TOPOLOGY PROCEEDINGS Volume 2, 1977

Pages 631–642

http://topology.auburn.edu/tp/

BOXES OF COMPACT ORDINALS

by

SCOTT W. WILLIAMS

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

BOXES OF COMPACT ORDINALS

Scott W. Williams

If $\{X_n: n \in \omega\}$ is a family of spaces, then $\Box_{n \in \omega} X_n$, called the box product of those spaces, denotes the cartesian product of the sets with the topology generated by all sets of the form ${\rm I\!I}_{n\,\in\,\omega}{\rm G\!}_n,$ where each ${\rm G\!}_n$ need only be open in the factor space X_n . If $X_n = X \forall n \in \omega$, we denote $\Box_{n \in \omega} X_n$ by $\Box^{\omega} X$.

M. E. Rudin [5] and K. Kunen [3 and 6, pg. 58] have shown that CH implies $\bigsqcup_{n \in \omega} (\lambda_n + 1)$ is paracompact for every countable collection of ordinals $\{\lambda_n: n \in \omega\}$. At the 1976 Auburn University Topology Conference I demonstrated [7] that the paracompactness of $\Box^{\omega}(\omega + 1)$ is implied by the existence of a k-scale in ${}^{\omega}\omega$, a set-theoretic axiom which is a consequence of, but not equivalent to, Martin's Axiom, and hence CH. In addition, I proved $\Box^{\omega}(\omega_1 + 1)$ is paracompact iff $\Box^{\omega}(\alpha + 1)$ is paracompact \forall countable ordinals α . If this is coupled with E. van Douwen's (\exists a &-scale in $\overset{\omega}{\omega}$) $\Rightarrow \underset{n \in \omega}{\overset{X}{}_{n}}$ is paracompact for all collections $\{X_n: n \in \omega\}$ of compact metrizable spaces [1], we have $\sqcup^{\omega}(\omega_1 + 1)$ is paracompact if \exists a k-scale in ${}^{\omega}\omega$. However, none of the proofs generalize to higher ordinals ($\mu^{\omega}(\omega_2 + 1)$, for example). We conjecture:

If $\Box^{\omega}(\omega + 1)$ is paracompact, then $\Box^{\omega}(\lambda + 1)$ is paracompact \forall ordinals λ .¹

¹It is unknown whether it is consistent for $\Box^{\omega}(\omega + 1)$ not to be paracompact; however, \exists compact spaces X_n such that $\sqcup_{n\in\omega} X_n \text{ is not normal. Moreover, irrationals } x ({{\scriptstyle \square}}^{\omega} (\omega \ + \ 1))$ is not normal [6, pg. 58].

Toward this conjecture we show:

Suppose λ is an ordinal for which $\bigsqcup_{n \in \omega} (\lambda_n + 1)$ is paracompact whenever $\lambda_n < \lambda \forall n \in \omega$, then $\bigsqcup^{\omega} (\lambda + 1)$ if either of the following holds:

(1) $cf(\lambda) \neq \omega$ (Theorem 1).

(2) $cf(\lambda) = \omega$ and \exists a k-scale in $\omega \omega$ (Theorem 2). Now suppose $\{x_n : n \in \omega\}$ is a family of sets and for each $f \in \prod_{n \in \omega} x_n$,

$$\begin{split} \mathbf{E}(\mathbf{f}) &= \{\mathbf{g} \in \Pi_{\mathbf{n} \in \omega} \mathbf{X}_{\mathbf{n}} \colon (\exists \ \mathbf{m} \in \omega) \mathbf{n} > \mathbf{m} \Rightarrow \mathbf{g}(\mathbf{n}) = \mathbf{f}(\mathbf{n}) \}, \\ \text{then } \{\mathbf{E}(\mathbf{f}) \colon \mathbf{f} \in \Pi_{\mathbf{n} \in \omega} \mathbf{X}_{\mathbf{n}} \} \text{ forms a partition of } \Pi_{\mathbf{n} \in \omega} \mathbf{X}_{\mathbf{n}} \text{ and the} \\ \text{resultant quotient set is denoted by } \nabla_{\mathbf{n} \in \omega} \mathbf{X}_{\mathbf{n}}. \quad \text{If } \mathbf{S} \subseteq \Pi_{\mathbf{n} \in \omega} \mathbf{X}_{\mathbf{n}}, \\ \text{we let } \mathbf{E}(\mathbf{S}) \text{ denote its-image in } \nabla_{\mathbf{n} \in \omega} \mathbf{X}_{\mathbf{n}}. \end{split}$$

