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In this molecular dynamics study, we examine
the local surface geometric effects of the normal
impact force between two approximately spherical
nanoparticles that collide in a vacuum. Three types of
surface geometries: (i) crystal facets, (ii) sharp edges
and (iii) amorphous surfaces of small nanoparticles
with radii R < 10 nm are considered. The impact forces
are compared with their macroscopic counterparts
described by nonlinear contact forces based on Hertz
contact mechanics. In our simulations, edge and
amorphous surface contacts with weak surface energy
reveal that the average impact forces are in excellent
agreement with the Hertz contact force. On the other
hand, facet collisions show a linearly increasing force
with increasing compression. Our results suggest
that the nearly spherical nanoparticles are likely to
enable some nonlinear dynamic phenomena, such as
breathers and solitary waves observed in granular
materials, both originating from the nonlinear contact
force.

1. Introduction
The discrete nature of nanoscale materials has often
revealed surprising phenomena. Nanoscale normal
contact force and friction laws depend strongly on the
particle contact. A molecular dynamics (MD) study by
Luan & Robbins [1] demonstrated that the normal contact
force for rough surfaces of solids with amorphous and
crystal structures revealed significant departures from
the Hertz contact force for quasi-statically contacting
elastic, perfect spheres [2]. Atomically rough surfaces on
contacting objects influence the contact considerably and
local surface geometry in the vicinity of the contact region
promotes variations of the contact surface area [1,3].
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Atomic scale surface roughness also dictates impact phenomena in nanoparticles. Gold
nanoparticles, for example, can take a near-spherical shape (one of the thermodynamically stable
shapes [4]) with the surface of such a nanoparticle comprising crystal steps and terraces, which
make them ‘rough’ and in turn affect the nature of their interactions. The lack of spherical
nanoparticle symmetry often leads to more complex dynamics than the Hertz contact theory
for perfect spheres. Roll, slide and deflection phenomena of colliding nanoparticles arising from
shape asymmetry have been observed elsewhere [5,6].

In dynamics, the coefficient of restitution often suffices to predict the overall behaviour of a
dissipative many-body system such as clustering of dissipative particles [7]. Precise measurement
of the impact force, however, is critical for certain dynamic systems. A recent MD simulation
demonstrated that a one-dimensional chain of nanoscale ‘buckyballs’ can permit the propagation
of a solitary wave [8], which is a non-dispersive propagating wave in a macroscopic granular
system discovered by Nesterenko [9]. Realization of the solitary wave at the nanoscale implies
that the interaction force between buckyballs is nonlinear. That is, the power of overlap δ for
the normal contact force FN expressed by FN ∝ δn must satisfy n > 1 so that a spatially localized
propagating pulse of energy can be formed [10,11].

Direct observation of the impact force of colliding nanoparticles made by MD simulations
has been reported [12–15]. Very large nanoparticles of radius R ∼ 100 nm simulated by Tanaka
et al. [15] show good agreement with the Johnson–Kendall–Roberts (JKR) model, an adhesive
contact model based on Hertz contact mechanics, as their shape approaches perfect spheres as
the size is increased. However, the nature of impact forces between rough surfaces of colliding
small nanoparticles is not yet fully understood. Our MD study presents precise details of contact
forces for collisions between small nanoparticles having three different contact surface geometries
in order to investigate the influence of surface roughness in a systematic fashion. An amorphous
nanoparticle as well as nanoparticles with two distinct surface geometries, facets and edges of a
face-centred cubic (fcc) crystal, are considered as contact surfaces.

Many MD studies on nanoparticle collisions indicate that nanoparticles are highly elastic if
the impact velocity is kept below their material yield point, although a small amount of the
initial kinetic energy admittedly dissipates during the impact process [12,16–18]. In addition, the
adhesive nanoparticles that collide beyond a critical velocity, determined by the balance between
adhesion and elastic energies, actually tend to rebound [6,16,19,20]. Similarly, the repulsive
nanoparticles may provide a limiting case for the adhesive nanoparticle with surface energy
γ → 0. Therefore, we consider both repulsive and adhesive nanoparticles and compare their
forces.

Our paper is organized as follows: §2 discusses our nanoparticle models and computational
methods. Impact forces for colliding nanoparticles made from amorphous and crystal structures
are displayed in §3. The discussion and conclusions are presented in §4. The Hertz contact theory
and relevant adhesive contact models are briefly reviewed in appendices C and D.

2. Numerical simulations

(a) Models
For an investigation of the dynamic interaction force, nearly spherical nanoparticles ξ and η of
equal radius R are prepared. To study the influence of surface roughness, crystal and amorphous
structures are employed as base materials for making our nanoparticles. These nanoparticles are
modelled by the Lennard–Jones (LJ) potential (see §2b(i)).

Crystalline nanoparticles are carved out of an fcc single crystal of solid argon. The resultant
nanoparticles have atomic roughness consisting of crystal facets and steps on their exterior
surfaces due to their structures (see the nanoparticles in figure 1). We take advantage of the
presence of the surface roughness to obtain interaction forces at particular points on the surfaces.
The {100} crystal facets are chosen for studying facet contacts and some sharp crystal edges are
randomly chosen for studying the edge contact problem.
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The amorphous structure is obtained by quenching a molten argon block from temperature
T = 70 K to 0.02 K at a rate 8 × 1010 K s−1 [21,22], followed by equilibrations at Teq = 0.02 K.
A nearly spherical nanoparticle is then created by cutting the block in equilibrium (see the insets
of figure 5). Radial distribution functions computed from our equilibrated nanoparticles confirm
the amorphous structure [23].

