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Abstract – We develop new analytic descriptions for solitary waves (SWs) and SW-like objects
in the non-integrable and strongly nonlinear β-Fermi-Pasta-Ulam-Tsingou (β-FPUT) system for
various strengths of the harmonic term in the potential. We then show that that the collision of
identical solitary waves in the decorated β-FPUT chain can lead to the formation of one or more
long-lived localized nonlinear excitations (LNEs), thereby suggesting that these systems allow
engineering of preferential energy distribution over extended times.
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Introduction. – The Fermi-Pasta-Ulam-Tsingou
(FPUT) chain held between fixed end walls was examined
in the weakly nonlinear regime in 1955 [1]. In this
system, masses are connected by nearest-neighbor springs
where the springs are characterized by quadratic, cubic
(α-FPUT), and/or quartic (β-FPUT) interactions. The
original study [1] showed that there was an apparent
lack of equipartitioning of energy at late times when
harmonic modes were activated as initial conditions.
That equipartitioning was achieved was later settled by
Livi et al. [2,3], and others [4–12]. In 1965, Zabusky
and Kruskal [13] argued that the α-FPUT system in the
continuum limit could be framed as a Korteweg-de Vries
problem (an integrable system) and should admit solitons.
Study of solitons using various integrable systems has
since received attention [14–17].

Much less is known about the dynamics of the β-FPUT
chain in the strongly nonlinear regime where the coefficient
of the harmonic term is very small compared to the coef-
ficient of the nonlinear term in the potential [18–25]. This
regime has been extensively probed in recent years for the
intrinsically nonlinear Hertz potential in the context of
granular systems [26–31] and for the FPUT system [25].
An interesting possibility in this regime concerns a ten-
dency to temporarily localize excitations. We systemati-
cally address the energy localization behavior in the fully
nonlinear and strongly nonlinear regimes in this letter.

We first briefly discuss the properties of and then char-
acterize the solitary waves (SWs) that develop in the fully

nonlinear regime. This is followed by a discussion on the
SW-like objects as a function of progressively stronger har-
monic interactions. We next focus on how energy localiza-
tion happens due to interactions between the SWs, and
propose new analytic descriptions of the SW itself and
of the SW collision problem to describe the physics asso-
ciated with the energy localization. We show that such
collisions can lead to localized excitations in the collision
region. The effects of inserting appropriate “decorations”
in the chain are then discussed. We suggest that it may
be possible to prepare one or more energy traps, which
can hold a substantial amount of the total energy of the
system for extended times. Finally, we address the issue of
trapping for weakly harmonic interactions in addition to
the strongly nonlinear interactions. We contend that dec-
orations can be invoked to substantially alter mechanical
energy distribution in strongly nonlinear β-FPUT chains
for extended times [32].

Model and calculational details. – The Hamilto-
nian of the system is given by H =

∑N−1
i=1 [p2

i /2mi +
V (|xi+1 − xi|)], where we use the notation

V (|xi+1 − xi|) =
α

2
(xi+1 − xi)2 +

β

4
(xi+1 − xi)4. (1)

Before proceeding further, we note that in the original
FPUT work and in most subsequent works, α and β were
used as coefficients of the cubic and quartic terms in
V (|xi+1 −xi|), respectively, and that the coefficient of the
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quadratic term was set to unity. In those works, the coef-
ficients of the nonlinear terms were � 1. Here, however,
we will be studying the strongly nonlinear regime. Our
unconventional choice of parameters in eq. (1) is therefore
due to our natural need to have a coefficient associated
with the quadratic term that can be varied.

We let the number of particles N = 1000, 500 or 100
depending upon the calculations involved in the simula-
tions. The particle masses are set to unity henceforth
except at the two ends, where x0 = xN+1 = 0 at all times
(effectively making their masses infinite). The simulations
below have been carried out using a velocity-Verlet inte-
gration algorithm [33]. The bond length, which only sets
a minimum of the energy scale, has not been explicitly
used as a parameter but this means that α and β set the
energy scale of the system. In most of our integrations,
the time step was Δt = 10−6. We have also used Δt as
small as 10−10 and others in between to make sure our
choice of time steps incurs negligible roundoff error. For
Δt = 10−6, we typically have made runs across ∼ 109 to
∼ 1010 time steps. The typical energy accuracy we have
managed to maintain is ∼ 1 part in 107.