Lemma (Kunen [3 and 6, pg. 58]). Suppose X_n is a compact Hausdorff space for each $n \in \omega$ and $\nabla_{n \in \omega} X_n$ has the quotient topology induced by $\sqcup_{n \in \omega} X_n$, then

(i) G_{δ} -sets in $\nabla_{n\in\omega} X_n$ are open

- (ii) $\Box_{n\in\omega} X_n$ is paracompact iff $\nabla_{n\in\omega} X_n$ is paracompact²
- (iii) Every open cover of $\nabla_{n\in\omega} x_n$ has a subcover of cardinality $\leq c$ (the cardinality of the continuum) whenever x_n is scattered $\forall n \in \omega$.

For A, B \in **P** (ω) define A \leq B if A - B is finite; A \equiv B if A \leq B and B \leq A. Observe that \equiv is an equivalence relation on **P** (ω). Suppose λ is an ordinal and f $\in {}^{\omega}\lambda$, for each A \in **P** (ω), we define in $\nabla^{\omega}(\lambda + 1)$, $\langle A, f \rangle = E(\Pi_{n \in \omega} A_{f}(n))$, where

²With (i) $\nabla_{n \in \omega} x_n$ is paracompact iff every open cover has a pairwise disjoint clopen refinement.

$$A_{f}(n) = \begin{pmatrix} [f(n) + 1, \lambda] & \text{if } n \in A \\ [0, f(n)] & \text{if } n \notin A. \end{cases}$$

 $\{ \langle A,f \rangle : A \in \mathbf{P}(\omega) \}$ forms a clopen partition of $\nabla^{\omega}(\lambda + 1)$ since $A \equiv B$ iff $\langle A,f \rangle \cap \langle B,f \rangle \neq \emptyset$.

Theorem 1. Suppose λ is an ordinal with $cf(\lambda) \neq \omega$, then for $\Box^{\omega}(\lambda + 1)$ to be paracompact it is necessary and sufficient that $\Box^{\omega}(\alpha + 1)$ be paracompact $\forall \alpha < \lambda$.

Proof. Necessity is obvious so we prove sufficiency only. Without loss of generality, we assume λ is the supremum of an increasing sequence $\{n_{\alpha}: \alpha < cf(\lambda)\}$. Let R be an open cover of $\nabla^{\omega}(\lambda + 1)$. For each $\tau < \omega_{1}$ and $d \in {}^{\tau}c$ we construct inductively V(d), W(d), $\theta(d)$, and A(d) to satisfy:

(1) V(d) and W(d) are clopen subsets of $\nabla^{\omega}(\lambda + 1)$, $\exists U \in R \ni V(d) \subseteq U$, V(d) \cup W(d) \subseteq W(d $\upharpoonright \sigma) \forall \sigma < \tau$, and if $\sigma < \tau$ is a limit ordinal, then W(d $\upharpoonright \sigma) = \bigcap_{\alpha \leq \sigma} W(d \upharpoonright \rho)$.

(2) If $\sigma < \tau$ is an odd ordinal³, then

 $\{V(e): dom(e) \leq \sigma\} \cup \{W(e): dom(e) = \sigma\}$

is a pairwise-disjoint covering of $\nabla^{\omega}(\lambda + 1)$.

- (3) A(d) is an infinite subset of ω and if $\sigma \leq \tau$ is a nonlimit ordinal, then A(d σ) < A(d ρ) $\forall \rho < \sigma$.
- (4) If $E(x) \in W(d)$ and $\phi < A \leq A(d \upharpoonright \sigma) \forall \sigma \leq \tau$, then $E(\{y: x(n) \leq y(n) \leq \lambda \text{ if } n \in A, y(n) = x(n) \text{ if } n \notin A\}) \subseteq W(d)$.
- (5) $\theta(d) \in {}^{\omega}\lambda$ is a constant function with values in $\{n_{\alpha}: \alpha < cf(\lambda)\}$ and if $\sigma \leq \tau$ is even, then $\theta(d \upharpoonright \sigma) (0) > \theta(d \upharpoonright \rho) (0) \forall \rho < \sigma.$

 ${}^{3}\sigma$ is an odd ordinal when $\sigma = \sigma_{0} + 2n + 1$, where $\sigma_{0} = 0$ or is a limit ordinal and $n\in\omega$. If σ is not odd it is even.

