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Strong plastic deformation and softening of fast colliding nanoparticles
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Nanoparticles, with sizes ranging between 1 and ∼102 nm, show dynamical properties distinctly different
than those of bulk materials. Due to their large surface area to volume ratio, their properties often depend on
length scales. We investigate the size and the collision velocity (vcoll) dependence of the coefficient of restitution
(COR) for nanoparticles made of a face-centered cubic lattice of Lennard-Jones atoms via nonequilibrium
molecular dynamics simulations. A sharp crossover between elastic collision and plastic collision occurs when
vcoll = vY , where vY is the size-dependent yield velocity. For high-collision velocities the COR ∼ v−α

coll, α ∼ 1.
This result is in agreement with recent small system simulations and with experiments and is distinct from the
elasticity-theory-based result for COR for inelastic collisions which behaves as v−α

coll, with α = 1
4 . We find that the

size-dependent critical vY approaches the theoretical constant value for macroscopic spheres as our particle sizes
grow. Possible insights into the origins of α ∼ 1 and the size dependence of the yield velocity are suggested.
The work also suggests that sufficiently fast moving nanoparticles traveling through vacuum could be sticky and
hence could be of potential interest in many applications.
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I. INTRODUCTION AND BACKGROUND

The coefficient of restitution (COR), originally introduced
by Newton [1], concerns the dynamical process of collision
between two elastic bodies. It quantifies, in a coarse-grained
way, the loss of kinetic energy in the observed degrees
of freedom due to the simultaneous interactions of many
unobserved degrees of freedom. Hence, the COR between an
object and a rigid wall is defined as the ratio of the object’s
velocity after collision to the velocity prior to collision.

Collision phenomena have been extensively studied. For
example, understanding the role of collisions in granular flow
is crucial to the study of the dynamics that determines the
flow patterns in fluidized beds [2]. In astrophysics, collisional
processes influence the growth of dust aggregates and the
formation of protoplanetary disks [3]. Nanoscale collisions are
used to probe the chemical composition of nanoparticles [4].
Many studies that describe the collision between two macro-
scopic elastic objects have been reported. A nondissipative
and nonadhesive macroscopic model to describe the collision
of an elastic object is typically based on the Hertz contact
law, which describes a highly nonlinear force-displacement
behavior of two spherical elastic bodies as they come into
intimate contact [5].

When two elastic solid spheres collide gently, elastic
energy initially gets stored during the loading process and
is subsequently released during the unloading process. There
is no net energy loss in the loading-unloading sequence
associated with the collision and thus the COR is unity.
However, when the collision is at a high enough velocity,
the center-of-mass motion and the atomic scale structure and
dynamics become related. Hence the dependence of the COR
on the collision velocity ends up being very different than
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the elasticity-theory-based result. This study focuses on the
dynamical processes associated with collision at both the
center-of-mass and molecular levels by considering particles
that are sufficiently small.

Let us first briefly review the history of studies of COR
for the elastic regime collisions of macroscopic spheres which
repel upon contact according to the Hertz law [5]. A macro-
scopic model for sphere-sphere collisions allowing for energy
dissipation can be derived by assuming that the spheres are
composed of viscoelastic materials [6]. Viscoelastic collisions
involve a relative-velocity-dependent term in the interaction
potential and result in energy dissipation. Several other models
incorporate dissipation mechanisms that yield a dependence
of the COR on collision velocity, vcoll (see Ref. [7]). The
viscoelastic Hertz models yield 1 − e ∝ v

1/5
coll, e being the

COR, which is in good agreement with the COR obtained via
experiments [6]. A widely used grain-grain interaction model
is due to Johnson-Kendall-Roberts (JKR) [8]. This model
incorporates the adhesive surface energy at the contacting
surfaces. The adhesive energy is important for a small object
because the ratio of surface area to volume is large. A theory
of collision for macroscopic viscoelastic spheres with the
JKR interaction has been recently developed [9]. Besides
the issue of how to describe grain-grain interactions during
collision there is also the matter of the hardness of the material
involved. At sufficiently high collision velocities, macroscopic
elastic spheres tend to deform permanently leaving shallow
indentations on their surfaces. The COR for these processes
has long been shown to behave as e ∝ v

