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BOXES OF COMPACT ORDINALS 

Scott W. Williams 

If {X : nEw} is a family of spaces, then DE X ,n -n w n 

called the box product of those spaces, denotes the cartesian 

product of the sets with the topology generated by all sets 

of the form ITnEwG , where each G need only be open in the n n 
w

factor space X . If X X V nEw, we denote DnEwX by U X. n n n 

M. E. Rudin [5] and K.,Kunen [3 and 6, pg. 58] have shown 

that CH implies UnEw(A + 1) is paracompact for every countan 

ble collection of ordinals {An: nEw}. At the 1976 Auburn 

University Tbpology Conference I demonstrated [7] that the 

paracompactness of UW(w + 1) is implied by the existence of 

a k-scale in ww, a set-theoretic axiom which is a consequence 

of, but not equivalent to, Martin's Axiom, and hence CH. In 

addition, I proved uW(w + 1) is paracompact iff uW(a + 1)l 

is paracompact V countable ordinals a. If this is coupled 

with E. van Douwen' s (3 a k-scale in ww) ~ E X is para-
n w n 

compact for all collections {X : nEw} of compact metrizable n 

spaces [1], we have LJw((J)l + 1) is paracompact if 3 a 

k-scale in ww. However, none of the proofs generalize to 

higher ordinals (Uw(W 2 + 1), for example). We conjecture: 

If UW(w + 1) is paracompact, then UW(A + 1) is paracom

l
pact V ordinals A. 

lIt is unknown whether it is consistent for Ow(w + 1) not to 

be paracompact; however, 3 compact spaces X such that n
 

U X is not normal. Moreover, irrationals x(Uw(w + 1))

nEw n
 

is not normal [6, pg. 58].
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Toward this conjecture we show:
 

Suppose A is an ordinal for which II (A + 1) is para

-nEW n 

compact whenever A < A~ nEw, then UW(A + 1) if either of 
n 

the following holds: 

(1) cf(A) # w (Theorem 1) . 

(2) cf (A) = wand 3 a k-scale in Ww (Theorem 2) . 

Now supPQse {X : nEw} is a family of sets and for each n 

f E IInEwXn , 

E (f) = {g E II EX: (3 mEw) n > m ::::;> 9 (n) = f (n) } , 
n w n 

then {E(f): f E II EX} forms a partition of II E X and the n wnnw n 

resultant quotient set is denoted by VnEwXn . If S ~ IInEwXn , 

we let E(S) denote its ~image in VnEwX . n 

Lemma (Kunen [3 and 6, pg. 58]). Suppose X is a compact
n 

Hausdorff space for each nEw and VnEwX has the quotientn 

topoZogy induced by UnEwXn ' then 

(i) Go-sets in VnEwX are openn 
2(ii) U E X is paracompact iff V E X is paracompactn wnnw n 

(iii) Every open cover of V X has a subcover of carnEw n 

dinaZity < c (the cardinaZity of the continuum) 

whenever X is scattered ~ nEw. n 

For A, B E P (w) define A < B if A - B is finite; A = B 

if A < Band B < A. Observe that = is an equivalence relation 

on P (w). Suppose A is an ordinal and f E wA, for each 

A E P (w), we define in V
W

(A + 1), <A~ f) = E (iinEwAf (n) ) , 

where 

2With (i) V E X is paracompact iff every open cover has a 
n w n
 

pairwise disjoint clopen refinement.
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i [f (n) + 1, A] if n E A 
Af(n) = 

[0,	 f (n) ] if n i A. 

{ (A, f ) A E P (w)} forms a clopen partition of 'iJw (A + 1) 

s ince A - B iff <A, f > n <B , f > 'F fl. 

Theorem 1. Suppose A is an ordinaZ with cf(A) 'F w, then 

for OW(A + 1) to be paracompact it is necessary and sufficient 

that UW(a + 1) be paracompact V a < A. 

Proof. Necessity is obvious so we prove sufficiency only. 