(6) If $\sigma \leq \tau$ is odd, then $W(d \upharpoonright \sigma) \leq \langle A(d \upharpoonright \sigma), \theta(d \upharpoonright \sigma) \rangle$, (7) If $\sigma \leq \tau$ is a non-limit even ordinal and $\rho = \sigma - 1$, then \exists a clopen subset $G(d \upharpoonright \sigma)$ of $\nabla_{n \notin A}(d \upharpoonright \rho) (\theta(d \upharpoonright \sigma)(n) + 1)$ such that

 $\begin{array}{l} \mathbb{V}(d \upharpoonright \sigma) = \mathbb{W}(d \upharpoonright \sigma) \cap \langle \mathbb{A}(d \upharpoonright \rho), \theta(d \upharpoonright \sigma) \rangle \quad \text{and} \\ \mathbb{W}(d \upharpoonright \sigma) = \{\mathbb{E}(\mathbf{x}) \in \mathbb{W}(d \upharpoonright \rho) : \mathbb{E}(\mathbf{x} \upharpoonright \omega - \mathbb{A}(d \upharpoonright \rho)) \in \mathbb{G}(d \upharpoonright \sigma) \}. \\ \text{Now suppose our objects } \mathbb{V}(d), \mathbb{W}(d), \theta(d), \text{ and } \mathbb{A}(d) \text{ have} \\ \text{been constructed to satisfy (1) through (7)} \quad \forall d \in^{\mathsf{T}} \mathsf{c} \quad \forall \tau < \omega_1. \\ \text{If } \mathbb{E}(\mathbf{x}) \notin \mathbb{U}\{\mathbb{V}(\mathsf{t} \upharpoonright \tau) : \mathsf{t} \in^{\omega_1} \mathsf{c}, \tau < \omega_1\} \text{ then by (1) and (2) we} \\ \text{may find for each } \tau < \omega_1, d_\tau \in^{\mathsf{T}} \mathsf{c} \text{ such that } \mathbb{E}(\mathbf{x}) \in \mathbb{W}(d_\tau). \\ \text{Again from (1) and (2), if } \sigma < \tau \text{ is odd and } d \in^{\sigma} \mathsf{c} \text{ such that } d \neq d_\tau \upharpoonright \sigma, \\ \text{then } \mathbb{E}(\mathbf{x}) \notin \mathbb{W}(d); \text{ therefore, } \sigma < \tau \Rightarrow d_\sigma = d_\tau \upharpoonright \sigma. \\ \text{From (5)} \\ \text{we may find the first even ordinal } \rho < \omega_1 \text{ such that for every} \\ \mathsf{n}, \end{array}$

$$\begin{split} \mathbf{x}(\mathbf{n}) > \theta\left(\mathbf{d}_{\rho}\right)(\mathbf{0}) \implies \mathbf{x}(\mathbf{n}) \ge \sup_{\tau < \omega_{1}} \theta\left(\mathbf{d}_{\tau}\right)(\mathbf{0}) \,. \end{split}$$
From (6) $\exists \mathbf{y} \in \Box^{\omega}(\lambda + 1) \ni \mathbf{E}(\mathbf{y}) = \mathbf{E}(\mathbf{x})$ and

 $A(d_{\rho+1}) = \{n: y(n) > \theta(d_{\rho+1})(n) \}.$

From (7) $E(y) \in V(d_{n+2})$, a contradiction. Therefore,

{ $v(t \upharpoonright \tau): t \in {}^{\omega_1}c, \tau < \omega_1$ }

is a cover of $\overline{\nabla}^\omega(\lambda$ + 1) and we are done, so we should begin our construction.