Adhesive and repulsive contacts are achieved by varying the surface energy of nanoparticles,
for which modified LJ potentials are used. The variation takes into account reduced interactions
through coated or fluid-mediated contact surfaces [24,25]. Nanoparticles with purely repulsive
contacts are considered by employing the Weeks–Chandler–Anderson (WCA) potential [26]. We
further elaborate on these LJ-based potentials in §2b(ii).

(b) Interatomic potentials
Our non-equilibrium MD simulations presented here use three interatomic potentials based on
the standard 12-6 LJ potential to model adhesive and repulsive nanoparticles. To this end, a
modified LJ potential described in equation (2.1) is introduced, which contains a parameter
cαβ in the second term, where α, β ∈ {ξ , η}. This parameter allows us to vary the attraction
between atoms, as used in [16,19,20,27]. A situation where cαβ = 1 recovers the standard LJ
potential.

V(rij) =

⎧⎪⎪⎨⎪⎪⎩
4ε

⎡⎣( σ

rij

)12

− cαβ

(
σ

rij

)6
⎤⎦ (rij < rc),

0 (rij ≥ rc).

(2.1)

The rij denotes an interatomic distance between ith and jth atoms, σ is the distance at which the
potential is zero, and ε is the depth of the potential. The potential is truncated and shifted at
rij = rc to get rid of a discontinuity that stems from the truncation. The attraction parameter cαβ

and cut-off rc are varied depending on our purposes as described below.
For all potentials considered, the parameters for argon atom σ = 0.3405 nm and ε = 1.654 ×

10−21 J are used [18].

(i) Intrananoparticle potential

We use the standard LJ potential to model the individual nanoparticle, for which cξξ = cηη = 1 in
equation (2.1) (α = β = ξ or η). The interaction between a pair of atoms i and j within a nanoparticle
(labelled by ξ or η) is computed with this standard LJ potential. In other words, the computation
is carried out only if i, j ∈ ξ or i, j ∈ η.

(ii) Surface interaction

We consider three types of surface interactions between two nanoparticles ξ and η, namely: weak
adhesion, strong adhesion and pure repulsion. The parameter sets described below apply only
to a pair of atoms i and j that, respectively, belong to colliding nanoparticles ξ and η, i.e. i ∈ ξ

and j ∈ η.
For adhesive nanoparticles, the attraction parameter value cξη = 0.2 or cξη = 1 is set to achieve

weakly or strongly adhesive contacts, respectively. In both cases rc = 2.5σ is used, as is standard.
To attain purely repulsive nanoparticles, the WCA potential is adopted as used in [1,18]. It is a

variation of the standard LJ potential with cξη = 1 and a cut-off rc = 21/6σ at which the potential
takes its minimum value. Therefore, the tail of the potential is null at rij > rc, which makes the
potential purely repulsive.

The parameters and cut-offs explained here are summarized in table 1.
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Table 1. LJ potential parameter sets, cαβ (α = ξ andβ = η) and rc, for surface interaction between nanoparticles ξ and η

considered in this study.

surface interaction cαβ rc
weak adhesion 0.2 2.5σ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

strong adhesion 1 2.5σ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pure repulsion 1 21/6σ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) Computation
Equations of motion for argon atoms are solved by the velocity Verlet algorithm with integration
time step 
t = 1.08 × 10−14 s for crystalline nanoparticles [18]. We confirmed that at shorter time
steps the nanoparticles had no substantial differences in collision phenomena [18]. An integration
time step 
t = 4.3 × 10−15 s for amorphous nanoparticles is used.

All the nanoparticles prepared are initially relaxed over sufficient time steps in the
canonical (constant-temperature) ensemble at temperature Teq = 0.02 K. After the relaxation, the
nanoparticles are brought into head-on collision in the z-direction at a relative impact velocity
vimp = |vξ − vη| in the microcanonical (constant-energy) ensemble. The vξ and vη denote the
centre-of-mass velocities for the nanoparticles ξ and η, respectively.

Our MD simulations presented hereafter are carried out by LAMMPS [28] with modification to
its source code to adopt the modified LJ potential equation (2.1) for adhesive nanoparticles.

3. Simulation results
We present our simulation results in this section for impact phenomena found in our adhesive
and repulsive nanoparticles. Impacts on crystal edges, crystal facets and amorphous surfaces
are, respectively, discussed in §§3a–c. For visualization of nanoparticles VMD [29] is used unless
otherwise stated.

(a) Impact on crystal edges
We consider cases where two fcc crystalline nanoparticles collide such that they first come into
contact on at least one crystal edge on either of the nanoparticles.

(i) Force between nanoparticles

The nanoparticles dealt with herein possess a weak surface force resulting from a low attraction
cξη = 0.2 set in equation (2.1). We use a dimensionless impact force defined as an ensemble
averaged normal force as described in appendix A, unless otherwise noted. Impact forces of
adhesive nanoparticles colliding at an impact velocity vimp are displayed in figure 1a for small
radius R = 2.7 nm (number of simulations K = 1000) and (b) for large radius R = 7.4 nm (number
of simulations K = 100). The solid and dashed lines, respectively, represent average forces in
the loading and unloading stages. The impact velocity of the nanoparticles is varied from 20 to
52 m s−1, which is in the elastic collision regime. The overlap δ, defined in appendix B, is hereafter
non-dimensionalized by R, denoted by δ̃ := δ/R.

