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Abstract We present dynamical simulations and simple
mechanics arguments to propose a system of stacked blocks
of square lattices of elastic spheres that can be used to deci-
mate an incident impulse. Mass mismatch between adjacent
blocks is accomplished by making the sphere radius in the
upper block twice that of the lower block. The system deci-
mates impact energies by converting the initial impulse into
two solitary waves and then progressively into many smaller
amplitude solitary waves. We also show that near perfect
impact decimation capability can be realized with increased
mass mismatch between adjacent blocks by creating sand-
wiched structures in which a block with smaller density
spheres is surrounded on both sides with blocks of denser
spheres. The proposed systems are expected to be scalable
down to spheres of ∼100 nm and work for solid and hollow
spheres.

Keywords Square granular lattice · Impact absorbing
metamaterials · DEM

1 Introduction

An impulse propagates as a non-dispersive energy bundle or
a solitary wave through an alignment of monosized spherical
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grains [1–7], whether these grains are solid or even hollow
[8]. These waves are a result of the strongly nonlinear nature
of the interaction between the grains [9], and exhibit unique
properties such as nonlinear dependence of the wave speed
on the force, and the width of the wave being independent of
its amplitude. Dissipative losses exponentially attenuate the
solitary wave in space and time but often such attenuation
sets in slowly [10,11]. These properties of the system are
scalable in the sense that they do not depend on the size of
the grains as long as they behave as elastic objects. Studies
suggest that grains behave as elastic objects at diameters of
∼100 nm or even less [12,13]. Furthermore, the flexibility in
designing grains with different materials and geometry and
thereby tuning the solitary wave response has led to many
engineering applications such as in shock absorption and
acoustic focusing devices [see for e.g. Ref. [14] and refer-
ences therein]. It is now well understood that introducing a
mass mismatch between the interface of two grains such as
in 1D tapered and decorated chains [15–21] by changing the
size of the grains or by designing composite chains [22–25]
with grains of different materials results in disintegration of
the impulse and therefore these systems serve as effective 1D
system for impulse decimation. Impact decimation is a topic
of enormous importance in insuring protection of structures
and equipment. In different energy scales, impact decima-
tion is needed in protecting structures from large storms,
earthquakes and related hazards. On a smaller scale, impact
decimation is important in the context of protecting deli-
cate electronics, in protecting people from traumatizing head
injuries and similar applications. The overall effectiveness of
a particular arrangement would depend both on the specific
application and the ability to organize them in higher dimen-
sions.

Impact absorption in 3D using granular systems is a sub-
ject of intense examination [26–28]. The study of impact
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propagation in 2D granular systems was pioneered by Shukla
et al. [29,30] and later examined by others. Recently Leonard
et al. [31] have explored impact decimation in network struc-
tures, a closely related problem. Here we propose a purely
2D system made of stacked arrays of square lattices of spher-
ical grains1. The first block where the impact is incident is
made of the largest spheres in the system. The spheres pro-
gressively shrink in radius by a factor of 2 as one goes into
arrays or blocks deeper down. The system exploits the pres-
ence of solitary waves and of strategically dividing the energy
in the solitary waves through increasingly many chains of
progressively smaller radii. We show below via dynamical
simulations and simple phenomenological arguments how
such a system works and suggest that 2D systems or layers
can be stacked to design blocks which can rapidly absorb
impulses incident along the c-axis.

2 Model

The proposed system with two stacked blocks is shown in
Fig. 1a. At the interface between the two blocks the larger
sphere of radius 2r is placed symmetrically on top of the
two smaller spheres of half its radius in the block below.
The center of the larger sphere is at a distance of 2

√
2r from

the midpoint of the line joining the centers of the smaller
spheres. This ensures a stable packing and also results in a
nested arrangement, since, each vertical column of spheres in
a block is supported by two columns in the block below. Mul-
tiple stacked block panels can be used to design the impact
decimation container. As shown in Fig. 1b we can think of
many stacked panels arranged in parallel with a step-shaped
insulating matrix filling the space between two panels. The
width of the insulating matrix can go to zero for the top
block and increases by the radius of the sphere for consecu-
tive blocks.