As we shall see below, we will use SW collisions in pris-
tine and in decorated chains to realize energy localization
in the strongly nonlinear FPUT system. The decorations
in our studies are achieved by altering one or more springs
such that they can oscillate at higher frequencies than oth-
ers when excited. The decoration will be defined at a loca-
tion where the potential is V ′(xi −xi+1) ≡ κiV (xi −xi+1).
Observe that similar dynamics can be obtained by varying
the masses of the particles as well. One simple way to dec-
orate would be to insert a “wall” in the potential energy
located in the center of the chain by setting κ50 = κ51 = 2
and κi = 1 otherwise. Typically we will use wider traps,
e.g., κi = (1.00, . . . , 1.00, 1.25, 1.50, 1.75, 2.00, 2.00, 1.75,
1.50, 1.25, 1.00, . . . , 1.00) for 1 ≤ i ≤ N −1 to insert a dec-
oration at the center of the chain with peak at particles
50, 51. Various other geometries for this trap – potential
wells, slower increase/decrease in the parameter κ, etc. –
may also be of interest. It is important to observe, how-
ever, that if the trap region is long enough, then the system
will try to make a SW in that region, which could suppress
the tendency to form a LNE. Likewise, single impurities
are too narrow to serve as effective decorations given that
the SWs have a spatial extent associated with them. We
find that a typical decorated region of 8 masses is the best
for our studies. We further note that creating decorations
of decreased κ causes energy to be trapped outside these
regions and hence has not been explored further here.

SWs in the strongly nonlinear β-FPUT chain. –
Relatively few works address the propagation of an exci-
tation in the strongly nonlinear regime of the β-FPUT
chain [18–21,34]. We studied the time evolution of a
δ-function velocity perturbation of magnitude vI initiated
at time t = 0 at the center mass of the chain with the time
evolution of the pulse dictated by the Newton’s equations.

1600 1400 1200 1000 800 600
t

0

5

10

K
i

10-4 (a)

1600 1400 1200 1000 800 600
t

0

2

4

6

K
i

10-4 (b)

1600140012001000 800 600 400
t

0

1

2

3

K
i

10-4 (c)

1800 1600 1400 1200 1000 800
t

0

2

4

6

8

K
i

10-5 (d)

Fig. 1: (Color online) Kinetic energy of the propagating pulse
taken as a function of time as the wave passes through a par-
ticle far away from impulse initiation (see text), (a) α = 0.01,
(b) α = 0.03, (c) α = 0.05, (d) α = 0.10 above. The second
and the following peaks form because of the rebound effect of
the perturbation grain at the initiation point, almost immedi-
ately after the impact. The wide separations in (a) are due to
its slower speed.

We set N = 1000 in these studies. Figures 1(a)–(d) show
the propagating pulse by tracing out the kinetic energy
vs. time behavior 300 particles from the initiation point
in the chain for β = 1 and α = 0.01, 0.03, 0.05 and
0.10. The SW is clearly seen for α = 0.01 or less (not
shown), whereas the development of an oscillatory tail is
already evident for α = 0.03 (figs. 1(a) and (b)). The
tail becomes an essential feature of the propagating com-
pression pulse with increasing α. Here by compression we
mean that the leading edge of the pulse started out as
a compression between the mass which was assigned the
δ-function velocity vI and its immediate neighbor in the
direction in which the pulse was applied. The SW has a
constant time-averaged width, as seen in the Hertz sys-
tem [35]. Our results are consistent with the SW velocity
vs ∝ v

1/2
I , as expected based on simple scaling arguments

(see [36]). Observe that a compression pulse could also
result in an opposite propagating dilation pulse. We find
that for the β-FPUT chain, the dilation pulse is of iden-
tical strength to the compression pulse and moves in the
opposite direction (not shown in fig. 1).