Owing to the relatively long-range surface interaction, the approaching nanoparticles undergo
a net attractive force prior to the beginning of contact at δ̃ = 0. This causes acceleration of the
nanoparticles, and hence the incoming velocity becomes higher in the negative force region [30].
In the weakly adhesive contacts, however, the increase in the impact velocity is negligible due to
the low surface energy associated with cξη = 0.2.

Beyond the overlap, where the surface attractive and compressional elastic forces balance out,
the impact force continues to increase as the nanoparticles deform further. The force-overlap
plots in the compressional region for both sizes show the nonlinear response to the impact loads.
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Figure 1. Average impact forces for weakly adhesive edge contacts. Solid and dashed lines represent loading and unloading
forces, respectively. The insets in (a) and (b) show the force-overlap curves for purely repulsive edge contacts. (a) Adhesive
nanoparticles of R= 2.7 nm, (b) adhesive nanoparticles of R= 7.4 nm. (Online version in colour.)

Although the attractive force exists, the compressional force is much higher and predominant in
the impact velocity range considered. If the impact velocity is set low enough, the attractive force
would no longer be negligible as the compressional elastic force decreases. At a velocity below a
threshold, determined by the Weber number, nanoparticles actually stick together [6,16,20,27]. In
the velocity range and the weak adhesion considered, nanoparticles do not adhere together.

The unloading force for the departing nanoparticles at a given impact velocity is lower
than the loading force in most of the overlap range shown. This hysteresis observed in the
force-overlap curves, which is also typical in colliding viscoelastic bodies, indicates the loss
of translational kinetic energy of the nanoparticles during collision. The existence of energy
dissipation corroborates earlier findings: the coefficient of restitution of colliding nanoparticles
is less than one if the impact velocity is sufficiently high [12,16–18,20,27]. At an impact velocity
as low as the thermal velocity, the coefficient of restitution may exceed one [12,16,17,31,32].
Vibrations [33] and crystal structure changes [31] caused by collision may account for the
microscopic energy dissipation.

Despite the impact velocity variations considered, all the loading forces agree well up to their
maximum forces displayed here, and hence a dynamic effect on the force associated with strain
rate is not appreciable. On the other hand, the unloading force gets smaller as the impact velocity
is increased, indicating that the energy dissipates more at a higher impact velocity. This velocity
dependence is a reasonable result as energy dissipation of colliding viscoelastic spheres [34,35]
and nanoparticles [16,36] gradually increases with increasing impact velocity.

In addition, in order to examine the role of the surface force, purely repulsive contacts,
modelled by the WCA potential, are also simulated. The impact forces averaged over 100
simulations for the repulsive nanoparticles with edge contact are shown in the insets of figure 1a,b.
The forces are now purely compressional loads due to the absence of surface forces, but they are
nearly indistinguishable from those for the weakly adhesive nanoparticles in the same figures.
If we take a closer look at the magnitudes of both forces of the small nanoparticles in (a), the
difference is found to be 20% or less. This quantitative difference may stem from the subtlety
in identifying when the contact begins at the nanoscale [37,38], as described in appendix B. On
the other hand, the large nanoparticles in (b) show good agreement as their large radius tends to
diminish the effect of points of contact.

(ii) Contact model for weakly adhesive nanoparticles

The nonlinear and partly negative impact forces of the weakly adhesive nanoparticles suggest
that there may be a contact force model that could be inferred on the basis of continuum contact
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models. We attempt to determine a suitable continuum contact force for our weakly adhesive
nanoparticles if it exists.

The JKR model is one of the widely used adhesive contact models, in which surface adhesion
within the mutual contact surface of two elastic objects is taken into account [39]. This model
is valid for large compliant solids that allow a large elastic deformation due to surface force.
On the contrary, small stiff solids in contact with each other that experience a small elastic
deformation can be modelled by the Derjaguin–Muller–Toporov (DMT) theory, another adhesive
continuum contact model that considers surface force outside the contact surface [40]. Both
models are grounded in a quasi-static elastic contact, i.e. resulting contact forces have no velocity
dependence. In general, the DMT contact model is suited for nanoscale mechanical contact often
seen in spherical microscope tip-substrate interactions [41], whereas the JKR contact theory is
appropriate for contacting large nanoparticles [15].

A dimensionless quantity called the transition parameter, denoted by λ, helps determine
the transition between DMT and JKR contact models for given material properties and
the size of elastic spheres in contact through their adhesive surfaces [42,43]. The form of
this parameter is given by equation (D 1) in appendix D. Typically, λ < 0.1 for the DMT
limit and λ > 5 for the JKR limit. An adhesion map created by Johnson & Greenwood [44]
conveniently provides an appropriate contact model for the estimated value of the transition
parameter.

According to our calculation (described in appendix D), the weakly adhesive nanoparticle
with the coefficient cξη = 0.2 in the LJ potential, from which the surface energy γ = 0.0380ε/σ 2 is
obtained, has the transition parameter λ ∼ 0.04. The value falls in the range of the DMT or Hertz
contact models in the adhesion map, depending on the compressive force relative to the surface
force. It implies that our weakly attractive nanoparticles are stiff and thus undergo a relatively
small elastic deformation induced by the surface force.