−1/4
coll [10]. This result

is also supported by experiments [11,12].
At the nanoparticle size-scale, recent studies on thin film

deposition of nanoparticles on a substrate have revealed
surprising collisional behavior. The experiments show that
slower moving nanoparticles can be more elastic with respect
to a substrate than faster moving ones. An intriguing feature of
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very low velocity nanoparticle collisions reported recently in
simulation-based studies is so-called “superelastic” collisions
[13,14] where the grains can recoil at a slightly higher velocity
than the original collision velocity. Such behavior is generally
attributed to the conversion of some of the thermal vibrational
energy into the kinetic energy of the center of mass. Large
scale molecular dynamics (MD) simulations of the collision
of two Lennard-Jones (LJ) nanoparticles were performed to
examine their interaction force as well as their COR in collision
regimes accompanied by elastic or small plastic deformations
[15]. Although the MD-based interaction force between the
two particles agrees with the corresponding JKR interaction
force, the COR from the MD simulations is significantly lower
than that from the JKR prediction due to the presence of
additional energy dissipation mechanisms. At higher collision
velocities these particles tend to soften and become more
sticky [16,17]. The COR for these nanoparticles, as reported by
Ayesh et al. [16], shows v−1

coll dependence, which is attributed to
extensive plastic deformation that extends through the whole
nanoparticle. Our nonequilibrium MD-simulation-based study
described below considers nanoparticles that range between
small and those that are large enough to resemble very
small elastic objects. As we shall see, the behavior of the
COR found agrees with and extends upon the observations
made by Ayesh et al. [16]. We observe that even the largest
nanoparticles we can make are far too soft compared to the
macroscopic grains probed via elasticity theory and this is
why our studies do not recover the v

−1/4
coll dependence for

the COR.
Yielding relates to the strength of a material. Hence one way

of approaching the issue of how soft or hard these particles are
is by focusing on the yield velocity. In the case of a material
that experiences collision, the initiation of yielding, described
by yield velocity, vY , is a material-dependent constant for
macroscopic objects. As we shall see, yield velocity for our
smallest nanoparticles (with 603 atoms) is much higher than
that for bulk materials based on macroscopic theory [10],
indicating that these particles can withstand larger velocity
impacts before the initiation of yielding. The yield velocity
for our nanoparticles has size dependence and approaches
the macroscopic yield velocity as the size of the nanoparticle
increases. The numerically obtained COR of Cu nanoparticles
investigated by Han et al. [14] via MD seems to indicate a size
dependence that is consistent with our finding.

Here, we report on collisions of two equal-sized nanopar-
ticles composed of LJ atoms. We present the COR in terms
of velocity ranging from as low as thermal velocity of atoms
at the given temperature to velocity at which fragmentation
of nanoparticles due to collision occurs. The yield of the
particles is found to be particle size dependent. We shall also
present evidence of distinctive permanent deformation modes
for different collision velocities beyond the yield velocity. As
we shall see, the overall trend of the COR in the range is
described by the power law e ∼ v−1.03

coll .

II. METHODS

In keeping with the literature [16] and for the sake of
simplicity, we use the classical MD code LAMMPS, with the
nanoparticles being approximate spheres of radius R made of

TABLE I. The system for simulations: R, cluster radius; N ,
number of atoms per cluster; and Runs, runs at the same velocity.

R (nm) N Runs R (nm) N Runs

1.73 603 100 2.11 1 055 100
2.65 2 093 100 3.71 5 481 100
4.74 11 849 40 7.36 44 403 25
9.50 95 547 15 12.7 224 679 5
16.5 498 959 5 21.6 1 072 241 4