Let $A(\phi) = \omega$, $W(\phi) = \nabla^{\omega}(\lambda + 1)$, and α be the first ordinal such that $E(\Pi^{\omega}[n_{\alpha}, \lambda])$ is contained in some $U \in \mathbb{R}$. Let $\theta(\phi)(n) = n_{\alpha} \quad \forall \ n \in \omega \text{ and } V(\phi) = \langle A(\phi), \theta(\phi) \rangle$.

Suppose for an ordinal $\rho < \omega_1$ we have constructed V(d), W(d), $\theta(d)$, and A(d) to satisfy (1) through (7) $\forall d \in$ ^Tc $\forall \tau < \rho$. Our construction at ρ needs three cases: *Case* 1. ρ is an odd ordinal Let $\tau = \rho - 1$ and $\theta(e) = \theta(d)$ if $e \in \rho^c$ and $e \uparrow \tau = d$. Let

$$\{A(e): e \in {}^{\rho}c, e \upharpoonright \tau = d\}$$

be a listing of exactly one element chosen from each equivalence class of elements of

{A:
$$\phi < A < A(d \uparrow \sigma), \sigma < \tau$$
 }.

For each $e^{e^{\rho}}c$ we let

 $W(e) = W(e \upharpoonright \tau) \cap \langle A(e), \theta(e) \rangle$.

If $d \in {}^{T}c$, then $W(d) \cap \langle \phi, \theta(d) \rangle$ is a clopen subset of E($\Pi^{\omega}[0, \theta(d)(0)]$); therefore, by the lemma (ii) and (iii) we may find a pairwise-disjoint clopen refinement of R

 $\{V(e): e \in {}^{\rho}c, e \upharpoonright \tau = d\} \text{ whose union is } W(d) \cap \langle \phi, \theta(d) \rangle.$ Clearly (1) through (7) are satisfied.

Case 2. ρ is a non-limit even ordinal.

Let $\tau = \rho - 1$ and A(e) = A(d) if $e \in {}^{\rho}c$ and $e \upharpoonright \tau = d$. If $d \in {}^{\tau}c$ and $W(d) = \phi$, we let $W(e) = V(e) = \phi$ and

 $\theta(\mathbf{e})(\mathbf{n}) = n_{\alpha} \text{ if } \theta(\mathbf{d})(\mathbf{n}) = n_{\alpha-1} \quad \forall \mathbf{n} \in \omega$

If $d \in {}^{\tau}c$ and $W(d) \neq \emptyset$, let

$$Y^{*}(d) = \{g: g^{-1}(\lambda) = A(d), E(g) \in W(d) \}.$$

We will wish to cover Y*(d) by

 $\cup \{W(e): e \upharpoonright \tau = d\}.$

From (4), $Y(d) = \{g \upharpoonright \omega - A(d) : g \in Y^*(d)\} \neq \emptyset$.

In $\nabla_{n \notin A(d)} (\theta(d)(n) + 1)$, let

$$\begin{split} \mathsf{R}(\mathsf{d}) &= \{ \mathsf{E}(\Pi_{\mathsf{n} \notin \mathsf{A}}(\mathsf{d}) \mathsf{U}(\mathsf{n})) : \mathsf{E}(\Pi_{\mathsf{n} \in \omega} \mathsf{U}(\mathsf{n})) \subseteq \mathsf{some } \mathsf{U} \in \mathsf{R}, \\ \mathsf{E}(\Pi \mathsf{U}(\mathsf{n})) \cap \mathsf{Y}^{\star}(\mathsf{d}) \neq \emptyset \}. \end{split}$$

From (5) of the induction hypothesis and the lemma, (ii) and (iii), \exists a pairwise disjoint clopen refinement {G(γ): $\gamma < c$ } of R(d) whose union is E(Y(d)). If $e \in {}^{\rho}c$, $e \upharpoonright \tau = d$, $e(\tau) = \gamma$, then let

$$W(e) = \{ E(x) \in W(d) : E(x \upharpoonright \omega - A(d)) \in G(\gamma) \}.$$

For each γ we may find $n_{\alpha(\gamma)} > \theta(d)(0)$ such that $\{E(x)\in W(d): E(x \upharpoonright \omega - A(d))\in G(\gamma) \text{ and } x(n) > n_{\alpha(\gamma)} \forall \text{ but finitely}$ many $n \in A(d)\} \subseteq \text{ some } U \in \mathbb{R}.$

Let $\theta(e)(n) = n_{\alpha(\gamma)} \forall n \in \omega \text{ and } V(e) = W(e) \cap \langle A(d), \theta(e) \rangle$. Certainly (1) through (7) are satisfied.