Without loss of generality, we assume A is the supremum 

of an increasing sequence {n : a < cf(A)}. Let R be an open
a 

cover of 'iJW(A + 1). For each T < w and d E T C we constructl 

inductively V(d), W(d), S(d), and A(d) to satisfy: 

(1)	 V(d) and Wed) are clopen subsets of 'iJW(A + 1), 3 U E R 3 

V(d) ~ U, V(d) U W(d) ~ W(d ~ 0) V 0 < T, and if 0 < T is 

a limit ordinal, then Wed ~o) = n < Wed rp) . p 0 

(2)	 If 0 ~ T is an odd ordina1 3 , then 

{V(e): dom (e) ~ o} U {W (e): dom (e) = o}
 

is a pairwise-disjoint covering of 'iJW(A + 1) .
 

(3)	 A(d) is an infinite subset of wand if 0 < T is a non-

limit ordinal, then A(d ~ 0) < A(d ~ p) V P < 0:.-

(4)	 If E(x) E Wed) and <P <A~A(dra) 'V a < T, then E ({y:-

x(n) ~ yen) < A if n E A, Y(n) = x(n) if n i A}) ~ W(d).-

(5)	 e (d) E wA is a constant function with values in {n : 
ex.
 

a, < cf (A) } and if a < T is even, then
 

e(d	 to) (0) > e(d tp) (0) V p < o. 

30 is an odd ordinal when a = 0 0 + 2n + 1, where 0 0 = 0 or 

is a limit ordinal and nEw. If 0 is not odd it is even. 
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( 6) I f a < Tis odd, then W(d r a) 2. <A (d r ()), 8 (d r a) > 
(7)	 If a < T is a non-limit even ordinal and p = a - 1, then 

3 a clopen subset G(d ta) of "niA(d t p) (8 (d ra) (n) + 1) 

such that 

v (d ra) = W(d ra) n <A (d r p), 8 (d r a) > and 

W(d ra) = {E(x) E W(d I p): E(x rw - A(d IP)) E G(d ra)}. 

Now suppo~e our objects V(d), W(d), 8(d), and A(d) have 

been	 constructed to satisfy (1) through (7) VdETc V T < w .
l 

If E(x) i U{V(t rT): tE 
W1 

C, T < wI} then by (1) and (2) we 

may find for each T < w ' dTE 
T 

c such that E(X)EW(d ). Againl	 T

from	 (1) and (2), if a < T is odd and dEac such that d ~ d ,a,
T 

then E(x) i W(d)i therefore, a < T ~ do d T rae From (5) 

we may find the first even ordinal P < w such that for every
l 

n, 

x (n) > 8 (d ) (0) ==9 X (n) > sup < 8 (d ) (0) • 
P T wl T 

From (6) 3 Y E OW(A+ 1) 3 E(y) = E(x) and 

A(d	 + ) = {n: y (n) > 8 (d + l ) (n)}.p l p 

From (7) E(y) E V(d p +2)' a contradiction. Therefore, 

wl
{V (t rT): tEe, T < w

l
} 

is a cover of VW(A + 1) and we are done, so we should begin 

ou~ construction. 

Let A(~) = w, W(~) = "W(A + 1), and a be the first 

ordinal such that E(rrw[na, ,A]) is contained in some U E R. 

Let	 8(~) (n) = na, V nEw and V(~) <A(~) ,8 (<1») 

Suppose for an ordinal p < w we have constructed V(d) ,
l 

W(d), 8(d), and A(d) to satisfy (1) through (7) V d E 

TC 'V T < p. Our construction at p needs three cases: 

Case 1. p is an odd ordinal 

Let T = P - 1 and 8te) = 8(d) if eEPc and e rT d. Let 



TOPOLOGY PROCEEDINGS Volume 2 1977 635 

be a listing of exactly one element chosen from each equiva

lence class of elements of 

{A : cp < A < A (d r0), a < T}. 

For each eEPc we let 

W(e) = W(e r T) n (A(e), 8(e) . 