12-6 LJ atoms in a face-centered cubic (fcc) lattice structure.
The atomic potential V (rij ) = 4ε[(σ/rij )12 − (σ/rij )6], where
rij is an interatomic distance between atoms i and j . For
argon, ε = 1.654 × 10−21 J and σ = 3.405 Å and any values
in SI units used in this paper are for argon. The radius
and the number of atoms N in a particle range from R =
1.73 nm, N = 603 to R = 21.6 nm, N = 1 072 241. We set
the cutoff distance rc = 2.5σ for atoms belonging to the same
nanoparticle and set rc = 21/6σ for any two atoms belonging to
different nanoparticles to consider only repulsive interactions
between the clusters. (Results obtained by simulations for
N = 5 481 with rc = 4σ and rc = 6σ for atoms within a
particle agreed within the standard deviation.) The particle is
not a perfect sphere because of the existence of facets arising
from the underlying fcc structure. We placed two identical
nanoparticles with facets facing each other. After creating
the particles, they were equilibrated in a canonical ensemble
(NV T ) for more than 10 000 MD steps (time step dt = 1.08 ×
10−14 s) to set their temperature T = 2.396 K (=0.02ε/kB ),
where kB is the Boltzmann constant, using the Nosé-Hoover
thermostat.

After the equilibration, we give equal and opposite center-
of-mass velocities to the particles in order to make a head-
on collision (see Fig. 3). During the collision process, we
use microcanonical ensemble (NV E) simulations. The total
energy of the system over the collision stage is conserved to
around 10−5 in relative error. This is achieved for finite cutoffs
by shifting the potential to zero at rc. The collision velocity
vcoll is varied from about 2 m/s (elastic collision regime) to
500 m/s (the maximum velocity at which clusters do not break
into fragments due to collision). In order to quantify errors
in calculated quantities, we perform multiple simulations in
relatively small systems for each collision velocity by setting
different initial thermal velocities. The systems and number of
independent runs carried out for ensemble averaging are given
in Table I.

III. RESULTS

Figure 1 shows the simulation results in terms of the COR
for all cluster sizes and collision velocities. The COR of two
nanoparticles was obtained by varying the collision velocity
vcoll from 2.6 m/s (0.016

√
ε/m) to 517 m/s (3.29

√
ε/m) for

each particle size N ranging from 603 to 1 072 241. For small
collision velocities we find quasielastic collisions as seen in
previous studies [13]. The COR for perfectly elastic collision
is unity. Such an ideal collision is obtained, e.g., by using
Hertzian spheres [5]. There is no energy dissipation during
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FIG. 1. (Color online) Coefficient of restitution between
nanoparticles as a function of collision (relative) velocity. The
onset of plastic deformation (yield) occurs at critical velocity
corresponding to change in slope.

collision; hence the center-of-mass kinetic energy in the
system is conserved before and after collision. Figure 1 shows
that the COR for small collision velocities is close to but
less than unity. At the lowest collision velocities the spread
in the data between runs gets larger due to thermal effects.
This is especially so for smaller particles. In fact, for some
of the smallest clusters, the COR exceeds unity, a behavior
extensively reported on in Refs. [13,14]. While it may appear
from the center-of-mass velocities of the particles that the
particles gain kinetic energy from internal energy [13,14], in
fact, as noted in previous studies, what actually occurs here is
that the thermal fluctuations or the collective oscillations due to
thermal fluctuations give an extra “kick” to the center-of-mass
velocities of the recoiling nanoparticles. As the collision
velocity is increased, the COR stays around unity and then
shows a well-defined “kink” and falls roughly as a power law
in the collision velocity. Moreover, the power law appears to
be the same for all particle sizes. The data can be collapsed
by taking the collision velocity where the kink occurs to be
the yield velocity, vY , and then by rescaling each particle
size’s data by its vY . The velocity where the kink occurs is
indeed the velocity where the onset of plastic deformation
can be directly visualized, for example, by noting that just
past this value a dislocation surface can be found to propagate
through the particle as seen in Figs. 3(a) and 4(a). Hence,
above this critical velocity lies the plastic or inelastic collision
regime defined by the permanent deformation observed after
collision.