Case 3. ρ is a limit ordinal.

If $e \in {}^{\rho}c$, let $A(e) = \omega$, $V(e) = \phi$, and find the first $\alpha < \omega_1 \ni n_{\alpha} > \theta(e \upharpoonright \tau)(0) \lor \tau < \rho$. We choose $\theta(e)(n) = n_{\alpha} \lor n \in \omega$. To satisfy (1) through (7) we observe that (i) of the lemma allows

$$V(e) = \bigcap_{\tau < \rho} W(e \uparrow \tau)$$

to be clopen.

The proof to Theorem 1 is completed.

If ${}^{\omega}\omega$ is ordered by f < g if $\{n: g(n) \leq f(n)\} \equiv \phi$, then for an ordinal k, a k-scale is an order-preserving injection s: $k \rightarrow {}^{\omega}\omega$ such that $\{s(\alpha): \alpha < k\}$ is cofinal in ${}^{\omega}\omega$. Recall [2,7] that CH $\Rightarrow \exists$ an ω_1 -scale; MA $\Rightarrow \exists$ a c-scale; an ω -scale; \exists a k-scale and ℓ -scale \Rightarrow cf(k) = cf(ℓ); for every model m with regular ordinals k and ℓ with cf(k) $\neq \omega \neq$ cf(ℓ) and $k \leq \ell$, there is a model $n \supseteq m$ with a k-scale in ${}^{\omega}\omega$ and c = ℓ ; and \exists models m of ZFC without k-scales for any k.

Theorem 2. ($\exists a \ k$ -scale in ${}^{\omega}\omega$). Suppose $cf(\lambda) = \omega$, then for $\Box^{\omega}(\lambda + 1)$ to be paracompact it is necessary and sufficient that $\exists \{\gamma_n : n \in \omega\} \subseteq \lambda \ni \sup_{n \in \omega} \gamma_n = \lambda$ and $\Box_{n \in \omega}(\gamma_n + 1)$ is paracompact.

Proof. Necessity is obvious so we prove sufficiency. WLOG assume $\gamma_n < \gamma_{n+1} \quad \forall \ n \in \omega, \ cf(\gamma_n) = 1 \quad \forall \ n \in \omega, \ and {s(\alpha): \alpha < k}$ is a k-scale in ${}^{\omega}\omega$ for a regular k. Let R be an open cover of $\nabla^{\omega}(\lambda + 1)$. For each $\tau < k$ and $d \in^{\tau} c$ we construct inductively V(d), W(d), $\theta(d)$, and A(d) to satisfy:

(1) V(d) and W(d) are clopen subsets of $\nabla^{\omega}(\lambda + 1)$, $\exists \ U \in \mathbb{R} \ni$ V(d) \subseteq U, V(d) U W(d) \subseteq W(d $\upharpoonright \sigma$) $\forall \sigma < \tau$, and if $\sigma < \tau$ is a limit ordinal W(d $\upharpoonright \sigma$) = $\bigcap_{\alpha < \sigma} W(d {\upharpoonright \rho})$.

(2) If $\sigma < \tau$ is an odd ordinal, then

 $\{V(e): dom(e) < \sigma\} \cup \{W(e): dom(e) = \sigma\}$

is a pairwise-disjoint covering of $\nabla^{\omega}(\lambda + 1)$.

- (3) A(d) is an infinite subset of ω and if $\sigma \leq \tau$ is a nonlimit ordinal, then A(d $\uparrow \sigma$) \leq A(d $\uparrow \rho$) $\forall \rho < \sigma$.
- (4) $\theta(d)(n) = \gamma_{s(\alpha)(n)} \forall n \in \omega \text{ and some } \alpha < k; \text{ and if } \sigma \leq \tau \text{ is even, then}$

