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ABSTRACT
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By a link manifold we mean a connected, orientable, compact 3-manifold whose
boundary consists of tori. If a link manifold has only one boundary component,
it is also called a knot manifold. A link manifold is said to be hyperbolic if its
interior has a complete hyperbolic structure of finite volume. A link manifold is
said to be large if it contains a closed, embedded, orientable, incompressible, and
non-boundary-parallel surface.

Let M be a compact 3-manifold. If for some representation ρ of π1(M) into
SL2(C), {tr(ρ(γ)); γ ∈ π1(M)} is not contained in the set of algebraic integers, then
by Bass [1], M contains a properly embedded, orientable, incompressible and non-
boundary-parallel surface (we shall call such a surface a properly embedded essential
surface). If in particular M is a hyperbolic link manifold or a closed hyperbolic
manifold and if a discrete faithful representation ρ : π1(M)→SL2(C) has non-
integral traces, we say that M has non-integral traces. In such a case M has a
closed embedded essential surface.

In [9] a method for constructing examples of closed hyperbolic 3-manifolds
with non-integral traces was introduced. The construction makes use of the
A-polynomial. More concretely, one starts with a hyperbolic knot manifold M .
If r is a boundary slope of M associated to a boundary slope of the Newton poly-
gon of the A-polynomial of M and if M(r) (the Dehn filling of M with slope r) is
a hyperbolic 3-manifold, then very likely M(r) has non-integral traces.
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In this paper we show that a similar method also works for constructing hyper-
bolic link manifolds with non-integral traces. Namely we start with a hyperbolic
link manifold with at least n ≥ 2 boundary tori T1, . . . , Tn. By [5] each fixed Tj

contains at least two distinct boundary slopes which bound embedded essential
surfaces in M disjoint from all other boundary components of M . If rj ⊂ Tj is such
a boundary slope and if M(Tj, rj) (the Dehn filling of M along the torus Tj with
the slope rj) is a hyperbolic link manifold (or a hyperbolic knot manifold if n = 2),
then very likely M(Tj, rj) has non-integral traces. To find such boundary slopes we
make use of the A-polynomial n-tuple for a link manifold with n boundary tori.

We now define the A-polynomial n-tuple for an n-component link, which is a
natural generalization of the A-polynomial for a knot introduced in [3]. As in [4],
for any compact manifold M , R(M) = {ρ; ρ : π1(M)→SL2(C) a homomorphism}
denotes the set of SL2(C) representations of π1(M), X(M) = {χρ; ρ ∈ R(M)}
denotes the corresponding set of characters. Let L = K1 ∪ K2 ∪ · · · ∪ Kn be a link
of n components in a closed 3-manifold W . Let M be the link manifold which is
the exterior of L in W . Let T1, . . . , Tn be the boundary tori of M corresponding to
K1, . . . , Kn respectively. Let µj be an oriented essential simple closed curve in Tj

which is a meridian of the knot Kj. Fix another essential simple closed curve λj in
Tj such that the geometric intersection number of µj and λj is 1. Orient λj using
the right hand rule (so that the cross product of the orientations of µj and λj has
the direction pointing inward the manifold M). Then Bj = {µj, λj} is a basis of
H1(Tj ; Z) ∼= π1(Tj).

Let i∗j : X(M)→X(Tj) be the regular map induced by the inclusion induced
homomorphism i#j : π1(Tj)→π1(M). Note that in the knot manifold case, i.e. when
j = n = 1, i∗1(X(M)) is always at most one dimensional in X(T1) = X(∂M).
But when n ≥ 2, it is possible for i∗j (X(M)) to be two dimensional. In order to
associated a two-variable polynomial to i∗j (X(M)), we need to algebraically cut out
a 1-dimensional subset from i∗j (X(M)). This cutting should be canonical and retain
as much interesting information as possible about the manifold M . Motivated by
[5], we propose the following cutting procedure. For each element γ ∈ π1(M), let
fγ be the regular function on the character variety X(M) defined by fγ(χρ) =
(χρ(γ))2 − 4. For each fixed j, let Yj(M) be the subvariety of X(M) defined by
fµk

= 0, fλk
= 0 for all k �= j, excluding those algebraic components consisting of

only reducible characters. Let Vj be the Zariski closure of i∗j (Yj(M)) in X(Tj).