If dETC, then W(d) n (cp, 8(d) > is a clopen subset of 

E(ITw[O, 8(d) (0)]); therefore, by the lemma (ii) and (iii) we 

may find a pairwise-disjoint clopen refinement of R 

{V(e): eEPc, e rT = d} whose union is W(d) n (cP, 8(d». 

Clearly (1) through (7) are satisfied. 

Case 2. P is a non-limit even ordinal. 

Let T = P - 1 and A(e) = A(d) if eEPc and e rT d. If 

dETC and W(d) = ¢, we let W(e) = V(e) = cp and 

8 (e) (n) = nO. if 8 (d) (n) = no.-l "if nE w 

If dETC and W(d) ~ ~, let 

Y*(d) = {g: g-l(A) A(d), E(g) E W(d)}. 

We will wish to cover Y*(d) by 

u {W (e): e ~ T d} • 

From (4), Y(d) = {g lW - A(d): 9 E Y*(d)} ~ ~. 

In 'VIiA (d) (e (d) (I!) + 1), let 

R(d) = {E(ITniA(d)u(n»: E(ITnEwU(n» ~ some U E R,
 

E (ITU (n» n Y* (d) ~ ~}.
 

From (5) of the induction hypothesis and the lemma, (ii) and
 

(iii), 3 a pairwise disjoint clopen refinement {G(y): y < c}
 

of R~d) whose union is E(Y(d». If eEPc, e rT = d, e(T) y,
 

then let
 

W(e) {E(x)EW(d): E(x~w-A(d»EG(y)}. 
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For each Y we may find nu(y) > 8(d) (0) such that
 

{E(x)EW(d): E(x rw-A(d»EG(y) and x(n) > na(y) V but finitely
 

many n E A(d)} ~ some U E R.
 

Let 8(e) (n) = nu(y) V nEw and V(e) = W(e) n (A(d), 8(e».
 

Certainly (1) through (7) are satisfied.
 

Case 3. p is a limit ordinal. 

If eEPc, let A(~) = w, V(e) = ¢, and find the first 

u < wI;' nO, > 8(e ~T) (0)- V T < p. We choose 8(e) (n) 

nO, V nEw. To satisfy (1) through (7) we observe that (i) of 

the lemma allows 

W(e) n < W(e IT)
T P 

to be clopen. 

The proof to Theorem 1 is completed. 

If Ww is ordered by f < g if {n: g(n) ~ f(n)} ~ ¢, then 

for an ordinal k, a k-scale is an order-preserving injection 

s: k ~ Ww such that {s(a): a < k} is cofinal in ww. Recall 

[2,7] that CH ~ 3 an wl-scale; MA ==i> 3 a c-scale; an 

w-scalei 3 a k-scale and i-scale ~ cf(k) = cf(i); for every 

model m with regular ordinals k and 1 with cf (k) ~ W ~ cf (1) 

and k ~ i, there is a model n ::? m with a k-scale in Ww and 

c = ii and 3 models m of ZFC without k-scales for any k. 

Theorem 2. 3 a k-scale in ww). Suppose cf(A) = w~ 

then for ~W(A + 1) to be paracompact it is necessary and suf

ficient that 3 {Yn: nEw} ~ A ;, sUPnEwY = A and U~Ew(Yn + 1)n 

is paracompact. 

Proof. Necessity is obvious so we prove sufficiency. 

WLOG assume Y < Yn+l V nEw, cf(y ) = 1 V nEw, and n n 

{s(a): u < k} is a k-scale in Ww for a regular k. Let R be 
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an open cover of VW
(\ + 1). For each T < k and dETc we con

struct inductively V(d), W(d), 8(d), and A(d) to satisfy: 

(1)	 V(d) and W(d) are clopen subsets of VW
(\ + 1), 3 UER 3 

V(d) ~ U, V(d) U W(d) ~ W(d 10) V 0 < T, and if 0 < T 

is a limit ordinal W(d ~o) = n W(d lP).
P<o 

(2)	 If 0 < T is an odd ordinal, then 

{V(e): dom(e) ~ o} U {W(e): dom(e) = o}
 

is a pairwise-disjoint covering of VW
(\ + 1) .
 