 $\{n: \theta(d \upharpoonright \sigma)(n) \leq \theta(d \upharpoonright \rho)(n)\} \equiv \phi \quad \forall \rho < \sigma.$ (5) If $\sigma \leq \tau$ is odd, then $W(d \upharpoonright \sigma) \subseteq \langle A(d \upharpoonright \sigma), \theta(d \upharpoonright \sigma) \rangle$ and $\{V(e): e \in {}^{\sigma}c, e \upharpoonright \sigma - 1 = {}^{\gamma}d \upharpoonright \sigma - 1\} = \langle \phi, \theta(d \upharpoonright \sigma) \rangle \cap$ $W(d \upharpoonright \sigma - 1).$

(6) If $\sigma \leq \tau$ is a non-limit even ordinal, then

 $V(d \upharpoonright \sigma) = W(d \upharpoonright \sigma) \cap \langle A(d \upharpoonright \sigma - 1), \theta(d \upharpoonright \sigma - 1) \rangle.$

Now suppose our objects V(d), W(d), θ (d), and A(d) have been constructed to satisfy (1) through (6) $\forall d \in \tau c \quad \forall \tau < k$. For $x \in \Pi^{\omega}(\lambda + 1)$ define

$$\mathbf{x}^{\#}(\mathbf{n}) = \begin{pmatrix} 0 & \text{if } \mathbf{x}(\mathbf{n}) = \lambda \\ \mathbf{x}(\mathbf{n}) & \text{otherwise} \end{cases}$$

We may find the first $\alpha \ni \{n: \gamma_{s(\alpha)}(n) \leq x^{\#}(n)\} = \phi$. If $\alpha = \alpha_0 + m$, where $\alpha_0 = 0$ or is a limit ordinal and $m \in \omega$, let $\tau = \alpha_0 + 2(m + 1)$. From (2), (4), (5), and (6) we have $E(x) \in \bigcup \{V(e): \operatorname{dom}(e) < \tau\}.$

Therefore, {V(d): $d \in {}^{\tau}c$, $\tau < k$ } is a pairwise-disjoint clopen refinement of R covering $\nabla^{\omega}(\lambda + 1)$. So we must complete our construction.

Let $A(\phi) = \omega$, $W(\phi) = \nabla^{\omega}(\lambda + 1)$, and α be the first ordinal such that $E(\prod_{n \in \omega} [\gamma_{s(\alpha)}(n), \lambda])$ is contained in some $U \in R$. Let $\theta(\phi)(n) = \gamma_{s(\alpha)}(n) \forall n \in \omega$ and $V(\phi) = \langle A(\phi), \theta(\phi) \rangle$.

Suppose for an ordinal $\rho < k$ we have constructed V(d), W(d), θ (d), and A(d) to satisfy (1) through (6) $\forall d \in c^{T} c \forall \tau < \rho$. Our construction at ρ needs three cases:

Case 1. p is an odd ordinal.

Let $\tau = \rho - 1$ and $\theta(e) = \theta(d)$ if $e \in {}^{\rho}c$ and $e \upharpoonright \tau = d$. Let {A(e): $e \in {}^{\rho}c$, $e \upharpoonright \tau = d$ }

be a listing of exactly one element from each equivalence class of elements of

{A: $\phi < A < A(d \uparrow \sigma), \sigma < \tau$ }.

For each $e \in {}^{\rho}c$ we let

 $W(e) = W(e \uparrow \tau) \cap \langle A(e), \theta(e) \rangle.$

If $d \in {}^{T}c$, then $W(d) \cap \langle \phi, \theta(d) \rangle$ is a clopen subset of

 $E(\Pi_{n\in\omega}[0, \theta(d)(n)])$

and $\Pi_{n\in\omega}[0, \theta(d)(n)]$ is a clopen subset of a subproduct of $\Pi_{n\in\omega}(\gamma_n + 1)$; therefore, by the lemma (ii) and (iii) we may find a pairwise-disjoint clopen refinement of R,{V(e): $e\epsilon^{\rho}c$, $e \uparrow \tau = d$ } whose union is W(d) $\cap \langle \phi, \theta(d) \rangle$. Clearly, (1) through (6) are satisfied.

Case 2. p is a non-limit even ordinal.