The DMT contact force FDMT consists of the Hertz contact force FH, described in appendix C,
and the constant surface force Fs = −4πγ R∗:

FDMT = FH + Fs, (3.1)

where R∗ = R/2 is the reduced radius of the nanoparticles. To verify the applicability of the DMT
or the Hertz contact model, we compute contact forces FDMT and FH from equation (3.1) and
equation (C 1), respectively, and compare them with the impact force of the weakly adhesive
nanoparticles from our MD simulations.

In figure 2a, loading force data for the weakly adhesive nanoparticles at vimp = 52 m s−1 are
depicted by dark grey dots. The DMT force FDMT and Hertz force FH non-dimensionalized by
2πγ R∗ are shown in the same plot as a dotted line and a dash-dotted line, respectively. For FH,
reduced Young’s modulus E∗ (see appendix C for the definition of E∗) is set to E∗ = 50.6σ/ε

determined by fitting to the impact force data. It is difficult to distinguish the DMT and Hertz
forces plotted in the figure. The substantially equal forces are obtained as a result of the weak
surface force Fs compared with the compressional force for the impact velocity range considered.
The dimensionless surface force F̃s := Fs/(2πγ R∗) = −2, whereas the impact forces, F̃N, at the
maximum overlap from the simulations are of the order of 102. The gap between the magnitudes
of the forces is large enough to neglect the surface adhesive force. Thus, the Hertz contact
theory is a legitimate contact model to apply to elastic spheres having such a low-surface
energy.

The loading force points for the small nanoparticles in figure 2a are scattered widely. The
scatter is caused by the surface roughness, that is, large deviations in the points of contact from
their mean radius R. Aside from the scatter, the impact forces are well described by the Hertz
contact force. This feature is also observed for the large nanoparticles in figure 2b. Unlike the small
nanoparticles, the force data shows the smaller scatter, due to their relatively spherical shape, and
the points appear to converge to the Hertz contact force.
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Figure 2. Impact loads for weakly adhesive small and large crystalline nanoparticles are shown in (a) and (b), respectively.
The impact velocity of the nanoparticles is vimp = 52 m s−1. Only randomly selected data points are shown for visual clarity.
Hertz and DMT forces for corresponding elastic spheres of the same radii R in quasi-static contact, respectively, computed by
equations (C 1) and (3.1) are also plotted. (a) Small nanoparticles of R= 2.7 nm, (b) large nanoparticles of R= 7.4 nm. (Online
version in colour.)

(iii) Strongly adhesive nanoparticles

We consider another limiting case, namely small nanoparticles with strong surface force, and
scrutinize the influence of the rugged surfaces of small nanoparticles on the impact force and
associated contact model. To this end, cξη = 1 is set in equation (2.1) for the internanoparticle
interaction to increase the surface energy of the nanoparticles. The strong adhesion represents the
interaction between bare crystals [24].

This internanoparticle interaction leads to a surface energy of γ = 1.014ε/σ 2 determined from
our separate simulation described in appendix D. In fact, this surface energy is much higher than
the surface energy γ = 0.0380ε/σ 2 for the weak adhesion case (cξη = 0.2). The surface energy for
the strongly adhesive nanoparticles yields the transition parameter λ ∼ 0.35, and the value is
found to be in the zone bounded by DMT and JKR zones. Therefore, we compare the impact
forces with the DMT force given by equation (3.1) and the JKR force given by equation (3.2).

FJKR = 4E∗a3

3R∗ − 2
√

4πE∗γ a3

and δJKR = a2

R∗ −
√

4πaγ
E∗ .

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.2)

The impact forces for the strongly adhesive nanoparticles at vimp = 52 m s−1 in the loading
phase are shown as grey dots in figure 3. The Hertz, DMT and JKR forces computed with the
higher surface energy γ = 1.014ε/σ 2 and the reduced Young’s modulus E∗ = 50.6ε/σ determined
in the previous section are also drawn in the same plot as dashed-dotted, dotted and dashed lines,
respectively. They are offset by δ̃ = 0.043 towards the positive overlap direction (figure 2). The
offset value is the exact distance between the potential minima for cξη = 0.2 and 1 in equation (2.1)
and is introduced to rectify the points of contact deviated because of the different positions of the
minima.

Evidently, the Hertz contact theory is no longer valid in this regime. The impact force points
spread out, but their average force displayed by a solid line has attractive force comparable with
its maximum force, and thus adhesion cannot be neglected in the colliding nanoparticles. The
average impact force is higher than the DMT force, and rather close to the JKR force. The DMT
contact model overestimates its surface force Fs in equation (3.1) and ends up in the contact force
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Figure 3. Loading forces for strongly adhesive crystalline nanoparticles (cξη = 1) of radii R= 2.7 nm at impact velocity
vimp = 52 m s−1. Only randomly selected data points are shown for visual clarity. Hertz, DMT and JKR forces for corresponding
elastic spheres of the same radii R in quasi-static contact, respectively, computed by equations (C 1), (3.1) and (3.2) are also
plotted. (Online version in colour.)
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Figure4. Impact forces for nanoparticles of radiusR= 2.7 nm that experience facet contact. (a)Weakly adhesive nanoparticles
and (b) repulsive nanoparticles. In (a) dotted straight line illustrate the linearly increasing impact forces. (Online version in
colour.)

