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EVERY NONTRIVIAL KNOT IN S3

HAS NONTRIVIAL A-POLYNOMIAL

STEVEN BOYER AND XINGRU ZHANG

(Communicated by Ronald A. Fintushel)

Abstract. We show that every nontrivial knot in the 3-sphere has a non-
trivial A-polynomial.

In Theorem 1 of [3], Kronheimer and Mrowka give a proof of the following
remarkable theorem, thereby establishing the truth of the Property P conjecture.

Theorem 0.1 (Kronheimer-Mrowka). Let K be any nontrivial knot in S3 and let
M(r) be the manifold obtained by Dehn surgery on K with slope r with respect
to the standard meridian-longitude coordinates of K. If |r| ≤ 2, then there is an
irreducible homomorphism from π1(M(r)) to SU(2).

The purpose of this note is to describe another consequence of Theorem 0.1,
answering a question which has been around for about ten years. We show

Theorem 0.2. Every nontrivial knot K in S3 has nontrivial A-polynomial.

The A-polynomial was introduced in [1]. We recall its definition for a knot in
S3.

For a compact manifold W , we use R(W ) and X(W ) to denote the SL2(C)
representation variety and character variety of W respectively, and q : R(W ) →
X(W ) to denote the quotient map sending a representation ρ to its character χρ

(see [2] for detailed definitions). Note that q is a regular map between the two
varieties defined over the rationals.

Let K be a knot in S3, M its exterior, and {µ, λ} the standard meridian-longitude
basis for π1(∂M). Let i∗ : X(M) → X(∂M) be the restriction map, also regular,
induced by the homomorphism i∗ : π1(∂M) → π1(M), and let Λ be the set of
diagonal representations of π1(∂M), i.e.

Λ = {ρ ∈ R(∂M) | ρ(µ), ρ(λ) are both diagonal matrices}.
Then Λ is a subvariety of R(∂M) and q|Λ : Λ → X(∂M) is a degree 2, surjective,
regular map.

We may identify Λ with C∗ × C∗ through the eigenvalue map E : Λ → C∗ × C∗

which sends ρ ∈ Λ to (x, y) ∈ C∗ × C∗ if ρ(µ) = ( x 0
0 x−1 ) and ρ(λ) = ( y 0

0 y−1 ). Let
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X∗(M) be the set of components of X(WK) each of which has a 1-dimensional
image in X(∂M) under i∗ and then define

• V to be the Zariski closure of i∗(X∗(M)) in X(∂M);
• Z to be the algebraic curve (q|Λ)−1(V ) in Λ;
• D to be the Zariski closure of E(Z) in C2.

It can be verified that each of X∗(M), V, Z, and D is defined over the rationals.
The A-polynomial of K is the defining polynomial AK(x, y) of the plane curve D

determined up to sign by the requirements that it has no repeated factors, it lies in
Z[x, y], and the greatest common divisor of its coefficients is 1. For every knot K in
S3, X(M) has a unique component Y0 consisting of reducible characters. The image
of Y0 under i∗ is 1-dimensional and contributes the factor y − 1 to AK(x, y). Thus
the A-polynomial of the trivial knot is y− 1. For a knot K in S3, its A-polynomial
is said to be nontrivial if AK(x, y) �= y − 1. (See [1] for more details.)

We now proceed to the proof of Theorem 0.2. We take K to be a nontrivial
knot in S3 with exterior M and we let M(r) denote the manifold obtained by Dehn
surgery on K with slope r. By Theorem 0.1, for every integer n �= 0, the funda-
mental group of the surgered manifold M(1/n) has an irreducible representation ρn

into SU2(C) ⊂ SL2(C). We shall consider ρn as a representation of π1(M) through
the composition with the quotient homomorphism π1(M) → π1(M(1/n)). Thus
ρn(µλn) = I and so the irreducibility of ρn implies that

(1) ρn(µ), ρn(λ) �= ±I for each n �= 0.

Moreover, by a result of Thurston (see [2], Proposition 3.2.1), any algebraic com-
ponent of X(M) which contains the character of ρn is at least 1-dimensional.

Claim. There is a component X0 of X(M) containing some χρn
whose restriction

to X(∂M) under i∗ is 1-dimensional.