Dynamical simulations on the stacked block arrangement
in Fig. 1a are performed using the discrete element method
(DEM) based parallel open-source DEM software LIGHH-
HTS (LAMMPS improved for general granular and granular
heat transfer simulations) [32–34]. DEM is based on con-
tact mechanics, where, for two particles in contact the total
force at the point of contact is decomposed into a normal
part Fn and a tangential part Ft , which in the absence of any
dissipation are given by,

Fn = knδn, (1)

Ft = ktδt , (2)

δn and δt are the normal and tangential overlap respectively.
For two spheres with separation r and radii R1 and R2 the

1 This idea grew out of a suggestion along similar lines by Professor F.
Melo in 2009.

normal overlap δn = (R1 + R2) − r and the contact force is
nonzero only when δn > 0. The tangential overlap δt is the
relative tangential displacement between two spheres for the
entire contact duration and the tangential force is limited by
the coulomb criteria Ft = min(Ft , μFn). We use the nonlin-
ear Hertz contact interaction for describing the normal force
in our simulations [35]. The spring constants kn and kt there-
fore depend on the normal overlap in addition to the material
parameters, kn = 4/3Y ∗√R∗δn and kt = 8G∗√R∗δn . For
spheres with the same Young’s modulus Y and Poisson ratio
ν the effective Young’s modulus Y ∗ = Y

2(1−ν2)
and the effec-

tive shear modulus G∗ = Y
4(2−ν)(1+ν)

. R∗ is the effective

radius and equals R1R2
R1+R2

. The time step of simulation is taken

to be 10−9 s. For simplicity, the striker is assumed to be of
the same size and material properties as the spheres in the
top block and the impact point is taken to be inbetween the
two top spheres as shown in Fig. 1. In our simulations we
observe that the sideways propagation of energy is reduced
significantly in the presence of static friction. For μ values
of 0.1 and 0.25 the energy flowing sideways in the upper-
most layer of the top block reduces by almost 44 and 75 %
respectively. The energy propagating vertically downwards,
however, does not show any significant variation. We there-
fore focus only on the downward propagating component of
the impact energy.

3 Results and discussions

To outline the central idea behind the impact decimation
capability of the proposed system, let us first consider a sys-
tem made from blocks large enough to allow for the formation
of fully developed solitary waves. The kinetic energy in dif-
ferent blocks of a four block system of steel spheres with
density ρ = 8000 kg/m3, Young’s modulus Y = 193 GPa
and Poisson’s ratio ν = 0.3 is shown in Fig. 2. The radius of
the spheres in the lowest block is taken to be 1 mm. As can be
seen in Fig. 2 a single solitary wave generated upon impact
by the striker in the top block splits into a series of smaller
amplitude solitary waves after crossing the interface to the
next block. Presence of more blocks results in further splitting
and amplitude reduction at each of the subsequent interfaces.
This behavior is typical of solitary wave train generation in
1D systems when the solitary wave passes from denser to
rarer medium [36,37]. In the proposed system, following a
hard sphere model, it is simple to show through momentum
and energy conservation that the ratio of the final speed v f to
the initial speed vi of the top sphere at the interface is given by

v f

vi
=

(
1 − 2κ cos2 θ

1 + 2κ cos2 θ

)
, (3)
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Fig. 1 (Color online) a Picture
of the 1-dimensional granular
strip. b Schematic of the
proposed impact decimation
container with many stacked
panels arranged in parallel and
an insulating matrix sandwiched
between two panels
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Fig. 2 Normalized kinetic energy away from the interface in a four
block system. The inset shows the kinetic energy in the third and fourth
block respectively

κ = m2/m1 = (ρ2/ρ1)(r2/r1)
3 is the ratio of the mass

of the smaller sphere to the larger sphere and equals 1/8
for spheres of the same density ρ and r1 = 2r2, cos θ =
2
√

2/3 (see Fig. 1a). Since the final velocity is positive,
the larger sphere continues to move in its original direc-
tion after impact, and, multiple interactions with the lower
sphere leads to the generation of solitary wave trains [38].
Apart from the splitting which is a consequence of mass dif-
ference, energy also gets distributed in twice the number of
columns in consecutive blocks due to the nested arrange-
ment of the spheres at the interface. For the four block
system considered here the kinetic energy gets distributed
in two, four, eight and sixteen columns in subsequent blocks.
The shock decimation capability of this system is evident
from the fact that the peak energy of the smaller ampli-
tude solitary waves in the third and fourth block are only
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Fig. 3 Semilog plot of the fraction of output kinetic energy for systems
with different numbers of blocks NB and restitution values. The total
width of the setup is

∑NB
i=1 23+i r . The radius r of the spheres in the

lowest block is 1 mm

around 10 and 3 % respectively, of the maximum kinetic
energy in the top block. For comparison, the kinetic energy
in each block has been normalized to the peak value of
the kinetic energy of the solitary wave in the top block.
The speed of the largest amplitude solitary wave in each
block with maximum compressive force also shows the
same scaling as is observed for one-dimensional systems
[39].