The yield velocities for each nanoparticle size are plotted
versus the particle size in Fig. 2(a). Rescaling the velocity of
each particle size’s data by its corresponding yield velocity
produces a collapse of all the data as shown in Fig. 2(b);
showing that the power-law decay of the COR is common
to each nanoparticle size. It is remarkable that even though
the deformation modes can be seen to be quite different
depending on the collision velocity range, the slope of the COR
follows a constant scaling with the collision velocity. The COR
in the plastic deformation regime follows the approximate
power law

e ∝ v−1.03
coll . (1)

(a) (b)

FIG. 2. (Color online) (a) Cluster-size dependence in yield ve-
locity; (b) COR vs collision velocity rescaled by vY (line is a guide
to the eye). The yield velocity for macroscopic spheres is shown as a
dashed red line in panel (a).

For macroscopic spheres, the COR for inelastic collisions
which cause a shallow indentation on a spherical surface is
e ∝ v

−1/4
coll [10]. This has also been confirmed experimentally

[11]. Our simulation results in Fig. 2(b) suggest that the
COR decays with a slope of −1.03 for N between 2093 and
1 072 241. The value of the exponent obtained here agrees
remarkably well with the recent work of Ayesh et al. [16]. Their
experimentally and numerically obtained coefficient of normal
restitution for nanoparticles that collide on a V-grooved surface
at some incident angles shows v−1

coll dependence in the strong
plastic collision regime. Note that the coefficient of normal
restitution in Ref. [16] is defined as the ratio of postcollision
and precollision velocity components perpendicular to the
surface. According to Ref. [18], oblique collisions associated
with the change of normal direction between particles before
and after collision may lower the COR. However it is not the
case here since the normal direction between the nanoparticle
and the surface remains the same. In contrast, our exponent α in
Eq. (1) is larger than that of continuum theories, and hence the
kinetic energy “loss” seen in nanoparticle collisions is much
higher than that for the very gentle collisions of macroscopic
grains. We have carried out preliminary studies on the velocity
dependence of COR for 9-6 LJ potentials. Our results suggest
α is within 2% of that reported here for the 12-6 LJ
potential.

The difference between the two may be due to deformation
modes: the deformation of particles here is large even at the
onset of the plastic deformation [see Figs. 3(a) and 4(a)],
whereas the deformation considered for macroscopic theories
is limited to the vicinity of the contact surface of the two
spheres. The work done to glide part of a nanoparticle along
a lattice plane and to deform the whole nanoparticle along
multiple planes as shown in Fig. 3 is expected to significantly
exceed that needed to make a shallow indentation, and we
believe that this difference leads to a lower COR for the
nanoparticles. This lower COR implies that nanoparticles at
high collision velocity are softer than macroscopic spheres and
could hence be stickier due to the higher energy absorption due
to the extensive particle deformation.
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FIG. 3. (Color online) Deformation modes of two different nanoparticles: (a)–(c) N = 5481; (d)–(f) N = 498 959. The snapshots here
were taken at time τ (τ = 0 when the nanoparticles come in contact.).

(a) vcoll = 31.0 m/s (b) vcoll = 36.2 m/s (c) vcoll = 46.5 m/s

(d) vcoll = 51.7 m/s (e) vcoll = 103 m/s (f) vcoll = 129 m/s

FIG. 4. (Color online) Dislocations in the N = 498 959 particles above the critical velocity vY . In all cases τ = 180 ps. The onset of
permanent deformation is observed in panel (a). The two dislocation planes observed on the surface of the left particle in panel (a) reach the
center of the projected surface approximately 90◦ apart from the contact surface. The number of dislocations increases progressively as the
collision velocity gets higher [see panels (a)–(d)]. A large indentation at the contact surface is seen in panels (d)–(f). Dislocations occur as
bands of slip lattice planes shown in panels (e) and (f), which result in the distorted spheres.
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FIG. 5. (Color online) The rebound velocity vreb is independent
of the collision velocity vcoll above the yield velocity vY .

The power law in Eq. (1) indicates an important dynamical
property regarding inelastic collisions. The rebound velocity
vreb of the nanoparticles is independent of the collision
velocity since a comparison between the definition of COR
e ≡ vreb/vcoll and our COR e ∝ v−1.03

coll in the plastic collision
regime leads to an approximately constant rebound velocity,
vreb. This independence is verified by the approximately flat
region of the rebound velocity above the yield velocity as
shown in Fig. 5. It also means the rebound kinetic energy
remains the same regardless of how fast the nanoparticles
collide. Therefore the entire amount of initial kinetic energy
that is gained from the elastic collision regime, i.e., from
just below vY , is transformed into their internal energy, e.g.,
permanent deformation and thermal energies as the snapshots
of severely deformed nanoparticles are illustrated in Figs. 3
and 4.

