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section 1. Accordions
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Amplitude
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y = sin—

f(x) = xsin

f is continuous at O
even though there are
nearly vertical slopes
as you approach 0.
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g(x) = XZSin%

Here lim g:]) =0
h—0
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g(x) = XZSin%

So g has a
derivative at O,

1e



g(x) = Xsin 1;
g'(0) = 0.

Still we have nearly
vertical tangents.
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g(x) = X'sin .
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Further, there are sequences <a, > and <b, > such that

lim b - a =0, but lim 9bn)-9(@n) _
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Section 2. Le Blancmange function

Fix a non-negative integer n. Given a real number X, let k
be the greatest non-negative integer such that

Axn = 2"k <xand let by, =2"(k+1). So X < b ).

Define f, : R— [0,1] by f (x) = min{x-a D X}
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Fix a non-negative integer n. Given a real number x, let k be the
greatest non-negative integer such that

Aun =2k =xandlet b, =2"(k+1). S0 X <b )

Define f, : R— [0,1] by f (x) = min{Xx-a Dy X}

0.8 T T T T T T T T T

0.6 -

k=0 £y

0.2 ~

2b



0.8

0.6 -

0.4 -

0.2 ~

0.4

0.3 -

0.2 -

0.1

1.0

2c



0.6

0.8

0.6

0.4

0.2

0.5




f+1

o f+ T,

fO.I- f1+ f2

£+ 64

2e



THEOREM 2. There is a function contiunous
at each real x but differentiable at no real x.
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Lemma2: Suppose a function h: R—=Ris
differentiable at x. If a, and if b are such
that Vn, a, < x<b_, then

h'(x) = lim h(b,) - h(a,)

N—>0

b,-a,
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section 3. Stretching zero to one.

Cantor's Middle Third Set C is a subset of
[0,1] formed inductively

by deleting middle third open intervals.
Say ('/5,%/5) in step one.



In step two, remove the middle-thirds of the
remaining two intervals of step one, they are
("/g,%1g) and ("/y,%,).

In step three, remove the middle thirds of the
remaining four intervals.

and so on for infinitely many steps.
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What we get is C,Cantor’s _
Middle Thirds Set. - -
C is very “thin” and a . . . .
“spread out” set whose

measure is 0 (since the I I I I I I I I

sum of the lengths of
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Cantor's Middle Thirds set




As [0,1] is thick and as _

C is a thi bset of [0,1],
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THEOREM 3. There is a continuous
function from C onto [0,1].

The points of C are the points equal to the sums of
infinite series of form

Z 23(n)3 " where s(n) €{0,1}.
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defines a continuous surjective function
whose domain is C and whose range is [0,1].

Example. The two geometric series
show F(/;)=F(%/5)="1..
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Picturing the proof.

Stretch the two halves of step 1 until they join at 1/2.

Now stretch the two halves of each pair of step 2
Until they join at 1/4 and 3/4...
Each point is moved to the sum of an infinite series.
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section 4. Advancing Dimension

N < N2

2n-1(2m-1)

1 2 3 4

1 1 2 4 8
2 3 6 |12 | 24
3 5 (10 |20 | 40
4 7 |14 | 28 | 56

<> <m,

1

n>

1 <1,1>

<1,2>

<1,3>

<1,4>

2 [|<2,1>

<2,2>

<2,3>

<2.4>

3 <3,1>

<3,2>

<3,3>

<3,4>

4 ||<41>

4a



Theorem4. There is a continuous function from
[0,1] onto the square.

We'll cheat and do it with the triangle.
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An java animated version of a different Space

Filling Curve can be found at

http://www.geom.uiuc.edu/~dpvc/CVM/1998/01/vsfcf/arti
cle/sect2/brief history.html
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Section 5. An addition for the irrationals

By an addition for those objects X&[0,00) we
mean a continuous function s : XxX — X
(write x+y instead of s(<x,y>)) such that for x+y
the following three rules hold:

(1). x+y = y+x (the commutative law) and
(2). (x+y)+z = x+(y+z) (the associative law).

With sets like Q, the set of positive rationals, the
addition inherited from the reals R works, but

with the set P of positive irrationals it does not
work: (3+v2 )+(3-v2) = 6.
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THEOREMS.
The set P of positive irrationals has an addition.

Our aim is to consider another object which has an addition
And also “looks like” P.

Continued fraction
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Given an irrational x, the sequence <a_ >
Is computed as follows:

Let G(x) denote the greatest integer < x. Let a; = G(x).

If a,,,,a, have been found as below, let a. ., = G(1/r).

d I
X= 4t
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Continuing in this fashion we get a sequence
which converges to x. Often the result is
denoted by

- 1
X= 4

4.+
1 1
Ay ——

g

However, here we denote it by CF(x) = <a,, a4, a,,as,...>.
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We let <2> denote the constant < 2, 2, 2, 2,...>.

Note <2> = CF(1+v2) since

2+ : = 1+4/2

2+
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2+

2+
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2+

2+

Hint: A quick way to prove the above is to solve for xin x =2+ 1

X

or x> 2x-1=0.
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Prove <1> = CF(1+2‘/§) and <1,2> = CF( 2+2‘/§)

We add two continued fractions “pointwise,” so
<1>+<1,2>=<2,3> or <2,3,2,3,2,3,2,3,...>.

Here are the first few terms for =, <3,7,15,1,...>.
No wonder your grade school teacher told you

n= 3 +-1. The first four terms of CF(x), <3,7,15,1>
approximate =t to 5 decimals.

Here are Euler’s first few terms for e,
<21,21141,16,1,1,8,1,1,10,1,1,12,....>
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Lemma. Two irrationals x and y are "close" as real
numbers iff the "first few" partial continued fractions of
CF(x) and CF(y) are identical.

For example <2,2,2,2,2,1,1,1,...> and <2> are close,

but <2,2,2,2,2,2,2,2,2,91,5,5,...> and <2> are closer.

Here is the “addition:” We define x®y =z if
CF(z) = CF(x) + CF(y).
Then the lemma shows @ is continuous.
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However, strange things happen:

1+Z\/5_€r> 1+2\/§ =1+‘/§




Problems

1. How many derivatives has

g(x) = xzsini

2. Prove that each number in [0,2] is the
sum of two members of the Cantor set.



Problems

3. Prove there is no distance non-increasing function
whose domain is a closed interval in N and whose

range is the unit square [0,1] x [0,1] .

4. Determine ‘/é 2+‘/_
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