TOPOLOGY PROCEEDINGS

Volume 2, 1977
Pages 631-642
http://topology.auburn.edu/tp/

BOXES OF COMPACT ORDINALS

by
Scott W. Williams

```
Topology Proceedings
Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
    Department of Mathematics & Statistics
    Auburn University, Alabama 36849, USA
E-mail: topolog.edu
ISSN: 0146-4124
```

COPYRIGHT © by Topology Proceedings. All rights reserved.

BOXES OF COMPACT ORDINALS

Scott W. Williams

If $\left\{X_{n}: n \in \omega\right\}$ is a family of spaces, then $\square_{n \in \omega} X_{n}$, called the box product of those spaces, denotes the cartesian product of the sets with the topology generated by all sets of the form $\Pi_{n \in \omega} G_{n}$, where each G_{n} need only be open in the factor space X_{n}. If $X_{n}=X \forall n \in \omega$, we denote $\square_{n \in \omega} X_{n}$ by $\square^{\omega} X$.
M. E. Rudin [5] and K. Kunen [3 and 6 , pg. 58] have shown that $C H$ implies $\sqcup_{n \in \omega}\left(\lambda_{n}+1\right)$ is paracompact for every countable collection of ordinals $\left\{\lambda_{n}: n \in \omega\right\}$. At the 1976 Auburn University Topology Conference I demonstrated [7] that the paracompactness of $\sqcup^{\omega}(\omega+1)$ is implied by the existence of a k-scale in ${ }^{\omega}{ }_{\omega}$, a set-theoretic axiom which is a consequence of, but not equivalent to, Martin's Axiom, and hence CH . In addition, I proved $\omega^{\omega}\left(\omega_{1}+1\right)$ is paracompact iff $\cup^{\omega}(\alpha+1)$ is paracompact \forall countable ordinals α. If this is coupled with E. van Douwen's (\exists a $k-s c a l e$ in $\left.{ }^{\omega} \omega\right) \Rightarrow n \in \omega_{n}$ is paracompact for all collections $\left\{X_{n}: n \in \omega\right\}$ of compact metrizable spaces [1], we have $\sqcup^{\omega}\left(u_{1}+1\right)$ is paracompact if \exists a $k-s c a l e$ in ${ }^{\omega} \omega$. However, none of the proofs generalize to higher ordinals $\left(\square^{\omega}\left(\omega_{2}+1\right)\right.$, for example). We conjecture:

```
If [ }\mp@subsup{}{}{\omega}(\omega+1) is paracompact, then [ ['(\lambda+1) is paracom-
pact }\forall\mathrm{ ordinals }\lambda.
```

```
\({ }^{1}\) It is unknown whether it is consistent for \(\square^{\omega}(\omega+1)\) not to
    be paracompact; however, \(\exists\) compact spaces \(X_{n}\) such that
    \(L_{n \in \omega} X_{n}\) is not normal. Moreover, irrationals \(x\left(\omega^{\omega}(\omega+1)\right)\)
    is not normal [6, pg. 58].
```

Toward this conjecture we show:
Suppose λ is an ordinal for which $\psi_{n \in \omega}\left(\lambda_{n}+1\right)$ is paracompact whenever $\lambda_{n}<\lambda \forall n \in \omega$, then $L^{\omega}(\lambda+1)$ if either of the following holds:
(1) $\operatorname{cf}(\lambda) \neq \omega \quad$ (Theorem 1).
(2) $\operatorname{cf}(\lambda)=\omega$ and \exists a $k-s c a l e$ in ${ }^{\omega} \omega$ (Theorem 2). Now suppase $\left\{X_{n}: n \in \omega\right\}$ is a family of sets and for each $f \in \Pi_{n \in \omega^{\prime}} X_{n}$,

$$
E(f)=\left\{g \in I_{n \in \omega} X_{n}:(\exists m \in \omega) n>m \Rightarrow g(n)=f(n)\right\}
$$

then $\left\{E(f): f \in \Pi_{n \in \omega} X_{n}\right\}$ forms a partition of $\Pi_{n \in \omega} X_{n}$ and the resultant quotient set is denoted by $\nabla_{n \in \omega} X_{n}$. If $S \subseteq \Pi_{n \in \omega} X_{n}$, we let $E(S)$ denote its image in $\nabla_{n \in w} X_{n}$.