The intrinsically (α = 0) and strongly nonlinear
(α → 0) regimes hence exhibit SW and SW-like propa-
gation. These waves are significantly different than in the
regimes where α is significant. The velocity of the fully
formed wave is measured in units of number of particles
traversed/unit time. The leading edge of the pulse velocity
for α > 0 is measured for all cases and for the lengths of the
runs. We find that this velocity (also called vs) increases
as α2 for small enough α (see fig. 2) and crosses over to

√
α

when α is sufficiently large (β = 1, α > 2), as expected
for sound propagation. We are unable to identify an
analytic expression that will capture the results presented
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Fig. 2: (Color online) Speed of the leading edge of the pulse
vs vs. α for several different initial impulse values, where vI

varies between 0.3 and 3.0 from the lowest to the highest in
intervals of 0.1.

in fig. 2.
The properties of the SW like objects in fig. 1 are com-

plex enough that a complete characterization is yet to be
made. We define the height of the leading edge of the
traveling pulse at any instant as the value of its kinetic
energy at the peak, normalized by the total energy of the
chain: that is, h(t) = hi(t) = Ki(t)

Etot
, when the wave has

its peak in particle i. Since the system consists of discrete
particles, the wave frequently passes between particles and
the kinetic energy appears to momentarily decrease. For
simplicity, we take the measurements of height when the
wave’s peak is on a single particle. Figure 3 shows how the
height of the wave changes shortly after the perturbation.
Here the velocity perturbation has taken place at parti-
cle 600. As expected, with decreasing α the wave becomes
SW-like and has a constant height. With larger α, h(i)
begins to decay and the wave begins to disperse in space
as it travels since the wave is becoming more acoustic in
nature.

In this large-α regime the entire wave pulse including
the tail may be closely approximated by a Bessel function
(see the solution in [37]), vi(t) = Jμ(κt), where κ ≈ √

8α
and the parameter μ determines the time ti at which the
leading edge of the wave reaches particle i by ti ≈ μ

κ . As
α increases the error in the approximation for ti becomes
smaller. We define ti as follows: let ti,1 be the time at
which the kinetic energy of particle i reaches 0.1% of its
maximum value, and let ti,2 be the time at which it reaches
its first minimum; then ti = ti,1+ti,2

2 . The motivation for
this definition is the slight asymmetry of the leading edge.

The peaks of the tail have a full width at half-maximum
W ∝ 1

α2 . Furthermore, the height of the leading edge
may be approximated by a modified Bessel function of the
second kind h(t) = Kν(t) as the wave travels [38]. This
is an empirical result. Figure 3 shows the height of the
leading edge for several small values of α. The modified
Bessel approximation of the second kind well describes
the behavior of the wave for larger values of α; and for
extremely small α (less than ∼ 0.05) it is clearly more
reasonable to treat the height of the leading edge as a
constant. The fitted modified Bessel function of the second
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Fig. 3: (Color online) Height of the leading edge (normalized ki-
netic energy) vs. particle number for several different α values,
showing the decrease in height (and therefore dispersion) of the
wave shortly after the impulse as the system tends toward the
acoustic limit. Top to bottom: α = 0.02, 0.04, 0.06, 0.08.

kind is shown for the α = 0.08 case; the function plotted
is approximately 3.6 × 10−5K0.62(0.003(z − 600)). Here z
is simply a continuous variable which interpolates through
the discrete points i.

Now for very small values of α it is reasonable to guess
that the functional form of the leading edge of our wave
should be about the same as that in a fully nonlinear sys-
tem. The FPUT system of course does not admit a SW
solution with an exact analytic form. However, we have
been able to find an approximate solution. Inspired by
earlier work by one of us [28,39] we tested functions of
the form sech(az), sech2(az), etc. We found that a so-
lution of the form sech2(az + bz3) is able to accurately
describe the properties of the SW seen in the fully nonlin-
ear (α = 0) case of the β-FPUT chain. Figure 4 shows this
function superimposed over the actual data, as well as its
first several derivatives. In the next section we shall pro-
vide further verification that this function is a reasonable
approximation.