FDMT lower than the average impact force of the strongly adhesive nanoparticles. By contrast, the
JKR force successfully predicts the average impact force except for high compression at δ̃ > 0.2.

(b) Impact on facets
The nanoparticles undergoing the crystal facet contact displayed in figure 4 have a large contact
surface area and this contact makes a marked distinction in force from the crystal edge contact.
The impact on the facets completely alter the dynamic response of the colliding nanoparticles.
Consequently, the impact force between the nanoparticles is not expressed by the Hertz contact
force in equation (C 1) as we will see below.

The symbols in figure 4a present loading and unloading forces for the weakly adhesive facet
contact. The attractive forces for the facet contact are stronger than those for the edge contact
because of higher work of adhesion arising from the larger interacting surface area. Colliding
with the large facets leads to the loading and unloading forces notably higher than those for the
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Figure 5. Average impact forces for weakly adhesive amorphous nanoparticles of radius R. The dashed-dotted lines depicted
are the Hertz contact forces with different Young’s moduli. (a) R= 2.8 nm, (b) R= 6.2 nm. (Online version in colour.)

edge contact displayed in figure 1. The facet contacts show linearly increasing forces with respect
to overlap if the nanoparticles are compressed sufficiently. We confirm that the contact surface
areas in the sufficiently compressed region remain unchanged during elastic collision, contrasted
with the evolving contact surface areas that occur in the Hertz and relevant adhesive contact
models. The unchanging contact surface areas result in the linear response.

Additionally, simulations for purely repulsive nanoparticles with the facet contact are carried
out in order to compare them with the weakly adhesive nanoparticles. The impact forces for the
repulsive contact are plotted in figure 4b. All the forces exhibit a distinctive behaviour in the
loading phase: a spike at δ̃ ∼ 0.115 followed by a slow velocity-dependent increase in the forces.
The intricate force profile does not admit a simple expression in terms of overlap unlike the forces
in figure 4a or the Hertz force.

In the edge contact cases discussed earlier, adhesive and repulsive nanoparticles have a similar
dynamic response, and hence we have suggested that the force of the repulsive nanoparticles can
be substituted for that of the weakly adhesive nanoparticles without loss of generality of the
obtained nonlinearity. However, the exclusion of surface force for the facet contact results in large
deviations from the adhesive contact. Thus, dynamical phenomena of the adhesive nanoparticles
involving the facet contact cannot be inferred from the repulsive nanoparticles as opposed to the
aforementioned edge contacts.

(c) Impact on amorphous surfaces
The exteriors of the amorphous nanoparticles in figure 5 look more spherical than those of the
crystalline nanoparticles in figure 1. Although the disordered arrangement of the surface atoms
cause the small roughness, the arrays of atomic steps and associated sharp edges seen in the
crystalline nanoparticles are clearly absent. The facet-free nanoparticle having a weak surface
force is, therefore, expected to recover the Hertz or derivatives of the Hertz Laws as we have
demonstrated in the edge contacts.

Figure 5a,b, respectively, plot the impact force-overlap curves for small and large nanoparticles
having amorphous structures with a low-surface force originating from the coefficient cξη = 0.2 set
in equation (2.1). The forces were averaged over 100 simulations with different initial conditions.
The impact forces of the incoming nanoparticles for the given velocities confirm the validity of
the Hertz contact force if the reduced Young’s modulus for small and large nanoparticles is set
to E∗ = 37.9 and 41.1ε/σ , respectively. The results here are analogous to the edge contact cases
presented earlier. The Hertz contact theory is thus a pertinent theory to nanosale contact problems
for the weak surface interaction.

For the recoiling nanoparticles, the impact forces show an interesting dissimilarity from those
of the edge contact. The unloading forces of the large nanoparticles depicted in figure 5b by
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Figure 6. (a) Radius change 
R for (1) large crystalline nanoparticles (NPs) with edge contact (R= 7.4 nm), (2) large
amorphous nanoparticles (R= 6.2 nm) and (3) small amorphous nanoparticles (R= 2.8 nm) before and after collision.
(b) Cross sections of the large amorphous nanoparticles after collision. The nanoparticles collide at impact velocity 25 m s−1.
The red dashed arcs are displayed for a guide to plastic deformation of the surface of the right nanoparticle. Yielding for the
large NP with the facet contact occurs at impact velocity vimp > 52 m s−1 [18]. (Online version in colour.)Q4

dashed lines drop back to zero at varying positive overlaps distant from δ̃ = 0. This obviously
means that the nanoparticles do not recover their undeformed shape prior to the collision, and
that the impact probably induces plastic deformations.

Comparing the radii before and after collision, we quantify the plastic deformations observed.
Let R be the radius before collision and R′ be the radius after collision. We take a normalized
difference 
R := (R − R′)/R and plot it in figure 6a as a function of the impact velocity. For
comparison purposes, radius changes, 
R, for the small amorphous nanoparticles and the
crystalline nanoparticles with the edge contact are also displayed in the same figure.

The large amorphous nanoparticles show the increasing plastic deformation from 1% to 4%
in 
R as the impact velocity is increased up to 32 m s−1. On the other hand, the radius change
of the large crystalline nanoparticles with the edge contact stays around 0.2–0.3% in the velocity
range between vimp = 20–41 m s−1 where their structural integrity is preserved. The values for the
edge contact are only 10% of those of the amorphous nanoparticles. For the small amorphous
nanoparticles large radius changes 
R >1% are also found. The large radius changes observed
imply that there are visible plastic deformations. Indeed, the amorphous nanoparticles before and
after collision displayed in figure 6b reveal a locally flattened surface on the right nanoparticle,
accompanied by the rearrangement of atoms triggered by the impact.