(3)	 A(d) is an infinite subset of wand if 0 < T is a non-

limit ordinal, then A(d ro) ~ A(d ~p) V P < o. 

(4)	 8(d) (n) = Ys(a) (n) V nEw and some a < k; and if 0 < T is 

even, then 

{n: 8 (d r0) (n) ~ 8 (d ~ p) (n)} :: <p V P < o. 

(5)	 If 0 < T is odd, then W(d ~o) ~ < A(d ~o) ,8(d ~o) > and 

{V(e): eEoc,e ~o - 1 =~d ~o - l} = <<p,8(d ro» n 

W(d r 0 -	 1). 

(6)	 If 0 < T is a non-limit even ordinal, then 

V(d ~ 0) = W(d r 0) n <A(d ro - 1),8 (d ~o - 1) > . 

Now suppose our objects V(d), W(d), 8(d), and A(d) have 

been constructed to satisfy (1) through (6) V dETc V T < k. 

For xEITw(\ + 1) define 

#	 iO if x (n) = \ 
x (n)	 = 

x(n)	 otherwise. 

We may find the first u 3 in: Ys(u) (n) ~ x#(n)} = ¢. If 

a = a O + m, where a O = 0 or is a limit ordinal and mEw, let 

T = a O + 2 (m + 1). From (2), (4), (5), and (6) we have 

E(x) E U{V(e): dom(e) ~ T}. 

Therefore, {V(d): dETc, T < h} is a pairwise-disjoint clopen 

refinement of R covering VW(\ + 1). So we must complete our 
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construction. 

Let A(¢) = w, W(¢) = vW(A + 1), and a be the first ordina

such is contained in some U E R. Letthat E(IInEw[Ys(a) (n) ,A]) 

8 (¢) (n) = V nEw and V(¢) = ( A(¢) ,8(¢) )Ys (a) (n) 

Suppose for an ordinal P < k we have constructed V(d) , 

W(d), 8(d), and A(d) to satisfy (1) through (6) V dETc V 

T <	 p. Our construction at p needs three cases: 

Case	 1. p is an odd ordinal. 

Let T = P - 1 and 8(e) d. Let 

be a listing of exactly one element from each equivalence 

class of elements of 

{A: ¢ < A < A (d r 0), 0 < T}. 

For each eEPc we let 

W(e) = W(e ~T) n (A(e), 8 (e) ) . 

If dETc, then W(d) n <¢, 8(d» is a clopen subset of 

E (II [0, 8 (d) (n)])
nEw 

and II E [0, 8(d) (n)] is a clopen subset of a subproduct of n w , 

TInEw(Y + 1); therefore, by the lemma (ii) and (iii) we mayn 

find a pairwise-disjoint clopen refinement of R,{V(e): 

eEPc, efT = d} whose union is W(d) n (¢, 8(d) >. Clearly, 

(1)	 through (6) are satisfied. 

Case 2. P is a non-limit even ordinal. 

Let T P - 1, and A(e) = A(d), and W(e) = W(d) if eEPc 

and e ~T d. If dETc and W(d) = ¢, we let W(e) = V(e) = ¢ 

and 

8 (e) (n) = Ys (0,+1) (n) V nEw; where 

8 (e ~ T) (n) = Ys (a,) (n) V nEw. 