Let $\tau = \rho - 1$, and A(e) = A(d), and W(e) = W(d) if $e \in {}^{\rho}c$ and $e \uparrow \tau = d$. If $d \in {}^{\tau}c$ and W(d) = ϕ , we let W(e) = V(e) = ϕ and

$$\begin{array}{l} \theta \left(e \right) \left(n \right) &= \ \gamma_{s\left(\alpha + 1 \right)} \left(n \right) \ \forall \ n \in \omega; \ \text{where} \\ \theta \left(e \left(\uparrow \tau \right) \left(n \right) &= \ \gamma_{s\left(\alpha \right)} \left(n \right) \ \forall \ n \in \omega. \end{array}$$

If $d \in^{T} c$, $W(d) \neq \phi$, and $Y(d) = \{g \upharpoonright \omega - A(d): y^{-1}(\lambda) = A(d), E(y) \in W(d)\} = \phi.$ In $\nabla_n \not\in A(d)$ ($\theta(d)(n) + 1$), let

$$\begin{aligned} & \mathsf{R}(\mathsf{d}) = \{ \mathsf{E}(\Pi_{\mathsf{n}\notin\mathsf{A}}(\mathsf{d})\mathsf{U}(\mathsf{n})) : \mathsf{E}(\Pi_{\mathsf{n}\in\omega}\mathsf{U}(\mathsf{n})) \subseteq \mathsf{some} \mathsf{U} \in \mathsf{R}, \\ & \exists \mathsf{E}(\mathsf{g}) \in \mathsf{W}(\mathsf{d}) \ \mathbf{\hat{\mathsf{h}}} \mathsf{E}(\Pi_{\mathsf{n}\in\omega}\mathsf{U}(\mathsf{n})), \mathsf{g}^{-1}(\lambda) = \mathsf{A}(\mathsf{d}) \} \end{aligned}$$

Since $\Box_{n\notin A(d)}(\theta(d)(n) + 1)$ is homeomorphic to a clopen subset of a subproduct of $\Box_{n\in\omega}(\gamma_n + 1)$, we may use the lemma, (ii) and (iii), to find a pairwise disjoint clopen refinement $\{G(\delta): \delta < c\}$ of R(d) whose union is E(Y(d)). If $e \in {}^{\rho}c$, $e \upharpoonright \tau = d$, $e(\tau) = \delta$, then let $\alpha(\delta)$ be the first ordinal > $\alpha(d)$, where $\theta(d)(n) = \gamma_{S}(\alpha(d))(n) \forall n\in\omega$, such that

 $V(e) = \{E(x) \in W(d) : E(x \upharpoonright \omega - A(d)) \in G(\delta), x(n) > 0\}$

$$\gamma_{s(\alpha(\delta))(n)} \forall n \in \omega}$$

is contained in a member of R. Let $\theta(e)(n) = \gamma_{s(\alpha(\delta)(n)} \forall n \in \omega$. Clearly, (1) through (6) are satisfied.

Case 3. ρ is a limit ordinal.

If $e \in {}^{\rho}c$, let $A(e) = \omega$, $V(e) = \phi$, and $\theta(e)(n) = \gamma_{s(\alpha)}(n)$ $\forall n \in \omega$, where

 $\alpha = \sup\{\beta: \ \theta (e \upharpoonright \tau)(n) = \gamma_{s(\beta)(n)} \ \forall \ n \in \omega, \ \tau < \rho\}.$ To see that (1) through (6) are satisfied, we must show

 $W(e) = \cap_{\tau < \rho} W(e \upharpoonright \tau) \text{ is open.}$ However, if $E(x) \in W(e)$, then the induction hypothesis and the definition of W(d) in Case 2 yields

 $E(\Pi[x^*(n), x(n)]) \subseteq W(e),$

where

$$\mathbf{x}^{\star}(\mathbf{n}) = - \begin{cases} \mathbf{x}(\mathbf{n}) & \text{if } \mathbf{cf}(\mathbf{x}(\mathbf{n})) = 1 \\ \theta(\mathbf{e})(\mathbf{n} + 1) & \text{if } \mathbf{x}(\mathbf{n}) & \text{is a limit } > \theta(\mathbf{e})(\mathbf{n}) \\ \sup\{\theta(\mathbf{e} \upharpoonright \tau)(\mathbf{n}): \ \theta(\mathbf{e} \upharpoonright \tau)(\mathbf{n}) < \mathbf{x}(\mathbf{n}), \ \tau < \rho\} + 1, \text{ other-wise.} \end{cases}$$

This completes the construction and the proof of Theorem 2.