This type of plastic deformation is not observed in the crystalline nanoparticles at the same
velocity. At the transition between the elastic and plastic deformations, crystalline nanoparticles
begin to crack and dislocations generated on the contact area propagate through the nanoparticles
[18,27,45,46]. On the other hand, the underlying mechanism of plastic deformation in amorphous
solids, such as metallic glasses, is generally shear band formation instead of dislocation. The shear
band is a narrow region in which a collective rearrangement of atoms occurs and large shear
strains are concentrated. The contribution from the rearrangement in amorphous solids to the
local strain can be probed by the nonaffine square displacement D2 of atoms introduced by Falk
& Langer [47]. A shear band would be visualized as a thin layer of a region of high nonaffine
square displacements if it exists.

We show the nonaffine square displacement fields for representative large amorphous
nanoparticles before and after collision in figure 7. The displacement fields are computed and
visualized by OVITO [48]. It turns out that surface atoms involved in contact have high nonaffine
square displacements and the displacements propagate underneath the contact surfaces. The
unevenly distributed high displacements in the interiors of the nanoparticles do not show
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before collision after collision D2 (s2)

5

0

Figure 7. Nonaffine square displacement D2 of each atom on a cross section of the large amorphous nanoparticles is presented
by colour, computedwith a cut-off 1.5σ for identifying neighbour atoms. Their impact velocity isvimp = 31 m s−1, which is the
highest velocity considered. (Online version in colour.)

evidence of shear bands but might be potential initiation sites of shear bands if the nanoparticles
are further compressed [49]. Plastic deformations in the amorphous nanoparticles are relatively
localized on and in the vicinity of the contact surfaces while the rest remains intact. Accordingly,
the localized plastic deformations and average impact forces having hystereses confirm that even
at a low impact velocity the amorphous nanoparticles are effectively elastic but much more
dissipative than the corresponding crystalline nanoparticles with the edge contact.

(d) Contact surface area
The loading forces of the weakly adhesive nanoparticles have successfully been fitted to the
Hertz contact force, and therefore, the Hertz contact model is partially corroborated in nanoscale
contact dynamics under the conditions we have imposed. The results suggest that other relevant
quantities in continuum contact mechanics would also agree with our nanoparticle findings.
From the nonlinearity found in the impact forces for edge and amorphous surface contacts, an
expanding contact area in response to the impact force is expected to coincide with the Hertz
contact area. We, therefore, test the validity of the contact model by comparing the contact radius
a, which gives contact area πa2, formed between colliding weakly adhesive nanoparticles and that
of the Hertz model described by equation (C 2).

We define contact area A as the product of the number Na of contacting atoms and the projected
area Aa of an atom suggested by Mo et al. [50]. It follows that the contact radius is a := √

NaAa/π .
A conventional definition for a contact radius based on the gyration radius [38] has often been
used in the literature for contacting nanoparticles. However, as contact radii we computed from
the former definition were found to be closer to the contact radius the Hertz contact model
predicts, contact radii hereafter are computed by the method provided by Mo et al. From our
simulations, the projected areas Aa for crystalline and amorphous nanoparticles are, respectively,
determined as 0.9434σ 2 and 0.9297σ 2, computed with a method using the radius distribution
function described in [51].

Non-dimensionalized contact radii ã := a/R for fcc crystal and amorphous nanoparticles are
displayed in figure 8a,b and c,d, respectively. Moreover, the dotted lines represent the prediction
from the Hertz contact model. Although the contact radii data and the Hertz contact radius in
each plot have a strong correlation, Hertz’s contact radius underestimates the simulation data.
Comparing the simulation and theoretical results, we find that the small nanoparticles in (a) and
(c) have 10–30% disparities, whereas the large nanoparticles in (b) and (c) have 5% or less.

The departures of the contact radii from the Hertz contact model observed here are inconsistent
with the excellent agreement between the impact forces and the Hertz contact model. This
discrepancy indicates that the continuum models are not versatile enough to consistently predict
every nanoscale mechanical property of such small nanoparticles. Knowing the small but finite
deviation of the contact radius for the large nanoparticles, we may be able to apply the continuum
mechanics to large nanoparticles.



584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636

ARTICLE IN PRESS

12

rspa.royalsocietypublishing.org
Proc.R.Soc.A20170723

...............................................

0.4

0.3

0.2

0.1

0

0.4

0.3

0.2

0.1

0
0 100 200

crystal NP
edge contact
R = 2.7 nm

amorphous NP
R = 2.8 nm

amorphous NP
R = 6.2 nm

crystal NP
edge contact
R = 7.4 nm

0 200 400

FN
~

FN
~

a~

a~

(a) (b)

(c) (d)

Figure 8. (a–d) Variation of dimensionless contact radius̃ awith dimensionless loading force F̃N forweakly adhesive crystalline
and amorphous nanoparticles at impact velocities vimp = 52 m s−1 (red dots) and 32 m s−1 (blue dots), respectively. Only
randomly selected points are shown in the plots in order for visual clarity. Contact radius from the Hertz contact theory is plottedQ4

by a dotted line in each plot. (Online version in colour.)

