nonlinear waves.
Although the initial conditions described in Fig. 1(a) are dif-
ferent, the predictions are in good agreement with our results.

Figure 6 depicts the evolution of the normalized momen-
tum pulse in line with the striker for the same material
combinations presented in Table II. Two aspects are analyzed:
Fig. 6(a) shows the residence time of the leading wave in
each layer and Fig. 6(b) the decay of the momentum pulse
amplitude as it travels along the crystal. Both are measured
according to Ref. [11]. The momentum pulse arriving at layer
l is that one when the momentum of layer l is greater than
that of layer l − 1. The residence time Tr in layer l is the time
taken by the granule in layer l to transfer the wave from l − 1
to l + 1.

Figure 6(a) reveals that the residence time is highly in-
fluenced by the attenuation of wave amplitude. We can list
the longest Tr in ascending order from cases 1 to 6. In fact,
for one-dimensional systems and elastic waves, several stud-
ies have explored experimentally and analytically a relation
between wave-speed and amplitude as v ∼ A

1
6 [35–37]. It is

expected in the present crystal that waves with high amplitude
move faster than those with low amplitude. Thus, a steeper
slope in Tr indicates a lower wave-speed. For cases 5 and 6,
the small decay in the first layers represents that the leading
wave is not well formed. After that point for cases 5 and 6, and
at any given time for other cases, Tr increases slowly with the
propagation distance. The phenomena that attract attention are
abrupt variations in cases 5 and 6 of Fig. 6(a). These variations
happen due to secondary waves with higher amplitudes that
surpass the leading wave. In a scenario like that the behavior
of residence time ends up not being smooth. The results in
Fig. 7 will help to see the secondary waves.

The attenuation of the leading wave amplitude is very sen-
sitive to material combination, see, e.g., the momentum decay
presented in Fig. 6(b). The curves that best fit these results
are described in Table III. When the granular arrangement
supports the 2D nonlinear waves the improvement in impact
absorption is remarkable compared to what is seen for quasi-
1D nonlinear waves. The best attenuation results are obtained
with cases 5 and 6. For these cases the incident momentum
decreases to less than 10% after a few layers. Such noticeable
attenuation is due to the interstitial granules. The attenuation
is maximum when the masses of the interstitial granules are
comparable to the masses of the main granules. Case 6 is an
example; see Table II. Stronger collisions allow the heavier
interstitial particles to redirect the characteristic load transfer
path in line with the striker to the SID [Fig. 1(a)].
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Figure 7 shows the evolution of normalized momentum
profile for each granule in-line with the impact direction.
Due to the impact event being in two dimensions and due
to the appropriate material combination used, the momentum
amplitude decays from slow to rapid for cases 1 through 6,
respectively. The profile becomes wider with the propagation
distance. This explains the longer residence times in each
layer and a lower propagation velocity, as seen in Figs. 6(a)
and 6(b), respectively. The overall effect of a wider profile
with low amplitude is the dispersion of impacts. There are
secondary pulses behind the wavefront with complicated dy-
namics in all cases. However, for cases 5 and 6 the leading
wave amplitude decays dramatically in the first layers and
it is almost completely attenuated. Thereafter the secondary
waves with higher amplitudes exceed the wavefront. To see
this observe in Fig. 6(a) the peaks in Tr around layer 10
(between 7 and 11, or so).

The analyses of all these results lead us to conclude that it is
possible to direct the leading wave propagation in a decorated
2D granular crystal using material combinations in such a
way that we could control the wave dispersion through the
two processes: the formation of the wavefront shape and the
scattering of energy behind the leading wave. These phenom-
ena are responsible for explaining how the disturbance moves
forward and why there are several secondary nonlinear waves.

Our simulations show that the wavefront shapes are
strongly influenced by the presence of interstitial granules.
The paths along the SID allow for more grain-grain collisions
of the propagating excitation. However, there are limits to how
much energy the granules in the SID can carry at any given
time. With increasing impact energy we find that the granules
are not able to transfer the incident energy into the crystal
efficiently. As a result the pulse is broken into a leading front
with secondary waves that follow.

The results suggest that the combination in case 6, has a
more significant effect in the scattering of the wave and, con-
sequently, in the wave dispersion. After a few layers ∼90%
of the initial impulse is effectively dispersed. In spite of our
calculations presented here, it is conceivable that using a suit-
able material combination with mass ratio closer to one and
following the wave propagation map proposed in Ref. [26],
one can find even better impact dispersion. In the next section,
we continue exploring an optimal material combination. We
will investigate if it is possible for the dispersion to be even
greater when we include polydispersity in the crystal.