Lemma (Kunen [3 and 6, pg. 58]). Suppose X_{n} is a compact Hausdorff space for each $n \in \omega$ and $\nabla_{n \in \omega} X_{n}$ has the quotient topology induced by $u_{n \in \omega} X_{n}$, then
(i) G_{δ}-sets in $\nabla_{\mathrm{n} \in \omega} \mathrm{X}_{\mathrm{n}}$ are open
(ii) $L_{n \in \omega} X_{n}$ is paracompact iff $\nabla_{n \in \omega} X_{n}$ is paracompact ${ }^{2}$
(iii) Every open cover of $\nabla_{n \in \omega} X_{n}$ has a subcover of cardinality $\leq c$ (the cardinality of the continuum) whenever X_{n} is scattered $\forall \mathrm{n} \in \omega$.
For $A, B \in P(w)$ define $A \leq B$ if $A-B$ is finite; $A \equiv B$ if $A \leq B$ and $B \leq A$. Observe that \equiv is an equivalence relation on $P(\omega)$. Suppose λ is an ordinal and $f \in{ }^{\omega} \lambda$, for each $A \in P(\omega)$, we define in $\nabla^{\omega}(\lambda+1),\langle A, f\rangle=E\left(\Pi_{n} \in_{\omega} A_{f}(n)\right)$, where

[^0]\[

A_{f}(n)=- $$
\begin{cases}{[f(n)+1, \lambda]} & \text { if } n \in A \\ {[0, f(n)]} & \text { if } n \notin A\end{cases}
$$
\]

$\{\langle A, f\rangle: A \in \mathbf{P}(\omega)\}$ forms a clopen partition of $\nabla^{\omega}(\lambda+1)$ since $A \equiv B$ iff $\langle A, f\rangle \cap\langle B, f\rangle \neq \varnothing$.

Theorem 1. Suppose λ is an ordinal with $\operatorname{cf}(\lambda) \neq \omega$, then for $\square^{\omega}(\lambda+1)$ to be paracompact it is necessary and sufficient that $4^{\omega}(\alpha+1)$ be paracompact $\forall \alpha<\lambda$.

Proof. Necessity is obvious so we prove sufficiency only.
Without loss of generality, we assume λ is the supremum of an increasing sequence $\left\{n_{\alpha}: \alpha<c f(\lambda)\right\}$. Let R be an open cover of $\nabla^{\omega}(\lambda+1)$. For each $\tau<\omega_{1}$ and $d \in{ }^{\tau} c$ we construct inductively $V(d), W(d), \theta(d)$, and $A(d)$ to satisfy:
(1) $V(d)$ and $W(d)$ are clopen subsets of $\nabla^{\omega}(\lambda+1), \exists U \in R \ni$ $V(d) \subseteq U, V(d) U W(d) \subseteq W(d \Gamma \sigma) \forall \sigma<\tau$, and if $\sigma<\tau$ is a limit ordinal, then $W\left(d\lceil\sigma)=\cap_{\rho<\sigma} W(d\lceil\rho)\right.$.
(2) If $\sigma \leq \tau$ is an odd ordinal ${ }^{3}$, then

$$
\{V(e): \operatorname{dom}(e) \leq \sigma\} \cup\{W(e): \operatorname{dom}(e)=\sigma\}
$$

is a pairwise-disjoint covering of $\nabla^{\omega}(\lambda+1)$.
(3) $A(d)$ is an infinite subset of ω and if $\sigma \leq \tau$ is a nonlimit ordinal, then $A(d \Gamma \sigma) \leq A(d \Gamma \rho) \forall \rho<\sigma$.
(4) If $\mathrm{E}(\mathrm{x}) \in \mathrm{W}(\mathrm{d})$ and $\phi<\mathrm{A} \leq \mathrm{A}(\mathrm{d} \Gamma \sigma) \forall \sigma \leq \tau$, then $\mathrm{E}(\{\mathrm{y}$: $x(n) \leq y(n) \leq \lambda$ if $n \in A, Y(n)=x(n)$ if $n \notin A\}) \subseteq W(d)$.
(5) $\theta(d) \in \omega_{\lambda}$ is a constant function with values in $\left\{n_{\alpha}\right.$: $\alpha<c f(\lambda)\}$ and if $\sigma \leq \tau$ is even, then

$$
\theta(d \upharpoonright \sigma)(0)>\theta(d \upharpoonright \rho)(0) \forall \rho<\sigma .
$$