Lemma 1. The dimension of Vj as a subvariety of X(Tj) is at most one.

Proof. Suppose otherwise that Vj is two-dimensional. Then for any primitive ele-
ment αj of π1(Tj), fαj cannot be a constant function on Vj . Therefore the sub-
variety Uj of Vj defined by fαj = c is at least one-dimensional for some choice
of constant c. Further if βj is a primitive element of π1(Tj) different from α±1

j ,
then fβj is non-constant on Uj . The subvariety (i∗j )

−1(Uj) ∩ Yj(M) of Yj(M) is at
least one dimensional and thus contains an irreducible curve C. By construction,
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fµk
and fλk

are both constantly equal to zero on C for each k �= j. Also fαj is a
constant function on C but fβj is not. These conditions imply, by [4], that there
is a properly embedded essential surface F in M associate to some ideal point of
the curve C, as defined in [4], such that F is disjoint from Tk for all k �= j and has
boundary slope on Tj represented by αj . But αj is an arbitrary primitive element
of π1(Tj). Therefore there are infinitely many boundary slopes on Tj bounding
embedded essential surfaces in M disjoint from all other boundary components Tk.
But this contradicts a result of [8] which asserts the finiteness of such boundary
slopes.

For the fixed component Tj of ∂M and the given basis Bj = {µj , λj} on Tj ,
let qj : R(Tj)→X(Tj) be the canonical quotient map, let Θj be the set of diagonal
representations of π1(Tj), i.e.

Θj = {ρ ∈ R(Tj) | ρ(µj), ρ(λj) are diagonal matrices}.
Then Θj is a subvariety of R(Tj) and qj |Θj

: Θj → X(Tj) is a degree 2 surjective
map. We may identify Θj with C∗×C∗ through the eigenvalue map Ej : Θj→C∗×
C∗, which sends ρ ∈ Θj to (u, v) ∈ C∗ × C∗ if ρ(µj) =

“ u 0

0 u−1

”
and ρ(λj) =

“ v 0

0 v−1

”
.

Let V 1
j be the set of one-dimensional components of Vj , let Zj be the algebraic

curve (qj |Θj
)−1(V 1

j ) in Θj , and let Dj be the Zariski closure of Ej(Zj) in C × C.
Define Aj(u, v) to be the defining polynomial of the plane curve Dj with no repeated
factors, normalized so that it is in Z[u, v], which is well defined up to sign (the
common factors of the coefficients of Aj(u, v) are ±1). When V 1

j is an empty set,
we define Aj(u, v) to be the constant one and call it trivial.

The reason that the polynomial Aj(u, v) has integer coefficients is similar to
that given in [3, 2.3], noticing that all the equations fµk

= 0, fλk
= 0 are defined

over Q, besides those algebraic sets and regular maps involved in the definition of
the polynomial.

In this way we get a polynomial Aj(u, v) for each j = 1, . . . , n. The ordered
polynomial n-tuple [A1(u, v), . . . , An(u, v)] is called the A-polynomial n-tuple
of the triple (W, L,B), where B = [B1, . . . ,Bn] is the n-tuple of bases. To
express explicitly this association, we may write the polynomial n-tuple as
[A1(u, v), . . . , An(u, v)](W,L,B).