4. Discussion and conclusion
We have presented the mechanical interactions and associated deformations of two
approximately spherical nanoparticles that undergo a head-on collision obtained by means of
non-equilibrium MD simulation. We have compared our numerical results with repulsive and
adhesive continuum contact models.

To study the effects of atomic scale surface roughness and structure that are present
in nanoparticles, monocrystalline and amorphous nanoparticles were prepared. Crystalline
nanoparticles possess crystal facets, steps and sharp edges on their surfaces, while amorphous
nanoparticles have comparatively smooth surfaces, although some atomic roughness stemming
from the disordered structure still remains. We considered three different contact regimes:
edge, facet and amorphous surface contacts. Furthermore, the surface energy of contacting
nanoparticles was varied to investigate what continuum contact models can apply to these
nanoparticles.

In our simulation results, the impact force data in the loading phase for the weakly adhesive
nanoparticles with the edge contact show nonlinear interactions. Furthermore, the forces are
described by the Hertz contact force in the given velocity range as the surface force is negligibly
small compared with the compressional force exerted in response to the impact.

We found that there is a transition from the Hertz contact force to the JKR contact force
when the surface energy of nanoparticles experiencing the edge contact is increased. The strongly
adhesive nanoparticles have impact forces that are in good agreement with the JKR contact force.

The mutual contact surface area for the weakly adhesive edge contacts expands qualitatively
in the same manner of the Hertz contact model, which is essential to the nonlinearity in the
impact forces mentioned above. However, in the edge contact case, the Hertz contact model
underestimates the contact radius data by 5–30%, depending on the sizes of the nanoparticles.
The discrepancy between the force and contact radius indicates that the continuum contact theory
does not consistently predict the contact force and radius of colliding small nanoparticles at
a time.

Contrasted with the edge contact, the impact on the facets causes dynamic properties to
considerably deviate from predictions of the Hertz contact theory. This facet contact yields a
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Table 2. Contact model for average impact forces obtained for our nanoparticles.

crystalline nanoparticle
amorphous
nanoparticle edge contact facet contact

weak surface energy (cξη = 0.2) Hertz Hertz/DMT linear
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

strong surface energy (cξη = 1) — JKR —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

linearly increasing force with increasing overlap because the mutual contact surface area for that
contact does not expand at all as long as they elastically collide.

For a system in which orientation of the nanoparticles cannot be controlled, the possibility
of precise facet contact is not high. Overall collisional behaviour of the nanoparticles is thought
to be dominated by edge contact; hence, Hertz contact theory is valid in this regard. However,
a crystallographic orientation-controlled system [52–54] may have to consider the non-Hertz
interactions we have demonstrated if the nanoparticles are compelled to impact on facets together.

Additionally, collisions of weakly adhesive amorphous nanoparticles, which have a rather
spherical shape, were simulated to examine the influence of facet-free surface structure. Their
loading forces are also described by the Hertz contact force. In spite of the fact that the impacts
induced small permanent deformation on the mutual contact surfaces for the given velocities, the
contact radius data of the amorphous nanoparticles are closer to the Hertz contact radius than
those of the edge contacts.

The nonlinear contact forces shown in our simulations consistent with the Hertz contact model
suggest that a one-dimensional chain of nanograins may allow us to observe propagating non-
dispersive compressional waves, as confirmed in particulate media [10,11]. The nonlinearity
found in our nanoparticles would open up possibilities of potential applications at the nanoscale
that utilize the wave propagations for impact transmission [55] and impact mitigation [56–58].

The impact forces of purely repulsive nanoparticles achieved by the WCA potential and
the weakly adhesive nanoparticles agree only if the edge contact occurs. For the facet contact,
the exclusion of the adhesion between nanoparticles dramatically changes the force, and large
deviations in forces from the weakly adhesive contacts were found. The use of the repulsive
nanoparticles may result in some unrealistic dynamical phenomena caused by the inconsistent
force if the facet contact occurs.

Finally, we summarize the contact models in table 2 for our crystalline and amorphous
nanoparticles, based on their average impact forces in the loading phase.
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Appendix A. Calculation of impact force
An impact force Fξη acting on the mutual contact surfaces formed between two nanoparticles
ξ and η in contact is computed by summing the individual interatomic forces fij = −∇V(rij) for
a pair of atoms i and j that are positioned in separate nanoparticles ξ and η, respectively. The
expression for the force Fξη is given by

Fξη =
∑
i∈ξ

∑
j∈η

fij. (A 1)
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Depending on a choice from the potentials considered and the separation between the
nanoparticles, the force fij determined leads to compressive or tensile loads Fξη that cause
deformation of the nanoparticles during a head-on collision.

The normal component FN of the impact force Fξη is obtained in such a way that FN = Fξη ·
dξη/|dξη|, where dξη is the instantaneous centre-of-mass distance of the colliding nanoparticles ξ

and η in a direction parallel to a line segment between the centres of the colliding nanoparticles.
Although the direction of dξη is initially aligned with the z-axis, thermal vibrations, slip and
rotation that break the reflectional symmetry of the system frequently result in a small deflection
of the contacting nanoparticles. The direction of dξη during and after the collision does not
necessarily match the z-axis, accordingly.