[^1](6) If $\sigma \leq \tau$ is odd, then $W(d \Gamma \sigma) \leq\langle A(d \Gamma \sigma), \theta(d \Gamma \sigma)\rangle$,
(7) If $\sigma \leq \tau$ is a non-limit even ordinal and $\rho=\sigma-1$, then \exists a clopen subset $G(d \Gamma \sigma)$ of $\nabla_{n \notin A(d \Gamma \rho)}(\theta(d \Gamma \sigma)(n)+1)$ such that
\[

$$
\begin{gathered}
V(d\lceil\sigma)=W(d\lceil\sigma) \cap\langle A(d\lceil\rho), \theta(d\lceil\sigma)\rangle \text { and } \\
W(d\lceil\sigma)=\{E(x) \in W(d \mid \rho): E(x\lceil\omega-A(d\lceil\rho)) \in G(d\lceil\sigma)\} . \\
\text { Now suppose our objects } V(d), W(d), \theta(d), \text { and } A(d) \text { have }
\end{gathered}
$$
\] been constructed to satisfy (1) through (7) $\forall d \epsilon^{\tau} c \quad \forall \tau<\omega_{1}$. If $E(x) \notin U\left\{V(t \Gamma \tau): t \in^{\omega}{ }^{\prime} c, \tau<\omega_{1}\right\}$ then by (1) and (2) we may find for each $\tau<\omega_{1}, d_{\tau} \epsilon^{\tau} c$ such that $E(x) \in W\left(d_{\tau}\right)$. Again from (1) and (2), if $\sigma<\tau$ is odd and $d \epsilon^{\sigma} c$ such that $d \neq d{ }_{\tau} P \sigma$. then $E(x) \notin W(d)$; therefore, $\sigma<\tau \Rightarrow d_{\sigma}=d_{\tau} \Gamma \sigma$. From (5) we may find the first even ordinal $\rho<\omega_{1}$ such that for every n,

$$
x(n)>\theta\left(d_{\rho}\right)(0) \Rightarrow x(n) \geq \sup _{\tau<\omega_{1}} \theta\left(d_{\tau}\right)(0) .
$$

From (6) $\quad \exists \mathrm{y} \in \square^{\omega}(\lambda+1) \ni E(y)=E(x)$ and

$$
A\left(d_{\rho+1}\right)=\left\{n: y(n)>\theta\left(d_{\rho+1}\right)(n)\right\} .
$$

From (7) $E(y) \in V\left(d_{\rho+2}\right)$, a contradiction. Therefore,

$$
\left\{v\left(t\lceil\tau): t \in{ }^{\omega} c, \tau<\omega_{1}\right\}\right.
$$

is a cover of $\nabla^{\omega}(\lambda+1)$ and we are done, so we should begin our construction.

Let $A(\phi)=\omega, W(\phi)=\nabla^{\omega}(\lambda+1)$, and α be the first
ordinal such that $E\left(\Pi^{\omega}\left[n_{\alpha}, \lambda\right]\right)$ is contained in some $U \in R$.
Let $\theta(\phi)(\mathrm{n})=n_{\alpha} \quad \forall \mathrm{n} \in \omega$ and $\mathrm{V}(\phi)=\langle\mathrm{A}(\phi), \theta(\phi)\rangle$.
Suppose for an ordinal $\rho<\omega_{1}$ we have constructed $V(d)$,
$W(d), \theta(d)$, and $A(d)$ to satisfy (1) through (7) $\forall d \in$
${ }^{\tau} c \forall \tau<\rho$. Our construction at ρ needs three cases:
Case 1. ρ is an odd ordinal
Let $\tau=\rho-1$ and $\theta(e)=\theta(d)$ if $e \epsilon^{\rho} c$ and $e\lceil\tau=d$. Let