Note that for the basis Bj = {µj , λj}, if we change the orientation of µj , then
we need to change the orientation of λj as well, by our requirement on a basis (the
right hand rule). But Aj(u, v) is invariant under such change. If W is a homology
3-sphere, we always choose Bj = (µj , λj) to be the standard meridian-longitude
basis, considering Kj as a knot in W . Under this convention, we may drop B from
the notation of the A-polynomial n-tuple and consider the A-polynomial n-tuple
[A1(u, v), . . . , An(u, v)](W,L) as an invariant of the link L in W . If W is the 3-sphere,
we simply write [A1(u, v), . . . , An(u, v)]L for [A1(u, v), . . . , An(u, v)](S3,L).
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Remark 2. The C-polynomial for a knot was defined in [11]. It can be similarly
generalized to a C-polynomial n-tuple for a link of n components.

Here are some key properties of an A-polynomial n-tuple. Recall the Newton
polygon of a two-variable polynomial

∑
aiju

ivj is the convex hull in R2 of the set
{(i, j); aij �= 0}. The slope of a side of the Newton polygon is called a boundary
slope of the polygon.

Theorem 3. Let M be a link manifold with n boundary tori T1, . . . , Tn.

(1) The boundary slopes of the Newton polygon of Aj(u, v) are boundary slopes on
Tj bounding properly embedded essential surfaces in M disjoint from all other
tori Tk, k �= j.

(2) When M is hyperbolic, the A-polynomial Aj(u, v) contains an irreducible fac-
tor whose Newton polygon has at least two distinct boundary slopes, for each
j = 1, . . . , n. In particular, Aj(u, v) is nontrivial, for each j = 1, . . . , n.

Proof. The proof that boundary slopes of the Newton polygon of Aj(u, v) corre-
spond to boundary slopes on Tj is similar to the proof of [3, Theorem 3.4]. The
proof for the assertion that these boundary slopes of Tj bound properly embedded
essential surfaces disjoint from Tk for all k �= j is similar to that of Lemma 1. We
omit the details.

Part (2) follows from [5]. In fact, let X0 be a component of X(M) which contains
the character of a discrete faithful representation of π1(M). For any fixed j, it was
shown in [5] that the subvariety of X0 defined by the equations fµk

= 0, fλk
= 0,

for all k �= j, has a 1-dimension component W0 such that W0 contains the discrete
and faithful character and that on W0, the function fαj is non-constant for any
nontrivial element αj of π1(Tj). Therefore i∗j (W0) is one dimensional and thus the
set V 1

j in the definition of Aj(u, v) is non-empty. Moreover there are at least two
distinct boundary slopes associated to the factor of Aj(u, v) corresponding to the
component W0. This follows from [5] as well. Again we omit the details.

Remark 4. If the Newton polygon of an irreducible factor a(u, v) of Aj(u, v) con-
tains at least two distinct boundary slopes, then it can be used to define a norm on
H1(Tj ; R). If the Newton polygon of an irreducible factor a(u, v) of Aj(u, v) contains
only one boundary slope, then it can be used to define a semi-norm on H1(Tj ; R)
and the corresponding slope on Tj can be named as a semi-norm slope associated
to a(u, v). This can be done as in [2] where knot manifolds were considered.

Now we proceed to construct concrete examples of hyperbolic knot manifolds
with non-integral traces, using the method indicated earlier. Let L = K1 ∪ K2 be
the 2-bridge link in S3 shown in Fig. 1(a). Let M be the link manifold which is
the exterior of L in S3, and let T1, T2 be the two torus boundary components of
M corresponding to K1 and K2 respectively. Then M is a small link manifold [7]
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Fig. 1. The link projection, its Wirtinger generators, the two longitudes.

(here small means that M contains no closed essential surfaces) and hyperbolic (this
assertion can be checked using Week’s Snappea program, and can also be proved
directly). Each torus Tj is given the standard meridian-longitude basis (µj , λj)
obtained by considering Kj as a knot in S3. We show

Theorem 5. Let M be the exterior of the 2-bridge link shown in Fig. 1(a). Then
each of the three slopes on T1 represented by µ2

1λ1, µ−2
1 λ1 and µ7

1λ1 respectively
is a boundary slope bounding an essential surface disjoint from T2, and filling M

along T1 with each of these slopes yields a hyperbolic knot manifold with non-integral
traces.