TOPOLOGY PROCEEDINGS Volume 2 1977 639 

If dETC, W(d) ~ ¢, and 

Y(d) = {glw - A(d): y-l(A) A(d), E(y) E W(d)} ¢ • 

In VniA(d) (8(d) (n) + 1), let 

R(d) = {E(ITniA(d)u(n)): E(ITnEwU(n)) c some U E R, 

3 E(g)EW(d) n E(IT E U(n)) ,g-l(A) = A(d)}
n w 

Since UniA(d) (8(d) (n) + 1) is homeomorphic to a clopen subset 

of a subproduct of DnEw(Y + 1), we may use the lemma, (ii)n 

and (iii), to find a pairwise disjoint clopen refinement 

{G(o): 0 < c} of R(d) whose union is E(Y(d)). If eEPc, 

e ~T = d, e(T) = 0, then let a(o) be the first ordinal> a(d), 

where 8(d) (n) = Ys(a(d)) (n) V nEw, such that 

V(e) = {E(x)EW(d): E(x{'w - A(d)) -( G(o), x(n) > 

Ys(a(o)) (n) V nEw} 

is contained in a member of R. Let 8(e) (n) Ys (a ( 0) (n) V nE w. 

Clearly, (1) through (6) are satisfied. 

Case 3. P is a limit ordinal. 

If eEPc, let A(e) = w, V(e) = ¢, and 8(e) (n) Ys (a) (n) 

V nEw, where 

a = sup{S: 8(e rT) (n) = Ys(S) (n) V nEw, T < pl. 

To see that (1) through (6) are satisfied, we must show 

W(e) = nT<pw(e rT) is open. 

However, if E(x) E W(e), then the induction hypothesis and 

the definition of W(d) in Case 2 yields 

E(IT[x*(n), x(n)]) ~W(e), 

where 

x(n) if cf(x(n)) = 1 

x*(n) 8 (e) (n + 1) if x (n) is a 1 imi t > 8 (e) (n)
 

sup{8 (e ~ T) (n): 8 (e ~T) (n) < x(n), T < p} + 1, other

wise.
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This completes the construction and the proof of Theorem 2. 

Remarks 

A.	 There are many models of ZFC, constructed via forcing, 

in which there are no k-scales [2]. However, J. Roitman 

[4] has shown that in some of these models, techniques 

inadvertedly, in some sense, yield 0nEwXn paracompact ~ 

compact metrizable X ; specifically she has shown: n 

In a model m of set theory which is a direct iterated 

CCC extension of length k of a model n, cf(k) > w ~ 

VnEwX is paracompact if X is regular and separable.n n 

A simple adaptation of her proofs will give the conclusion 

of Theorem 2 in m. 

B. Suppose Uo is an ordinal and for n > 0 un is the lexico

graphic ordered product of u n _ l 
with itself. Let 

U = sUPnE wun • It is unknown whether (3 a c-scale in 

ww) ~ [jw (u + 1) is paracompact when UU = wI; however, 

our theorems show (3 a k-scale in ww) ==> OW (~ + 1) is 

paracompact ~ nEw. It is unknown whether Uw(w + 1) is 

paracompact ~ ow(u + 1) is paracompact when U = w; al o 
4though Ow(u + I} is paracompact for each n. The simplestn 

question still unanswered is "Does there exist a model m 

of ZFC in which OW(A + I} is not paracompact for some 

ordinal A?" The hardest question asks that A = w. 

C.	 We observe a recent result communicated to the author by 

E. K. van Douwen: If X is compact ~ nEw, then DnEwX n n 

is pseudo-normal. The author gives much appreciation to 

the	 referee whose suggestions for clarification of 

U + 1 
4Vw(u + I} may be embedded in V n (w + I) • n 
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unnecessary technicalities in our proofs appear. 

Added in proof 

Recently, J. Roitman has proved that DnEwX is paracomn 

pact whenever each X is compact first countable and Ww fails n 

to have a cofinal family of cardinality less than the con

tinuum. A corollary to this theorem and our theorems 1 and 2 

w
yields c w ~o w + 1 is paracompact. Independently, I

2 l 

have shown the same corollary and, in addition: 

Suppose, in theorem 2, (3 a K -sca le in ww) is rep laced 

by K is the least cardinal of any cofinal family in Ww and 

A c	 p (w) with I AI = K, then 

E({x E OW A + 1: x-l(A) E A}) is paracompact. 
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