$$
\left\{A(e): e \epsilon^{\rho} c, e f \tau=d\right\}
$$

be a listing of exactly one element chosen from each equivalence class of elements of

$$
\{A: \phi<A<A(d \mid \sigma), \sigma \leq \tau\} .
$$

For each $e \epsilon^{\rho} c$ we let

$$
W(e)=W(e\lceil\tau) \quad \cap\langle A(e), \theta(e)\rangle
$$

If $d \epsilon^{\tau} c$, then $W(d) \cap\langle\phi, \theta(d)\rangle$ is a clopen subset of $E\left(\Pi^{\omega}[0, \theta(d)(0)]\right)$; therefore, by the lemma (ii) and (iii) we may find a pairwise-disjoint clopen refinement of R
$\left\{V(e): e \epsilon^{\rho} c, e\lceil\tau=d\}\right.$ whose union is $W(d) \cap\langle\phi, \theta(d)\rangle$. Clearly (1) through (7) are satisfied.

Case 2. ρ is a non-limit even ordinal.
Let $\tau=\rho-1$ and $A(e)=A(d)$ if $e \epsilon^{\rho} c$ and $e \rho \tau=d$. If
$d \in^{\tau} c$ and $W(d)=\phi$, we let $W(e)=V(e)=\phi$ and

$$
\theta(e)(n)=n_{\alpha} \text { if } \theta(d)(n)=n_{\alpha-1} \quad \forall n \in w
$$

If $d \in \epsilon^{\tau} c$ and $W(d) \neq \emptyset$, let

$$
Y^{\star}(d)=\left\{g: g^{-1}(\lambda)=A(d), E(g) \in W(d)\right\}
$$

We will wish to cover $Y^{*}(d)$ by

$$
u\{W(e): e\lceil\tau=d\}
$$

From (4), $Y(d)=\left\{g \Gamma \omega-A(d): g \in Y^{*}(d)\right\} \neq \emptyset$.
In $\nabla_{\mathrm{n} \notin \mathrm{A}(\mathrm{d})}(\theta(\mathrm{d})(\underline{n})+1)$, let
$R(d)=\left\{E\left(I_{n \notin A(d)} U(n)\right): E\left(\Pi_{n \in \omega} U(n)\right) \subseteq\right.$ some $U \in R$,
$\left.E(\Pi U(n)) \cap Y^{*}(d) \neq \emptyset\right\}$.
From (5) of the induction hypothesis and the lemma, (ii) and (iii), \exists a pairwise disjoint clopen refinement $\{G(\gamma): \gamma<c\}$ of $R(d)$ whose union is $E(Y(d))$. If $e \in^{\rho} c, e\lceil\tau=d, e(\tau)=\gamma$, then let

$$
W(e)=\{E(x) \in W(d): E(x\lceil\omega-A(d)) \in G(\gamma)\}
$$

For each γ we may find $n_{\alpha(\gamma)}>\theta(d)(0)$ such that $\left\{E(x) \in W(d): E\left(x\lceil\omega-A(d)) \in G(\gamma)\right.\right.$ and $x(n)>n_{\alpha(\gamma)} \forall$ but finitely many $n \in A(d)\} \subseteq$ some $U \in R$.

Let $\theta(e)(n)=n_{\alpha(\gamma)} \forall n \in \omega$ and $V(e)=W(e) \cap\langle A(d), \theta(e)\rangle$.
Certainly (1) through (7) are satisfied.
Case 3. p is a limit ordinal.
If $e \epsilon^{\rho} c$, let $A(e)=\omega, V(e)=\phi$, and find the first
$\alpha<\omega_{1} \ni n_{\alpha}>\theta(e \upharpoonleft \tau)(0) \quad \forall \tau<\rho$. We choose $\theta(e)(n)=$ $n_{\alpha} \forall n \in \omega$. To satisfy (1) through (7) we observe that (i) of the lemma allows

$$
W(e)=n_{\tau<\rho} W(e \Gamma \tau)
$$

to be clopen.
The proof to Theorem 1 is completed.