Proof. We first calculate the A-polynomial 2-tuple of L with respect to the stan-
dard bases. From the link projection in Fig. 1(a), we read off a presentation for the
fundamental group of M (a Wirtinger presentation):

π1(M) = 〈x, x1, x2, x3, x4, x5, x6, x7, x8, x9, y| yx1y
−1 = x−1, x1x2x

−1
1 = y,

x2x3x
−1
2 = x1, x3x4x

−1
3 = x2, xx3x

−1 = x5, x5xx−1
5 = x6,

x6x5x
−1
6 = x9, x6x4x

−1
6 = x7, x7x6x

−1
7 = x8, x8x7x

−1
8 = y〉.

This presentation can be simplified to one with two generators, the x and y, and
one relation which is

y−1xy−1xy−1x−1yx−1yxy−1xy−1x−1yx−1yx−1y−1xy−1xyx−1yx−1

yxy−1xy−1x−1yx−1yxy−1xy−1xyx−1yx−1y−1xy−1xyx−1yx−1yxy−1xy−1x−1

yx−1yxy−1xy−1xyx−1yx−1y−1xy−1xy−1x−1yx−1yxy−1xy−1x−1yx−1yx−1y−1

xy−1xyx−1yx−1 = 1.



March 21, 2006 9:42 WSPC/134-JKTR 00445

284 X. Zhang

We can also read off the expression of the longitude λj of the component Kj in
terms of x and y. From Fig. 1(b) we get

λ1 = x−1x−1
5 x−1

6 x−1
7 y−1x6x5xx−1

2 y−1

= y−1xy−1xyx−1yx−1y−1xy−1xy−1x−1yx−1yxy−1xy−1x−1yx−1yx−1y−1

xy−1xyx−1yx−1y−1xy−1xy−1x−1yx−1yxy−1xy−1x−1,

and from Fig. 1(c) we get

λ2 = x1x3x
−1
6 x−1

8

= y−1x−1yx−1yxy−1xy−1x−1yx−1yx−1y−1xy−1xyx−1yx−1y−1

xy−1xy−1x−1yx−1yxy−1xy−1x−1yx−1yx−1y−1xy−1xyx−1yx−1.

Now we are going to find a 1-dimensional subvariety R1 of R(M) such that
the image of this subvariety under the canonical map q : R(M)→X(M) is the
subvariety of X(M) defined by fµ2 = 0, with no components consisting of only
reducible characters. Note that x is our choice of the meridian µ1 for K1, and y is
the meridian µ2 for K2. One can easily see that every irreducible representation ρ

of π1(M) with the trace of ρ(y) = ±2 can be conjugated so that its image is of the
form ρ(x) =

“ u 1

0 u−1

”
and ρ(y) =

“ ±1 0
t ±1

”
. So to find R1, let X =

“ u 1

0 u−1

”
and

Y =
“ ±1 0

t ±1

”
and substitute X and Y into the single relation of π1(M). We thus

get the subvariety which consists of three 1-dimensional components defined by the
following three two-variable polynomials respectively (we use the Maple program
for the calculation):