Virial theorem, energy localization and SW col-
lisions. – By invoking the virial theorem in mechanics for
a system described by a potential V ∼ rn, where r is the
inter-particle distance and n = 4, it can be readily shown
that 〈K〉 = 2〈V 〉, where 〈. . .〉 denotes time average, K is
the total kinetic energy, V is the total potential energy,
and the average is done over a time interval that is suffi-
ciently large (i.e., ideally goes to infinity) [40]. Further,
since the β-FPUT system is expected to eventually reach
equipartition [41], the same relationship between 〈K〉 and
〈V 〉 should be valid in equipartition as well. It would be
reasonable to infer then that the fully nonlinear FPUT
system has some preference for moving energy (such as
via SWs) as opposed to localizing energy. On the con-
trary in a fully harmonic system (β = 0), 〈K〉 = 〈V 〉) and
hence localized harmonic excitations are easier to form.
We believe this is why forming localized excitations can
be challenging in these strongly nonlinear systems.

Interestingly, if the dynamics of the β-FPUT chain are
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Fig. 4: (Color online) (a) The leading edge of the wave as it passes through a single particle (kinetic energy vs. time); sech2

(az + bz3) fit overlaid atop actual data (see text). (b)–(f) Second and higher derivatives of the function.

Fig. 5: (Color online) Kinetic energy vs. space and time, show-
ing creation of NLEs in the center of the chain in each case.
(a) Odd SW-ASW collision; v100 = v400 = 0.4. (b) Odd
SW-SW collision; v100 = −v400 = 0.4. (c) Even SW-SW
collision; v100 = −v401 = 0.4. (d) Even SW-ASW collision;
v100 = v401 = 0.4. Gray scale: 10 log10(KE).

initiated with the stretch or squeeze of a bond or bonds
within the chain, the system is unable to quickly disperse
all the stored energy to restore 〈K〉 = 2〈V 〉. More remains
to be done to understand the details of the long-time decay
of LNEs for α = 0 and for α > 0. Energy leakage from a
LNE is discussed in ref. [25].

The nature of the energy leakage from a LNE is de-
pendent on α. We first describe below the α = 0 case.
For simplicity we study collisions of SWs that carry the
same energy and hence move at equal speeds and meet
at the center of the system, whether that turns out to
be on a mass or a bond. This is what we show via ki-
netic energy vs. time and space plots in fig. 5 as described
in the caption. In (a) a SW from below and an ASW

from above meet at a mass, thus pushing the mass in the
same direction with twice its usual amplitude and local-
izing energy in the two bonds connected to the central
mass and the mass itself to generate a LNE. In (b) two
SWs meet in a central mass, squeezing two adjacent bonds
connected to this mass and localizing some kinetic energy,
thereby initiating oscillations to make a LNE. In (c) two
SWs meet in a central bond and squeeze the same to ini-
tiate a LNE. In (d), a SW and an ASW meet at a central
bond, thereby displacing the bond in one direction and
generating a weak LNE.

These collisions can be used to verify the accuracy of
the sech2(az + bz3) solution for the displacement of the
SW from the previous section. For vi = 0.4, we use
0.2328 sech2(0.7884z + 0.1056z3). We find that as α in-
creases, b/a becomes smaller until we reach a point where
α is large enough such that the above function is no longer
appropriate. Each of the collisions have been repeated us-
ing sech2(az + bz3) waves rather than the natural FPUT
SWs, in order to verify that the energy content remain-
ing in the central bond after the collision is the same and
that the LNE formation is unaffected. Figure 6 shows the
result of the first collision (a). We have obtained similar
results in the other three cases and, therefore, they are not
shown.

Now let us return to the original subject of SW collisions
in the FPUT system. Since we are interested in generat-
ing strong localized excitations in this system, we focus on
the details of the SW-SW collision where the SWs meet
at a bond and initiate a LNE (once again (a) from above).
It is reasonable to expect that sufficiently large amplitude
of the colliding SWs would raise the frequency of oscil-
lations in the bond of interest and generate a long lived
LNE and this is what we see. As discussed in [25], higher
frequencies take longer to disperse. Hence we would ex-
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Fig. 6: (Color online) The total energy located in the cen-
tral bond and its connected particles after an odd SW-ASW
collision (as per (a) of fig. 5). The energy has been cal-
culated by summing the kinetic energy of the central par-
ticle with the potential energies of its connected bonds,
Ec = 1/2mv2

c + V (|xc − xc−1|) + V (|xc − xc+1|). The solid
line represents the result of the same collision as performed
with sech2(az + bz3) functions rather than δ-function velocity
perturbations (dashed line). The error is of the order of 1 part
in 100.

pect the LNEs thus made to be more stable. We do not
study the collisions involving SWs and ASWs when they
carry unequal amounts of energy here. It turns out that
energy localization via collisions of SWs and ASWs is seen
in such cases as well with the main difference that the high
frequency oscillations that result in such collisions tend to
carry some momentum and hence show some drift.