Note that at some high collision velocities atoms were
ejected from the clusters [see Fig. 3(f)]. This ejection due
to massive collision energy occurred in nanoparticles that are
for N � 44 403. The kinetic energy of the ejected atoms is
less than 0.2%. Hence ejected atoms do not influence the COR
results reported here.

It is indicated above that the onset of plastic deformation
depends on the cluster size. This is in contrast with the theory
for macroscopic spheres due to Johnson [10] which predicts a
size-independent yield velocity. According to the theory, the
yield velocity vY is described by

1

2
M∗v2

Y = 53R∗3Y 5

E∗4
, (2)

where reduced mass M∗ = M/2 obtained from mass of a
cluster M , reduced radius R∗ = R/2, Y is the yield strength,
and reduced Young’s modulus E∗ = E/[2(1 − ν2)], defined
with Poisson’s ratio ν. The theoretical yield stress for an
ideal fcc lattice is given by Y � G/10, where G is the shear
modulus. Quesnel et al. [19] determined Young’s modulus,
Poisson’s ratio, and shear modulus in the [100] direction for
the fcc LJ solid using MD. Their values E = 61.1ε/σ 3, G =
57.2ε/σ 3, and ν = 0.347 give the yield velocity to be 26.1 m/s
for our nanoparticles when colliding in the [100] direction.

In the MD simulations, as the particle size increases, the
onset of plastic deformation occurs at progressively lower

collision velocities. That the yield velocity shifts lower as the
cluster size increases implies that larger clusters yield more
easily. This was observed in MD simulations of collisions of a
Cu cluster with a surface by Han et al. [14]. In an experimental
study of collisions of an ice cluster on an ice block, Higa et al.
[20] reported size dependence of the yield velocity vY ∝ R−0.5.
It would seem, however, that the yield velocity should be a
size-independent constant for macroscopic spheres since the
ratio of the number of atoms in a cluster and the radius of a
cluster, N/R, remains unchanged. Figure 2(a) displays a clear
size dependence which appears to approach a value near the
approximated macroscopic value as the particle size increases
(26.1 m/s, drawn as a dashed red line in the same figure).
A shear MD simulation study by Horstemeyer et al. [21] on
nano-sized blocks of fcc metal revealed the size dependence
of the yield strength at a low strain rate. Their yield strength
was found to be proportional to d−0.25, where d is the block
size. This power law leads to the size-dependent yield velocity
vY ∝ R−0.625 ≈ R−0.63 of a macroscopic sphere by assuming
Y ∝ R−0.25 in Eq. (2). It gives a fair agreement with our
nanoparticles’ yield velocity vY ∝ R−0.65. That said, further
simulations for larger particle sizes would be desirable to
confirm our understanding.

IV. CONCLUSION

We have studied MD-simulation-based collisions of argon
nanoparticles with appropriate LJ interactions between the
atoms. The clusters range in size from 603 to 1 072 241 atoms
each. We find that at sufficiently low collision velocities the
superelastic effects seen in Refs. [13,14] are observed; below
the yield velocity COR ∼ 1, whereas above the yield velocity
COR ∼ v−1.03

coll , the latter result being consistent with the MD-
based (but much smaller systems) studies and experiments in
Ref. [16]. In addition, we find that the yield velocity shows
the power-law dependence in nanoparticle size and approaches
the constant value by the continuum theory as the nanoparticle
radius increases. Nanoparticles are harder and highly elastic at
vcoll < vY and progressively soften owing to significant struc-
tural changes for vcoll > vY , a phenomenon that is consistent
with the recent experimental observations of Ayesh et al. [16].
The softness and stickiness of fast moving nanoparticles could
be beneficial in many applications, for instance, a process of
nanoparticle coating by the laser ablation on a substrate in a
vacuum chamber for a more efficient method.
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