P1(u, t) = −t2u + 2tu2 − 8t2u3 + 6t3u2 − u3 − u5 + 4tu4 + 13t3u4 − 13t4u3

− 8t2u5 + 12u4t5 + 6t5u2 − 4t4u + t3 − 4t6u3 − t2u7 + 6t3u6 − 13t4u5

− 4t4u7 + 6t5u6 − 4t6u5 + t7u4 + t3u8 + 2u6t,

P2(u, t) = 2t2u3 + 3t3u2 + 2u4t + t3u4 − 12t4u3 − 5t2u5 + u5 − 37t4u7 + 65t5u6

− 73t6u5 + 75t7u4 + 8t3u8 + 65t5u8 − 108t6u7 + 147t7u6 − 115t8u5

− 5t2u9 − 27t4u9 − 8u7t2 + 8u6t3 − 27u5t4 + 28u4t5 + t4u − 22t6u3

− u6t + 21t7u2 − 7t6u + t5 − t12u7 + 35t9u4 − 35t8u3 − 21t10u5 + 7t11u6

+ u13t4 + 3u12t3 + 94t9u6 − 40t10u7 + 7t11u8 + t5u14 − 73t6u9

+ 147t7u8 + 28t5u10 − 166t8u7 − u8t + t3u10 − 12t4u11 + 2u11t2

− 22t6u11 + 75t7u10 + 21t7u12 − 35t8u11 − 7t6u13 − 115t8u9 + 35t9u10

+ 94t9u8 − 21t10u9 + 2u10t + u9,

P3(u, t) = t4u2 + t2 − 2t3u + 2t2u2 + u2 − 2t3u3 + t2u4.

We use Maple to check that each of the three polynomials is irreducible over C.
Therefore each of the three curves C1, C2, C3 defined by the three polynomials is an
irreducible subvariety of R(M), on which the function fµ2 is constantly equal to 0.
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(Note that points in C1, C2, C3, with u = 0 are not contained in R(M). But there
are only finitely many such points. So strictly speaking, only an open dense subset
of C1, C2, C3 are contained in R(M), which are irreducible quasi-affine curves. In
other words, C1, C2, C3 can be considered as irreducible curves in R(M) only
up to birational isomorphisms. This subtlety will not affect the calculation of the
A-polynomial 2-tuple.) Obviously fµ1 is not constant on each of the three curves.
Using Maple, one can also easily check that fλ1 is not constant on the first two
curves C1 or C2, but is constant on the third curve C3, and that fλ2 is constantly
equal to zero on all the three curves. Hence we have actually q(R1) = Y1(M),
where R1 is the union of C1, C2 and C3 (again this is defined only up to birational
isomorphisms). It also follows that one of C1 and C2 contains a point corresponding
to a discrete faithful representation of π1(M).

To find A1(u, v), let L[1, 1] be the upper-left entry of the corresponding matrix
for λ1 (calculated using Maple). Calculating the resultant of L[1, 1]−v with p1(u, t)
and p2(u, t) respectively, we get the corresponding factors of the A-polynomial
A1(u, v) associated to the boundary component T1 of M :