Stiffer bonds would need sufficiently large amplitudes of
stretch to get excited and once appropriately perturbed,
they tend to disperse their energy slowly [25]. Consistent
with this observation, our studies show that the SWs have
a tendency to get reflected by stiffer bonds. To efficiently
trap energy in regions where SWs meet, we hence stiffen
the bonds gradually in the region where the SWs meet.
The κ values discussed in the model and calculational de-
tails section are for the bonds in this region.

Wave collisions for α �= 0 in the β-FPUT chain.
– Studies of the β-FPUT system using particle dynamics
simulations have earlier shown that α > 0 tends to stabi-
lize the LNEs in the sense that they decay more slowly [24].
For this reason our simulations use a value of α = 0.1 in
the studies described in fig. 7. For α = 0.1, the perturba-
tions initiated at time t = 0 resemble a SW with an oscil-
latory tail as shown in fig. 1. We would loosely describe
these as SWs and for the most part ignore the oscillatory
tails, which lead to some bending of the SWs in space and
time (see fig. 7(a) between t = 0 and t ≈ 200 for exam-
ple). As alluded to above the decorated bonds which are
placed between masses 47 and 54 allow for leaving some
energy in the decoration and backscatters the rest as seen
around t ≈ 200. Such backscattering is seen many times
after that in fig. 7(a). In fig. 7(d) we may see that the
first SW leaves approximately a fifth of its energy in the
trap; the second wave arriving shortly thereafter leaves a

Fig. 7: (Color online) (a), (b), (c): kinetic energy vs. space
and time for the three types of traps described in the text.
Darker colors correspond to higher energies with black being
a kinetic energy magnitude of 0.01. (d), (e), (f): Ein/Eout

denote the fraction of the total energy vs. time within the
decorated regions of (a), (b), and (c), respectively (see text).

similar portion. Notice the visible slowdown in the speed
of the backscattered SW at t ≈ 1000. Once the energy is
in the trap its decay is very slow. The initial stages of the
decay of a LNE are addressed in ref. [25]. However, later
stages are not well understood. It is, however, seen that
the LNE tries to emit stable SW-like structures and has a
mixed degree of success in doing so, emitting intermittent
unstable propagating structures and stable SW-like struc-
tures at others. The rest of its energy stays within the
decorated region and continues to reflect back and forth
across the interior boundaries of the decoration, causing
localization. The decay of the LNEs are hence affected by
the boundaries. The time evolution of the LNE is suffi-
ciently noisy that the form of its energy decay is not clear
from our studies here. The LNEs live for the entire length
of our simulations in every case we studied.

It is instructive to examine the interaction of a SW with
the decoration rather than that of two equal and opposite
SWs. Figure 7(b) shows an example of this. Here we take
a system which has precisely the same parameters and ini-
tial conditions as that of the system in fig. 7(a). However,
we place three identical decorations instead of one, each
region being separated by two particles. These decorations
are placed at particles 37-44, 47-54, and 57-64. In fig. 7(b)
we can see a SW encounter the decorated region and then
get largely entrapped by the other end of the trap.

The central decoration in fig. 7(b) traps the energy
that managed to penetrate the first decorated region but,
as expected, the magnitude of energy localization is less
than that in the decorated regions outside the central re-
gion. Thus, multiple decorations can indeed be invoked
for localizing significant amounts of energy for finite times
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Fig. 8: (Color online) Time-averaged energy present within the
trapping region for various values of α and v0. Inset: α value
corresponding to the maximum energy trapping vs. v0.

in the β-FPUT system. For more clarity we plot the total
amount of localized energy (Ein/Eout) in the decorated
regions in this system as a function of time t in fig. 7(e).
Nearly all this energy ends up being trapped initially. As
expected, this energy slowly leaks out to the rest of this
system as it did in the system in fig. 7(a), the linear fit to
this decay over short times has the slope −4.9±0.4×10−5

in units of inverse time, which is larger than that in
the single-decorated-region study above. Thus, increas-
ing the number of decorations appears to raise short-term
localization but energy attenuation from these regions
also increases. Regardless, it is encouraging to see that
the decorations can effectively localize energy in β-FPUT
systems.