Completely developed solitary waves are not observed in
systems with smaller block sizes, however, we do observe
similar dynamics and comparable impact decimation abil-
ity as seen in larger sized systems. In the semilog plot in
Fig. 3 we show the percentage of output kinetic energy for
systems with different number of blocks NB , and a range of
restitution values (where ε = 1, 0.99, 0.95 and 0.9). The
number of spheres in a single column of any block is taken
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Fig. 4 Normalized kinetic energy for a 2-block system with top block
made of steel spheres and the lower block made from Teflon spheres

to be 23. The output kinetic energy decreases significantly
with the number of blocks. In Fig. 3 this decrease is seen to
be exponential and the output energy for 1, 2, 3 and 4 block
systems are approximately 34, 11, 4 and 1 %, respectively,
of the incident energy for completely elastic systems. Inclu-
sion of restitution further decreases the output kinetic energy
with hardly any significant output for the 4 block system.
The output kinetic energy, however, is still seen to decrease
exponentially and for the range of restitution values consid-
ered can be approximated by Eout ∝ Eine−(α/ε)NB , with α

a positive constant (α ≈ 1.12).
The dependence of the final velocity of the larger sphere

on mass ratio κ in Eq. (3) can be further exploited to design
panels at small length scales with higher impact decimation
capability. Smaller κ values would lead to the larger sphere
retaining most its energy at each collision. Since the mass
ratio between the two spheres depends both on the radius
and the density, we can envision a stacked panel arrangement
where a block with lower density material is placed below
a block with higher density material. In Fig. 4 we show the
kinetic energy propagation for a two block system where
the upper block is made from steel spheres and the lower
block from Teflon spheres (ρ = 2170 kg/m3). Compared
to Fig. 2 the single solitary wave is seen to split into many
more smaller solitary waves. The peak kinetic energy of the
smaller amplitude solitary wave is almost half of that in Fig. 2
and the output kinetic energy is observed to be around 4 %
of the incident kinetic energy. In addition, the speed of soli-
tary waves decreases significantly in the lower block due to
the low Young’s modulus (Y = 1.46 GPa) of Teflon [39]. We
can then think of a Teflon block sandwiched between blocks
made from higher density steel material. The lowest steel
block could then be used to split and speed up the outcoming
energy from the Teflon block. In a sandwiched 3-block sys-
tem, with a block made from Teflon surrounded on either side

with blocks consisting of steel spheres we observed that the
output kinetic energy was around 0.6 % of the input energy.

4 Conclusion

In conclusion, we have proposed a simple packing which
shows the ability to successfully disperse impact energies.
The system possesses two essential properties which are
responsible for the observed impact decimation. Firstly, the
size mismatch between the spheres in the two stacked blocks
result in breaking of impact energy in smaller packets, and,
secondly, the prong-like structure which leads to spreading of
the energy into more columns in subsequent blocks. Impact
mitigation through a 2D Y-shaped branched network of gran-
ular chains has been studied recently [40]. In this system for
symmetric branching, the ratio of the wave amplitude in one
of the branches to the amplitude of the incident wave is

TS =
(

2 cos α

2 cos2 α + 1

)6/5

, (4)

where, α is the branch angle. For the proposed system fol-
lowing a similar approach it can be shown that this ratio is

TS = 1

4

(
2 cos θ

1 + 2κ cos2 θ

)6/5

. (5)

If α = θ then the ratios are 0.63 and 0.42 respectively, which
shows the enhanced impact mitigation obtained by intro-
ducing a mass-mismatch. As has been shown, introducing
a stacked block made from lighter material between blocks
made from denser material further enhances the impact dis-
persion property of the proposed structure.
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