B. Granular crystal with polydispersity

In this section, we examine the dynamics in tapered crys-
tals. We have made repeated attempts to sort out the maximum
number of layers (lmax) needed to avoid precompression as a
function of tapering parameter q (see Fig. 8). For each value
of q a granular crystal was built layer by layer, where in
each step precompressions were investigated. The last layer
was discarded when overlaps were observed. A power law
behavior is clearly seen in the inset of Fig. 8, where we
plot lmax versus q in log - log scale. The negative power is
expected since an increase in the tapering parameter leads
to faster tapering. A faster increase of the radii of interstitial
granules also is observed as a consequence. We find that for
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FIG. 8. Maximum number of layers in the crystal, to avoid
precompression, as a function of the tapering parameter q. The curve
that best fits the data is f (q ) = 0.843191q−0.914244.

q � 0.07 the crystals are quite short, about 10 layers long or
less. Figure 9 shows the decay of the maximum momentum
(wave amplitude) in line with the impact direction for several
values of q. The same material combinations presented in
Table II are used.

While the wave propagation remains sensitive to the ma-
terial composition, the tapering contributes to enhancing the
decay of the momentum. For example, while case 2 produced
a ∼60% attenuation in momentum for all values of q, we
are able to decrease the volume of the crystal from 20 layers
for q = 0.03 to 8 layers when q = 0.09, as shown in Fig. 9.
It is worth mentioning that the initial perturbation is almost
completely attenuated even for those q values that produce
very short crystals. We observe that the last granule behaves
differently. There is an increase in its amplitude due to it being
ejected from the crystal. The best outcomes are seen for case
6 and q = 0.09. For this crystal the momentum exhibits a very
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FIG. 9. Decay of momentum amplitude in line with striker for
each tapering parameter. All cases are described in Table II. The
crystals are as long as possible; see Fig. 8. The momentum is almost
completely attenuated despite the very small number of layers. Lines
are guides to the eye.
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crystals as case 6, see Table II. The numbers of layers are from 3 to
8, in steps of 1. The inset shows that with five layers the amplitude is
reduced by ∼10% more when q = 0.14 than q = 0. Lines are guides
to the eye.

sharp decay with more than 90% of dispersion after only five
layers. Such dramatic decay indicates that we do not need long
crystals for impact dispersion in these systems. As the wave
amplitude drops significantly in the first layers and the decay
is more gradual after that, the granular arrangement could be
shorter. We could build a crystal with very small number of
layers and yet be able to mitigate impacts. The next step is
to investigate how short the crystal would be. Henceforth, all
results are reported using the material combination of case 6.

Figure 10 shows the decay of momentum along the impact
direction for a variety of qs in the crystals with the number
of layers from three to eight. The crystals are so short that
the difference in behavior of internal granules is small, the
exception is the last particle due to it being ejected. We find
that only from layer 3 the effects of polydispersity become
relevant. To understand the importance of layer 3, we note
that this is where the interstitial and main granules possess
comparable radii. From layer 3 onwards is where the mo-
mentum is redistributed to other directions from the impact
line. The average momentum at the end of the crystal is at
least reduced by ∼60% for crystals with three layers and
almost completely attenuated for crystals with eight layers.
For q = 0.09 and five layers the maximum momentum is
reduced by ∼88%. However, the inset of Fig. 10 shows that
for a crystal with five layers the maximum tapering parameter
to avoid precompression is q = 0.14. This large q value may
still be achievable because the crystal would be several layers.
For this case, the peak of incident momentum is reduced by
∼91%. An improvement of ∼10% when compared to q = 0
(bidisperse crystal), see the inset in Fig. 10.

In Fig. 11 we show the evolution of the velocity profile
for each of the main granules along the impact direction in a
crystal with five layers and q = 0.14. As the crystal is short,
there is no space to support secondary waves. The striker and
some internal granules rebound with negative velocities. The
initial perturbation is not completely transferred to each new
layer and the amplitude decays rapidly. The last granule does
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FIG. 11. Velocity profile as a function of time along the impact
direction. The crystal is made with five layers, q = 0.14, and mate-
rials as case 6 (see Table II). There are no secondary waves and the
last granule is ejected.

not follow the decay pattern because it is ejected. The final
amplitude is ∼30% of the input. When we compare the results
of Figs. 10 and 11 we find that the decay of momentum is
steeper than that in the velocity. This makes it clear that the
mass dominates the momentum behavior in granular systems.

To understand the dynamics of our system, we investigate
how the mechanical energy propagates from one layer to the
next. Figures 12 and 13 show cases where the contacts are
described by Hertzian and harmonic potentials, respectively.
Panels (a) depict the mechanical energy propagation through
each of the layers, where the insets show a typical sequence of
5 snapshots. The additional inset shows the wave profile along
the last layer. Some of the profiles along chains composed of
the main and interstitial granules are shown in panels (b(i))
to (f(i)) and (b(ii)) to (f(ii)), respectively. The chains under
analysis are highlighted in black circles in each of the panel.