Remarks

A. There are many models of ZFC, constructed via forcing, in which there are no k-scales [2]. However, J. Roitman [4] has shown that in some of these models, techniques inadvertedly, in some sense, yield $\Box_{n\in\omega}X_n$ paracompact \forall compact metrizable X_n ; specifically she has shown:

> In a model *m* of set theory which is a direct iterated CCC extension of length *k* of a model *n*, cf(*k*) > $\omega \Rightarrow$

 $\nabla_{n\in\omega}X_n$ is paracompact if X_n is regular and separable. A simple adaptation of her proofs will give the conclusion of Theorem 2 in m.

- B. Suppose u_0 is an ordinal and for n > 0 u_n is the lexicographic ordered product of u_{n-1} with itself. Let $u = \sup_{n \in \omega} u_n^{\alpha}$. It is unknown whether (\exists a c-scale in $\omega_{\omega} \Rightarrow \Box^{\omega}(u + 1)$ is paracompact when $u_0 = \omega_1$; however, our theorems show (\exists a k-scale in $\omega_{\omega} \Rightarrow \Box^{\omega}(u_n + 1)$ is paracompact $\forall n \in \omega$. It is unknown whether $\Box^{\omega}(\omega + 1)$ is paracompact $\Rightarrow \Box^{\omega}(u + 1)$ is paracompact when $u_0 = \omega$; although $\Box^{\omega}(u_n + 1)$ is paracompact for each n.⁴ The simplest question still unanswered is "Does there exist a model m of ZFC in which $\Box^{\omega}(\lambda + 1)$ is not paracompact for some ordinal λ ?" The hardest question asks that $\lambda = \omega$.
- C. We observe a recent result communicated to the author by E. K. van Douwen: If X_n is compact $\forall n \in \omega$, then $\Box_{n \in \omega} X_n$ is pseudo-normal. The author gives much appreciation to the referee whose suggestions for clarification of

 ${}^{4}\nabla^{\omega}(u_{n} + 1)$ may be embedded in $\nabla^{u_{n}} {}^{+1}(\omega + 1)$.

unnecessary technicalities in our proofs appear.

Added in proof

Recently, J. Roitman has proved that $\Box_{n\in\omega} X_n$ is paracompact whenever each X_n is compact first countable and ${}^{\omega}_{\omega}$ fails to have a cofinal family of cardinality less than the continuum. A corollary to this theorem and our theorems 1 and 2 yields $c = \omega_2 \Rightarrow \Box^{\omega} \omega_1 + 1$ is paracompact. Independently, I have shown the same corollary and, in addition:

Suppose, in theorem 2, $(\exists a \\ \kappa - scale in \ ^{\omega}\omega)$ is replaced by κ is the least cardinal of any cofinal family in $\ ^{\omega}\omega$ and $A \subset \mathbf{P}(\omega)$ with $|A| = \kappa$, then

 $E(\{x \in \Box^{\omega} \lambda + 1: x^{-1}(\lambda) \in A\})$ is paracompact.

References

- 1. E. K. van Douwan, $\exists a \ k-scale \ implies \square_{n \in \omega} X_n$ is paracompact if X_n is compact metric $\forall n \in \omega$, lecture presented at the Ohio University Conference on Topology, May 1976.
- S. Hechler, On the existence of certain cofinal subsets of ^ωω, Axiomatic Set Theory, Proc. Symp. Pure Math. (vol. 13, part 2), AMS (1974), 155-173.
- 3. K. Kunen, On the normality of box products of ordinals, preprint.
- 4. J. Roitman, Paracompact box products in forcing extensions, to appear.
- M. E. Rudin, Countable box products of ordinals, Trans. Amer. Soc. (vol. 192), AMS (1974), 121-128.
- 6. _____, Lectures on set theoretic topology, Conf. board math. sci. reg. conf. series in math #23, AMS (1975).
- 7. S. Williams, Is $\Box^{\omega}(\omega + 1)$ paracompact? Proceedings of the Auburn University Conference on Topology, 1976.

State University of New York at Buffalo Amherst, New York 14226