Assuming the claim, we can quickly complete the proof of Theorem 0.2. For sup-
pose that X0 contributes a factor (y−1) to AK(x, y). Then every representation in
q−1(X1) sends the longitude λ to an element of SL2(C) of trace 2. In particular, if
n is chosen so that χρn

∈ X0 we have ρn(λ) = I or is a parabolic element of SL2(C).
But the first possibility is prohibited by (1) while the second is prohibited by the
fact that SU2(C) contains no parabolic elements. Thus X0 contributes a factor to
the A-polynomial different from (y − 1). In particular, AK(x, y) is nontrivial, so
the theorem holds.

Proof of the Claim. We shall suppose that each component of X(M) containing
some χρn

restricts to a point in X(∂M) in order to arrive at a contradiction.
We begin by selecting a component X1 of X(M) which contains χρn

for at least
two distinct n, say n1, n

′
1. (This is possible since X(M) has only finitely many

algebraic components.) Let R1 = q−1(X1).
Recall that every element γ ∈ π1(M) defines a regular function τγ : X(M) → C

given by τγ(χρ) = trace(ρ(γ)). Our assumption that i∗(X1) is a point is equivalent
to the fact that for every element β ∈ π1(∂M) ⊂ π1(M), the function τβ|X1 is
constant.

Suppose that ρ ∈ R1 and ρ(π1(∂M)) contains a parabolic element. Then the
commutativity of π1(∂M) shows that every element of ρ(π1(∂M)) is either parabolic
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or ±I. Hence τµ(χρn1
) = τµ(χρ) = ±2, which is impossible as it implies that

ρn1(µ) (∈ SU2(C)) is ±I (cf. (1)). Thus for each ρ ∈ R1, ρ(π1(∂M)) consists
of diagonalisable elements. Since i∗(X1) is a point, it follows that for any such
ρ we have that ρ|π1(∂M) is conjugate in SL2(C) to ρn1 |π1(∂M) and therefore
ρ(µλn) = I for each ρ ∈ R1 and n such that χρn

∈ X1. For such a ρ we therefore
have I = ρ(µλn1)ρ(µλn′

1)−1 = ρ(λn1−n′
1). Thus ρ(λ) is of a fixed finite order d1 ≥ 3

(cf. (1)) and so for ρ ∈ R1, ρ(µλn) = I if and only if n ∈ S1 := {n1 + d1k; k ∈ Z}.
Note that

(2) d1Z ⊂ Z \ S1

as otherwise n1 ≡ 0 (mod d1) and therefore I = ρn1(µλn1) = ρn1(µ), which is
absurd.

Now repeat the argument to produce a component X2 of X(M) satisfying the
following conditions:

• there are at least two integers n2, n
′
2 ∈ d1Z \ {0} such that X2 contains the

characters of ρn2 , ρn′
2
;

• i∗(X2) is a point in X(∂M);
• there is an integer d2 ≥ 3 such that for any ρ ∈ R2 = q−1(X2) we have

ρ(µλn) = I if and only if n belongs to the set S2 = {n2 + d2k; k ∈ Z};
• d1d2Z ⊂ Z \ (S1 ∪ S2).

The first of these conditions combines with (2) to show that X2 �= X1.
Proceeding inductively, one can find, for each integer j ≥ 1, a component Xj of

X(M) satisfying the following conditions:
• there are at least two integers nj , n

′
j ∈ d1d2 . . . dj−1Z \ {0} such that Xj

contains the characters of ρnj
, ρn′

j
;

• i∗(Xj) is a point in X(∂M);
• there is an integer dj ≥ 3 such that for each ρ ∈ Rj = q−1(Xj) we have

ρ(µλn) = I if and only if n belongs to the set Sj = {nj + djk; k ∈ Z};
• d1d2 · · · djZ ⊂ Z \ (S1 ∪ S2 ∪ · · · ∪ Sj).

It is easy to see that these conditions imply that Xi �= Xj for i �= j, which is clearly
impossible as X(M) has only finitely many components. Thus there must be a
component X0 of X(M) containing some χρn

such that i∗(X0) is 1-dimensional.
This completes the proof of the claim and therefore of Theorem 0.2.

Remark 0.3. Theorem 0.2 has been obtained independently by Nathan Dunfield
and Stavros Garoufalidis.
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