If ω_{ω} is ordered by $f<g$ if $\{n: g(n) \leq f(n)\} \equiv \phi$, then for an ordinal k, a k-scale is an order-preserving injection $s: k \rightarrow{ }_{\omega}^{\omega}$ such that $\{s(\alpha): \alpha<k\}$ is cofinal in ${ }^{\omega}{ }_{\omega}$. Recall
$[2,7]$ that $\mathrm{CH} \Rightarrow \exists$ an ω_{1}-scale; MA $\Rightarrow \exists$ a c-scale; an ω-scale; \exists a k-scale and ℓ-scale $\Rightarrow c f(k)=c f(\ell)$; for every model m with regular ordinals k and l with $\operatorname{cf}(k) \neq \omega \neq \operatorname{cf}(l)$ and $k \leq l$, there is a model $n \supseteq m$ with a k-scale in ω_{ω} and $c=l$; and \exists models m of ZFC without k-scales for any k.

Theorem 2. (\exists a k-scale in ${ }^{\omega}{ }_{\omega}$). Suppose $\operatorname{cf}(\lambda)=\omega$, then for $\left[^{\omega}(\lambda+1)\right.$ to be paracompact it is necessary and sufficient that $\exists\left\{\gamma_{n}: n \in \omega\right\} \subseteq \lambda \ni \sup _{n \in \omega} \gamma_{n}=\lambda$ and $L_{n \in \omega}\left(\gamma_{n}+1\right)$ is paracompact.

Proof. Necessity is obvious so we prove sufficiency.
WLOG assume $\gamma_{n}<\gamma_{n+1} \forall n \in \omega, c f\left(\gamma_{n}\right)=1 \quad \forall n \in \omega$, and $\{s(\alpha): \alpha<k\}$ is a k-scale in ${ }_{\omega}^{\omega}$ for a regular k. Let R be
an open cover of $\nabla^{\omega}(\lambda+1)$. For each $\tau<k$ and $d \epsilon^{\tau} c$ we construct inductively $V(d), W(d), \theta(d)$, and $A(d)$ to satisfy:
(1) $V(d)$ and $W(d)$ are clopen subsets of $\nabla^{\omega}(\lambda+1), \exists U \in R \ni$ $V(d) \subseteq U, V(d) U W(d) \subseteq W(d \Gamma \sigma) \quad \forall \sigma<\tau$, and if $\sigma<\tau$ is a limit ordinal $W(d \Gamma \sigma)=\cap_{\rho<\sigma} W(d \Gamma \rho)$.
(2) If $\sigma \leq \tau$ is an odd ordinal, then

$$
\{V(e): \operatorname{dom}(e) \leq \sigma\} \cup\{W(e): \operatorname{dom}(e)=\sigma\}
$$

is a pairwise-disjoint covering of $\nabla^{\omega}(\lambda+1)$.
(3) $A(d)$ is an infinite subset of ω and if $\sigma \leq \tau$ is a nonlimit ordinal, then $A(d \Gamma \sigma) \leq A(d \Gamma \rho) \quad \forall \rho<\sigma$.
(4) $\theta(d)(n)=\gamma_{S(\alpha)(n)} \forall n \in \omega$ and some $\alpha<k$; and if $\sigma \leq \tau$ is even, then

$$
\{n: \theta(d \Gamma \sigma)(n) \leq \theta(d \Gamma \rho)(n)\} \equiv \phi \quad \forall \rho<\sigma .
$$

(5) If $\sigma \leq \tau$ is odd, then $W(d \Gamma \sigma) \subseteq\langle A(d \Gamma \sigma), \theta(d \Gamma \sigma)\rangle$ and

$$
\left\{V(e): e \epsilon^{\sigma} c, e\lceil\sigma-1=d\lceil\sigma-1\}=\langle\phi, \theta(d\lceil\sigma)\rangle \cap\right.
$$

$$
w(d \Gamma \sigma-1) .
$$

(6) If $\sigma \leq \tau$ is a non-limit even ordinal, then

$$
V(d \Gamma \sigma)=W(d \Gamma \sigma) \cap\langle A(d \Gamma \sigma-1), \theta(d \Gamma \sigma-1)\rangle .
$$