In both Figs. 12 and 13, we see the same basic dynamics.
Panels (a) in both the figures reveal that the striker rebounds
after collision with the first layer. The energy is gradually
imparted from one layer to another. A portion of the energy
remains in the striker and in each layer. Thus, the crystal
is not able to transfer forward the entire incident energy.
The series of snapshots shows that the wave spreads as it
travels through the system as follows. The leading wave
with low-amplitude reaches the last granule in line with the
striker. A large amount of energy is redirected from the impact
line to the SID. When the size of the interstitial and main
granules are comparable (around layer 3), the crystal’s ability
to backscatter and transmit tensile loads in the y direction
(orthogonal to the impact) are realized. Therefore, the wave
profile suffers a fast spatiotemporal dispersion. There is a
peak in the last granule along the SID of ∼4% of incident
energy for the Hertzian potential, see the inset of Fig. 12(a).
For the harmonic potential the peak is ∼3.5%, as shown in
Fig. 13. The normalized mechanical energy carried by the
tapered chain structures at various positions along the crystals
are shown in panels (b(i)) to (f(ii)) for both the figures. More
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FIG. 12. Evolution of mechanical energy (ME) for a crystal with Hertzian contacts. The crystal is made with 5 layers, q = 0.14, and
materials as case 6 (see Table II). (a) Profile for each layer. The insets depict snapshots of the wave. Additional inset shows the profile for the
last layer at t = 1 ms. Profiles along chains composed of main granules are shown in panels (b(i)) to (f(i)). Profiles for interstitial granules are
shown in panels (b(ii)) to (f(ii)). The chains under analysis are highlighted as black circles in schematic diagrams. A peak of 4% of incident
energy is seen in the last granule along the SID.

energy travels through the interstitial granules than in the main
granules, in both potentials.

The wave attenuation and dispersion for the harmonic po-
tential is slightly more when compared to the Hertzian contact
case. The difference is small due to the small number of layers
that are present in the crystal. Particles under compression and
interacting via linear forces support waves with wider profile
and lower amplitude as function of propagation distance. As
a consequence even monodisperse one-dimensional chains do
not support stable solitary waves. This explains the absence
of the central peak in the last layer for the harmonic potential,
the different time scale, and the larger amount of energy
redistributed in the first and last layers.

Next, we turn our attention for the role of disorder and not
head-on collisions between striker and granules in the first
layer.

C. Comment about disorder and not head-on collision

Last, we describe briefly the dynamics for two different
initial conditions for the Hertzian contact problem. The sce-
narios considered are when the striker collides: (1) at the same
time against two granules in the first layer, and (2) obliquely
with only one granule. As expected, we note that the dynamics
is comparable to that shown in Fig. 12 for both cases. We
find that the striker rebounds and partially imparts its energy
to the crystal. The energy transferred to the crystal rapidly
attenuates as it travels through progressive layers. While the
last layer is ejected, the perturbation is redirected from the
impact line. There is a peak with small amplitude after only
five layers along the SID. When the collision is not head-on
the wavefront is no longer symmetrical.

To probe effects of weak positional disorder and small vari-
ation of radii, additional simulations were performed. It was

FIG. 13. Evolution of mechanical energy (ME) for a crystal with harmonic contacts. The crystal is made with 5 layers, q = 0.14, and
materials as case 6 (see Table II). (a) Profile for each layer. The insets depict snapshots of the wave. Additional inset shows the profile for the
last layer at t = 0.5 ms. Profiles along chains composed of main granules are shown in panels (b(i)) to (f(i)). Profiles for interstitial granules are
shown in panels (b(ii)) to (f(ii)). The chains under analysis are highlighted as black circles in schematic diagrams. A peak of 3.5% of incident
energy is seen in the last granule along the SID.
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assigned for each granule a random radius where a variation
of ±5% based on a normal distribution was allowed for the
system. First, we used gravity along the impact direction to
find the appropriate initial configuration of the system (i.e.,
without large precompressions or holes). Second, as there is
always some residual kinetic energy in the system, we defined
the initial positions of the granules as the average displace-
ment. We have used that information to infer the approximate
equilibrium positions. We measured the kinetic energy at
the end of a crystal built with q = 0.09 and eight layers.
The initial contact lattice affects the exact system response,
but the initial energy imparted by a striker colliding head-on
ended up being distributed along the last layer. The profile for
the last layer is similar to Fig. 12.

IV. CONCLUSION

We have addressed the problem of impact dispersion in
a tapered, ordered, square, granular crystal. The systems
considered had two species of granules. The shape of the
wave front was controlled by exploiting the geometry and
the material combinations used to construct the granular
crystal. We found that the right amount of tapering and the
right combination of the two materials lead to severe impact

attenuation within eight layers. Attenuation of incident mo-
mentum by ∼90% was noted for polydispersed systems 14%
tapering. The impact attenuation in these tapered systems is an
additional ∼10% less than that in the perfect crystals. Given
that these systems have a limited number of layers, the effects
of dissipation are small and have hence been ignored in the
studies described here. Oblique as opposed to head on impact
simply contributes to asymmetric dispersion of the propa-
gating perturbation in the crystal. Further, small positional
and geometric disorders have no significant influence on the
impact dispersion of these tapered, bimodal, crystals.

In future studies we will discuss that the granular arrange-
ment proposed here is also a good filter for continuous waves
with ∼104 and 105 Hz. The granular crystals considered here
can be scaled down to spheres of ∼10−6 m and are able to
support nonlinear granular breathing.
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