a1(u, v) = −u6 + (−3u4 + 7u6 + 3u8)v + (−3u2 + 14u4 − 34u6 + 96u8 − 222u10

+ 224u12 − 136u14 + 49u16 − 10u18 + u20)v2 + (−1 + 7u2 − 39u4

+ 168u6 − 436u8 + 638u10 − 502u12 + 308u14 − 157u16 + 64u18

− 17u20 + 2u22)v3 + (−2u2 + 17u4 − 64u6 + 157u8 − 308u10 + 502u12

− 638u14 + 436u16 − 168u18 + 39u20 − 7u22 + u24)v4 + (−u4 + 10u6

− 49u8 + 136u10 − 224u12 + 222u14 − 96u16 + 34u18 − 14u20 + 3u22)v5

+ (−3u16 − 7u18 + 3u20)v6 + u18v7,

a2(u, v) = u6 + (3u4 − 8u6 + 29u8 − 16u10 + 4u12)v + (3u2 − 21u4 + 95u6 − 177u8

+ 354u10 − 304u12 + 156u14 − 49u16 + 10u18 − u20)v2 + (1 − 18u2

+ 111u4 − 370u6 + 918u8 − 1164u10 + 1442u12 − 1100u14 + 530u16

− 154u18 + 26u20 − 2u22)v3 + (−5 + 55u2 − 302u4 + 971u6 − 2019u8

+ 3582u10 − 3604u12 + 3066u14 − 1807u16 + 704u18 − 166u20 + 21u22

− u24)v4 + (10 − 102u2 + 499u4 − 1059u6 + 3419u8 − 4692u10

+ 5946u12 − 4676u14 + 3024u16 − 1398u18 + 417u20 − 70u22 + 5u24)v5

+ (−10 + 113u2 − 566u4 + 1739u6 − 3868u8 + 6538u10 − 6968u12

+ 6538u14 − 3868u16 + 1739u18 − 566u20 + 113u22 − 10u24)v6

+ (5 − 70u2 + 417u4 − 1398u6 + 3024u8 − 4676u10 + 5946u12 − 4692u14

+ 3419u16 − 1590u18 + 499u20 − 102u22 + 10u24)v7 + (−1 + 21u2

− 166u4 + 704u6 − 1807u8 + 3066u10 − 3604u12 + 3582u14 − 2019u16

+ 971u18 − 302u20 + 55u22 − 5u24)v8 + (−2u2 + 26u4 − 154u6 + 530u8
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− 1100u10 + 1442u12 − 1164u14 + 918u16 − 370u18 + 111u20

− 18u22 + u24)v9 + (−u4 + 10u6 − 49u8 + 156u10 − 304u12 + 354u14

− 177u16 + 95u18 − 21u20 + 3u22)v10 + (4u12 − 16u14 + 29u16 − 8u18

+ 3u20)v11 + u18v12.

Corresponding to the curve C3, we have the factor a3(u, v) = v − 1 of A1(u, v).
So A1(u, v) = a1(u, v)a2(u, v)a3(u, v).
A similar calculation shows that A2(u, v) is equal to A1(u, v) for this link.
The Newton polygons of a1(u, v) and a2(u, v) have the same set of boundary

slopes, which are µ2
1λ1, µ−2

1 λ1 and µ7
1λ1. Each of the three corresponding boundary

slopes on T1 bounds an essential surface in M disjoint from T2 by Theorem 3. (So
both a1(u, v) and a2(u, v) provide norms on H1(T1, R), while a3(u, v) provides a
semi-norm with λ1 as its associated slope.)

We can check using the Snappea program that the filling of M along T1 with each
of the three boundary slopes yields a hyperbolic knot manifold. One can also prove
directly that at least one of the fillings with slopes µ−2

1 λ1 or µ7
1λ1 is hyperbolic,

applying [6].
We shall only show that Dehn filling of M along T1 with the slope r = µ−2

1 λ1

yields a hyperbolic knot manifold with non-integral traces; the same assertion for
the other two slopes can be proved similarly. Note that any discrete faithful rep-
resentation ρ of M((T1, r)) is contained, up to conjugacy, in C1 or C2. For ρ(µ2)
has to be a parabolic element and ρ(λ1) has to be a hyperbolic element. Now from
ρ(r) = I, we get an additional equation, v − u2 = 0, for the eigenvalues u and v of
ρ(x) and ρ(y) respectively. Together with the polynomial equation a1(u, v) = 0 or
a2(u, v) = 0, we see that the eigenvalue u of ρ(x) has to satisfy the equation

8u12 + 28u10 + 100u8 + 111u6 + 100u4 + 28u2 + 8 = 0

(if ρ is contained in C1) or the equation

8u36 − 52u34 + 300u32 − 977u30 + 2864u28 − 5714u26 + 10776u24 − 14879u22

+ 19844u20 − 20244u18 + 19844u16 − 14879u14 + 10776u12 − 5714u10 + 2864u8

− 977u6 + 300u4 − 52u2 + 8 = 0

(if ρ is contained in C2). Both equations are irreducible over Z. Therefore u is
not an algebraic unit, in either case. Thus tr(ρ(x)) = u + u−1 cannot be an alge-
braic integer. Hence ρ has non-integral traces. The proof of the theorem is now
complete.

Remark 6. For any two bridge link in S3, its A-polynomial 2-tuple is calculable
with the method given in the proof of Theorem 5. So presumably one could construct
an abundance of examples of hyperbolic knot manifolds with non-integral traces.
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