Now suppose our objects $V(d), W(d), \theta(d)$, and $A(d)$ have been constructed to satisfy (1) through (6) $\forall \mathrm{d} \in{ }^{\tau} \mathrm{c} \quad \forall \tau<k$. For $x \in \Pi^{\omega}(\lambda+1)$ define

$$
x^{\#}(n)= \begin{cases}0 & \text { if } \\ x(n)=\lambda \\ x(n) & \text { otherwise }\end{cases}
$$

We may find the first $\alpha \ni\left\{n: \gamma_{S}(\alpha)(n) \leq x^{\#}(n)\right\}=\phi$. If $\alpha=\alpha_{0}+m$, where $\alpha_{0}=0$ or is a limit ordinal and $m \in \omega$, let $\tau=\alpha_{0}+2(m+1)$. From (2), (4), (5), and (6) we have $E(x) \in U\{V(e): \operatorname{dom}(e) \leq \tau\}$.
Therefore, $\left\{V(d): d \in{ }^{\tau} c, \tau<k\right\}$ is a pairwise-disjoint clopen refinement of R covering $\nabla^{\omega}(\lambda+1)$. So we must complete our
construction.
Let $A(\phi)=\omega, W(\phi)=\nabla^{\omega}(\lambda+1)$, and α be the first ordinal such that $\left.E\left(\Pi_{n \in \omega}{ }^{\left[\gamma_{S}(\alpha)(n)\right.}, \lambda\right]\right)$ is contained in some $U \in R$. Let $\theta(\phi)(n)=\gamma_{S(\alpha)(n)} \forall n \in \omega$ and $V(\phi)=\langle A(\phi), \theta(\phi)\rangle$.

Suppose for an ordinal $\rho<k$ we have constructed $V(d)$, $W(d), \theta(d)$, and $A(d)$ to satisfy (1) through (6) $\forall d \epsilon^{\tau} C \quad \forall$ $\tau<\rho$. Our construction at ρ needs three cases:

Case 1. ρ is an odd ordinal.
Let $\tau=\rho-1$ and $\theta(e)=\theta(d)$ if $e \epsilon^{\rho} C$ and $e \Gamma \tau=d$. Let

$$
\left\{A(e): e \in^{\rho} c, e\lceil\tau=d\}\right.
$$

be a listing of exactly one element from each equivalence class of elements of

$$
\{A: \phi<A<A(d \Gamma \sigma), \sigma \leq \tau\} .
$$

For each $e \epsilon^{\rho} c$ we let

$$
w(e)=w(e\lceil\tau) \cap\langle A(e), \theta(e)\rangle .
$$

If $d \in{ }^{T} c$, then $W(d) \cap\langle\phi, \theta(d)\rangle$ is a clopen subset of

$$
E\left(\Pi_{n \in \omega}[0, \theta(d)(n)]\right)
$$

and $\pi_{n \in \omega}[0, \theta(d)(n)]$ is a clopen subset of a subproduct of $\pi_{n \in \omega}\left(\gamma_{n}+1\right)$; therefore, by the lemma (ii) and (iii) we may find a pairwise-disjoint clopen refinement of $R,\{V(e)$:
$e \epsilon^{\rho} c, e\lceil\tau=d\}$ whose union is $W(d) \cap\langle\phi, \theta(d)\rangle$. Clearly, (1) through (6) are satisfied.