Is it possible to extend the energy localization problems
when arbitrary perturbations are initiated into the system
with one or more decorated regions? To answer this we
set up one decorated region between masses 47 and 54 in
a chain where each mass is given a velocity perturbation
with magnitude uniformly randomly distributed between
v0 = −0.1 and 0.1. The plot of kinetic energy vs. space
and time in fig. 7(c) shows that even for highly random
perturbations one sees energy localization in the middle
of the system, albeit localization which carries low energy
and fluctuates significantly throughout the run as evident
from fig. 7(f).

A detailed analysis of the localization seen in fig. 7(a)
is shown in fig. 8. Here we measure the energy within the
decorated region described by Ein/Etot for various values
of α and v0 with β = 1. The inset in fig. 8 reveals that
αmax = Av0 + B, where αmax is the value of α which
maximizes localization for a given v0 and A = 0.43 ± 0.06
and B = −0.014 ± 0.004 in system units. Smoothing has
been performed on this data to better understand the de-
pendence of Ein/Eout on α. The three main effects to
note from fig. 8 are that 1) weak SWs tend to trap energy
only within a small range of α, that 2) strong SWs trap
a smaller proportion of their energy but are less sensitive
to α, and that 3) the α value where maximum trapping
occurs increases with the SW energy.

The three observations above can be related together as
follows. First, we see from fig. 8 that in the v0 = 0.10 case
trapping is significant and occurs only for a narrow range

of small values of α. In this case there is almost no wave
train and the object which encounters the trap is a single
pulse with small amplitude. If we suppose that a given
trap only traps waves at a certain critical amplitude, then
it is quite easy to explain the rest of fig. 8: that the larger
values of v0 and α create waves which mostly pass through
the trap, and that a portion of their wave train which
matches most closely to what the trap prefers remains in
that region.

As α increases for a wave with small v0, we would then
expect to see that energy trapping would vanish as energy
moves from the leading edge of the wave packet to the
wave train causing every peak in the object to decrease
below the critical amplitude – and this is exactly what we
observe in fig. 8.

For a wave which has large v0 we would expect to see
almost no trapping for small values of α as the SW would
have amplitude larger than the critical value. Further-
more, we would expect that, as α increases causing the
leading edge of the wave to donate its energy to its wave
train, energy trapping would occur at every part of the
wave train that is close to the critical amplitude. And
again this is exactly what is seen in fig. 8 as the range in
α over which energy trapping occurs is wider for larger
v0. Thus, using adjacent multiple traps, as in fig. 7(b),
is likely to be an effective strategy to localize impulses in
β-FPUT chains. Use of sets of such traps could provide a
way to accomplish preferential energy distribution and lo-
calization over extended times in strongly nonlinear, non-
integrable systems such as the one considered here. We
envision that similar trapping mechanisms can also be in-
voked to realize energy localization in interacting strongly
nonlinear, non-integrable systems such as quantum spin
chains which have been of much recent interest [42].

Summary and conclusions. – In this letter we have
examined how collisions between SWs in the strongly non-
inear β-FPUT system naturally create LNEs. We have
proposed an analytic solution to describe the SWs and
have demonstrated that the solution correctly describes
collisions between SWs. The role of a weak harmonic term
in the β-FPUT chain has been studied and we show that
LNEs can be sustained for extended times for small val-
ues of α. Long-term energy localization in a chain with
the right distribution of extended traps for various values
of α is also possible as discussed above and is a natural
consequence of the interactions between the SWs among
each other and the traps in the β-FPUT system. It is
hence conceivable that strongly nonlinear, non-integrable
systems such as the β-FPUT system can be potentially
explored for applications in mechanical energy harvesting.
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