Ensemble averaged normal force 〈FN(δ)〉 at an overlap δ is computed from a set of normal
forces {Fk

N} in an interval [δ, δ + 
δ) by

〈FN〉 = 1
K

K∑
k=1

Fk
N . (A 2)

The k and K denote the kth initial condition and the number of simulations carried out for a
given impact velocity, respectively. We introduce a dimensionless force 〈̃FN〉 := 〈FN〉/2πγ R∗, and
it is used to show the nanoparticle impact force. The quantities R∗ and γ , respectively, stand for
reduced radius and surface energy of nanoparticles, whose definitions are given in appendices C
and D.

Appendix B. Point of contact
Owing to the surface roughness of the nanoparticles considered, they are far from perfect spheres
whose geometries are characterized only by their radius. To compare with continuum contact
models for contacting elastic spheres, the radii of the nanoparticles must be obtained. We provide
a method to compute the radius R of a nanoparticle averaged over N simulation runs as follows.

When two identical adhesive nanoparticles approach one another, atoms on their surfaces
initially feel attractive forces. Further approach switches the forces from attraction to repulsion.
We define the switching point as the onset of contact of individual atoms. Upon the very first
contact at time t0, the radius Rk for a particular simulation k is defined by Rk := |rcm

ξ (t0) −
rcm
η (t0)|/2, where rcm

ξ ,η represent the centres of the nanoparticles ξ and η. It follows that the

average radius is described by R = (1/K)
∑K

k=1 Rk for K simulations performed with different
initial conditions.

With the average radius, an instantaneous overlap at time t is now defined by δ(t) := 2R −
|rcm

ξ (t) − rcm
η (t)|. Note that this definition could result in negative overlap values if atomic ridges

formed on the surfaces come into contact.

Appendix C. Hertz Law
Hertz derived a normal compressive force FH between two quasi-statically contacting elastic
spheres that have smooth surfaces [2,59]. The force is expressed in terms of overlap δH = (2R − d)
for two identical spheres of diameter 2R and centre-to-centre intersphere distance d under
compression,

FH = κHδn
H, (C 1)

where n = 3/2 and κH = (4/3)E∗R∗1/2. The reduced Young’s modulus is E∗ = E/[2(1 − ν2)] with
Young’s modulus E and Poisson ratio ν. The reduced radius is R∗ = R/2 for identical spheres
of radius R. The contact force grows nonlinearly with increasing overlap. The underlying
mechanism that yields the nonlinearity is the varying mutual contact surface area between the
spheres as a function of compression. The shape of the contact surface in the theory is assumed
to be a circle with radius aH, from which its area is πa2

H. General contact surface shapes and
their resultant contact forces including Hertz force are discussed in [60]. The geometrical relation
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Figure 9. A simulation model of contacting blocks used to estimate the (100) surface energy γ .

between the displacement and the contact area under compression gives aH = √
R∗δH. Hence, the

contact area expands in proportion to the square root of the overlap
√

δH. The relation between
the contact radius and force is described by

a3
H = 3R∗

4E∗ FH. (C 2)

Appendix D. Surface energy and adhesive contact models
There are a number of adhesive contact models based on the elasticity theory, for example, JKR
[39], Maugis-Dugdale [43], DMT [40] and Bradley models [61]. These models may suitably be
chosen for specific materials by means of a dimensionless transition parameter λ, introduced by
Maugis [43] by modifying the Tabor parameter [42].

λ = 1.16

(
R∗
γ

E∗2z3
0

)
. (D 1)

In this equation, work of adhesion 
γ = 2γ is needed to create a new surface, surface force range
z0, E∗ reduced Young’s modulus, and R∗ reduced radius are used. We compute the transition
parameter to identify a suitable adhesive contact model for our weakly and strongly adhesive
nanoparticles. To this end, we need the surface energy γ for both nanoparticles.

The surface energy for our nanoparticle is estimated by additional MD simulations for the
(100) surface of an fcc crystal. The energies of two identical blocks U1 and U2 are independently
determined by performing energy minimization. Now, the two blocks are placed such that their
(100) surfaces are in the equilibrium position, and this allows them to interact each other via a
given potential. The energy of these blocks U12 is now lower due to the presence of the attraction
through the (100) surfaces. The energy difference per unit area gives the surface energy γ of the
(100) surface of area A from the following equation (figure 9). Q2

γ = U1 + U2 − U12

(2A)
. (D 2)

The surface energy γ = 0.038ε/σ 2 in the weak attraction case, c12 = 0.2, is obtained from our
simulations. The transition parameter computed by equation (D 1) is λ = 0.04 with z0 = 1.468σ ,
which is the equilibrium position for the LJ potential in equation (2.1). According to the adhesion
map [44], this parameter value suggests that the DMT model or the Hertz model may be a suitable
model for the contacting nanoparticles with the low-surface energy (table 3). Q3

Likewise, the transition parameter for the strongly adhesive nanoparticles is computed.
The surface interaction between the nanoparticles is governed by the standard LJ potential
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Table 3. Transition parameter.

attraction strength surface energy transition parameter
c12 γ (ε/σ 2) λ

0.2 0.038 0.04
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.0 1.014 0.35
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equation (2.1). The surface energy γ = 1.014ε/σ 2 obtained by the simulation method stated above
yields the transition parameter λ = 0.35, assuming z0 = 1.12σ . In the adhesion map, this value lies
in the intermediate zone between JKR and DMT models [44].
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