Case 2. ρ is a non-limit even ordinal.
Let $\tau=\rho-1$, and $A(e)=A(d)$, and $W(e)=W(d)$ if $e \epsilon^{\rho} C$ and $e \Gamma^{\tau}=d$. If $d \in{ }^{\tau} c$ and $W(d)=\phi$, we let $W(e)=V(e)=\phi$ and

$$
\begin{aligned}
& \theta(e)(n)=\gamma_{S(\alpha+1)(n)} \forall n \in \omega ; \text { where } \\
& \theta\left(e\lceil\tau)(n)=\gamma_{S(\alpha)(n)} \forall n \in \omega\right. \text {. }
\end{aligned}
$$

If $d \epsilon^{\top} c, W(d) \neq \phi$, and

$$
Y(d)=\left\{g\left\lceil\omega-A(d): Y^{-1}(\lambda)=A(d), E(y) \in W(d)\right\}=\phi\right.
$$

In $\nabla_{n \notin A(d)}(\theta(\mathrm{d})(\mathrm{n})+1)$, let

$$
\begin{aligned}
& R(d)=\left\{E\left(\Pi_{n \notin A(d)} U(n)\right): E\left(\Pi_{n \in \omega} U(n)\right) \subseteq \text { some } U \in R,\right. \\
& \left.\exists E(g) \in W(d) \cap E\left(\Pi_{n \in \omega} U(n)\right), g^{-1}(\lambda)=A(d)\right\}
\end{aligned}
$$

Since $L_{n \notin A(d)}(\theta(d)(n)+1)$ is homeomorphic to a clopen subset of a subproduct of $\square_{n \in \omega}\left(\gamma_{n}+1\right)$, we may use the lemma, (ii) and (iii), to find a pairwise disjoint clopen refinement $\{G(\delta): \delta<c\}$ of $R(d)$ whose union is $E(Y(d))$. If $e \epsilon^{p} c$, e $\Gamma \tau=d, e(\tau)=\delta$, then let $\alpha(\delta)$ be the first ordinal $>\alpha(d)$, where $\theta(d)(n)=\gamma_{s(\alpha(d))(n)} \forall n \in \omega$, such that

$$
\begin{aligned}
& V(e)=\{E(x) \in W(d): E(x \Gamma \omega-A(d)) \in G(\delta), x(n)> \\
& \left.\gamma_{S}(\alpha(\delta))(n) \forall n \in \omega\right\}
\end{aligned}
$$

is contained in a member of R. Let $\theta(e)(n)=\gamma_{s(\alpha(\delta)(n)} \forall n \in \omega$. Clearly, (1) through (6) are satisfied.

Case 3. ρ is a limit ordinal.
If $e \epsilon^{\rho} c$, let $A(e)=\omega, V(e)=\phi$, and $\theta(e)(n)=\gamma_{s(\alpha)(n)}$
$\forall \mathrm{n} \in w$, where

$$
\alpha=\sup \left\{\beta: \theta\left(e\lceil\tau)(n)=\gamma_{S(\beta)(n)} \forall n \in \omega, \tau<\rho\right\}\right.
$$

To see that (1) through (6) are satisfied, we must show

$$
W(e)=\Pi_{\tau<\rho} W(e\lceil\tau) \text { is open. }
$$

However, if $E(x) \in W(e)$, then the induction hypothesis and the definition of $W(d)$ in Case 2 yields

$$
E\left(\Pi\left[x^{*}(n), x(n)\right]\right) \subseteq W(e)
$$

where
$x^{*}(n)=\left\{\begin{array}{l}x(n) \text { if } c f(x(n))=1 \\ \theta(e)(n+1) \text { if } x(n) \text { is a limit }>\theta(e)(n) \\ \sup \{\theta(e\lceil\tau)(n): \theta(e\lceil\tau)(n)<x(n), \tau<\rho\}+1, \text { other }- \\ \text { wise. }\end{array}\right.$

This completes the construction and the proof of Theorem 2.

Remarks

A. There are many models of $Z F C$, constructed via forcing, in which there are no k-scales [2]. However, J. Roitman [4] has shown that in some of these models, techniques inadvertedly, in some sense, yield $\left[_{n \in \omega} X_{n}\right.$ paracompact \forall compact metrizable X_{n}; specifically she has shown:

In a model m of set theory which is a direct iterated CCC extension of length k of a model $n, \operatorname{cf}(k)>\omega \Rightarrow$ $\nabla_{n \in \omega} X_{n}$ is paracompact if X_{n} is regular and separable. A simple adaptation of her proofs will give the conclusion of Theorem 2 in m.
B. Suppose u_{0} is an ordinal and for $n>0 u_{n}$ is the lexicographic ordered product of u_{n-1} with itself. Let $u=\sup _{n \in \omega} u_{n}$. It is unknown whether (\exists a c-scale in $\left.\omega_{\omega}\right) \Rightarrow \square^{\omega}(u+1)$ is paracompact when $u_{0}=\omega_{1}$; however, our theorems show (\exists a k-scale in $\left.{ }_{\omega}^{\omega}\right) \Rightarrow \square^{\omega}\left(u_{n}+1\right)$ is paracompact $\forall n \in \omega$. It is unknown whether $\omega^{\omega}(\omega+1)$ is paracompact $\Rightarrow\left[^{\omega}(u+1)\right.$ is paracompact when $u_{0}=\omega$; although $\square^{\omega}\left(u_{n}+1\right)$ is paracompact for each $n .{ }^{4}$ The simplest question still unanswered is "Does there exist a model m of ZFC in which $\square^{\omega}(\lambda+1)$ is not paracompact for some ordinal λ ?" The hardest question asks that $\lambda=\omega$.
C. We observe a recent result communicated to the author by E. K. van Douwen: If X_{n} is compact $\forall n \in \omega$, then $\square_{n \in \omega} X_{n}$ is pseudo-normal. The author gives much appreciation to the referee whose suggestions for clarification of
$\overline{4_{\nabla}{ }^{\omega}\left(u_{n}+1\right) \text { may be embedded in } \nabla^{u_{n}}+1(\omega+1) \text {. } ~}$
unnecessary technicalities in our proofs appear.

Added in proof
Recently, J. Roitman has proved that $\square_{n \in \omega} X_{n}$ is paracompact whenever each X_{n} is compact first countable and ${ }^{\omega} \omega$ fails to have a cofinal family of cardinality less than the continuum. A corollary to this theorem and our theorems 1 and 2 yields $c=\omega_{2} \Rightarrow \square^{\omega} \omega_{1}+1$ is paracompact. Independently, I have shown the same corollary and, in addition:

Suppose, in theorem 2, (ヨak-scale in ${ }^{\omega}{ }_{\omega}$) is replaced by κ is the least cardinal of any cofinal family in ${ }^{\omega} \omega$ and $A \subset \mathbb{P}(\omega)$ with $|A|=k$, then

$$
\mathrm{E}\left(\left\{\mathrm{x} \in \square^{\omega} \lambda+1: \mathrm{x}^{-1}(\lambda) \in A\right\}\right) \text { is paracompact. }
$$

References

1. E. K. van Douwan, \exists a k-scale implies $\square_{n \in \omega} X_{n}$ is paracompact if X_{n} is compact metric $\forall n \in \omega$, lecture presented at the Ohio University Conference on Topology, May 1976.
2. S. Hechler, On the existence of certain cofinal subsets of ${ }^{\omega}{ }_{\omega}$, Axiomatic Set Theory, Proc. Symp. Pure Math. (vol. 13, part 2), AMS (1974), 155-173.
3. K. Kunen, on the normality of box products of ordinals, preprint.
4. J. Roitman, Paracompact box products in forcing extensions, to appear.
5. M. E. Rudin, Countable box products of ordinals, Trans. Amer. Soc. (vol. 192), AMS (1974), 121-128.
6. \qquad , Lectures on set theoretic topology, Conf. board math. sci. reg. conf. series in math \#23, AMS (1975).
7. S. Williams, Is $\square^{\omega}(\omega+1)$ paracompact? Proceedings of the Auburn University Conference on Topology, 1976.

State University of New York at Buffalo
Amherst, New York 14226

[^0]: ${ }^{2}$ With (i) $\nabla_{n \in \omega} X_{n}$ is paracompact iff every open cover has a pairwise disjoint clopen refinement.

[^1]: ${ }^{3} \sigma$ is an odd ordinal when $\sigma=\sigma_{0}+2 n+1$, where $\sigma_{0}=0$ or is a limit ordinal and $n \in \omega$. If σ is not odd it is even.

