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ABSTRACT

We show that most cabled knots over torus knots in S satisfy the AJ-conjecture,
namely each (r,s)-cabled knot over each (p, q)-torus knot satisfies the AJ-conjecture if
r is not a number between 0 and pgs.
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1. Introduction

For a knot K in S3, let J ,,(t) denote the n-colored Jones polynomial of K with
the zero framing, normalized so that for the unknot U,

t2n _ t72n

Junt) = 57—~
A remarkable result, proved in [4], asserts that for every knot K, Jg ,(t) satis-
fies a nontrivial linear recurrence relation. By defining Jx () := —Jx »(t) and

JKk0(t) = 0, one may treat Jx ,(t) as a discrete function
Jr_(t) : Z — Z[t*1.
The quantum torus
T = Ct (LA, M*Y /(LM — t* ML)
acts on the set of discrete functions f : Z — C[t*!] by

(M[)(n) :=t*"f(n), (Lf)(n):= f(n+1).
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Then linear recurrence relations of Jg ,(t) correspond naturally to annihilators of
Ji n(t) in 7. The latter set, which we denote by

Ag = {P € T| PJg.n(t) = 0},

is obviously a left ideal of 7, called the recurrence ideal of K. The result of [4] cited
above states that Ag is not the zero ideal for every knot K.

The ring 7 can be extended to a principal left ideal domain T by adding inverses
of polynomials in ¢ and M; that is, T is the set of Laurent polynomials in L with
coeflicients rational functions of ¢t and M with a product defined by

f(t,MYL® - g(t, M)L® = f(t, M)g(t,t>*M)L*+°.

The left ideal Ax = T A is then generated by some nonzero polynomial in T , and
in particular, this generator can be chosen to be in Ax and be of the form

d
ar(t,M,L)=> PRI,
=0

with d minimal and with P, ..., Py € Z[t, M| being coprime in Z[t, M]. This poly-
nomial ay is uniquely determined up to a sign and is called the (normalized)
recurrence polynomial of K.

The A-polynomial was introduced in [1]. For a knot K in S3, its A-polynomial
Arx(M,L) € Z[M, L] is a two-variable polynomial with no repeated factors and
with relatively prime integer coefficients, which is uniquely associated to K up to
a sign. Note that Ax (M, L) always contains the factor L — 1.

The AJ-conjecture was raised in [2] which states that for every knot K, its recur-
rence polynomial a (t, M, L) evaluated at t = —1 is equal to the A-polynomial of
K, up to a factor of a polynomial in M. The conjecture is obviously of fundamental
importance as it predicts a strong connection between two important knot invari-
ants derived from very different backgrounds. This is also a very difficult conjecture;
so far only torus knots, some classes of 2-bridge knots and pretzel knots are known
to satisfy the conjecture [2, 3, 5-7, 11, 12].

In this paper, we consider the AJ-conjecture for cabled knots over torus knots.
Recall that the set of nontrivial torus knots T'(p,q) in S® can be indexed, in a
standard way, by pairs of relatively prime integers (p,q) satisfying |p| > ¢ > 2.
Also recall that an (r, s)-cabled knot on a knot K in S is the knot which can be
embedded in the boundary torus of a regular neighborhood of K in S? as a curve
of slope r/s with respect to the meridian/longitude coordinates of K satisfying
(r,s) =1, s > 2. Note that r can be any integer relatively prime to s. We have the
following.

Theorem 1.1. The AJ-conjecture holds for each (r,s)-cabled knot C over each
(p, q)-torus knot T if v is not an integer between 0 and pgs.

A cabling formula for A-polynomials of cabled knots in S? is given in [9]. In
particular when C' is the (r, s)-cabled knot over the torus knot T'(p,q) in S3, its
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A-polynomial A¢(M, L) is given explicitly as in (1.1). For a pair of relatively prime
integers (p,q) with ¢ > 2, define F(, ,y(M, L), G, (M,L) € Z[M, L] to be the
associated polynomials in variables M and L by:

M?P[L+1 ifg=2,p>0,

L+M=2  ifg=2p<0,

M?4[2 —1 ifg>2,p>0,

L2 M~29 ifg>2 p<0

Fpq(M, L) :=

and
MPIL—1 ifp>0,

G M,L):=
) (M L) {L—M—pq if p < 0.

Then
(L —1)F(p) (M, L)F(, o (M* L) if s is odd;

1.1
(L —1)Fyp ) (M, L)G o (M* L) if s is even. (L1)

AC(M7 L) = {
A cabling formula for the n-colored Jones polynomial of the (r, s)-cabled knot
C over a knot K is given in [8] (see also [13]) which in our normalized form is:

n—1

JC,n(t) _ t—rs(n2_1) Z t4rk(ks+1)JK,2k-s+1(t)- (1'2)

—_n-1
k=—"5

In particular the n-colored Jones polynomial of the (p,g)-torus knot 7" (which is
the (p, ¢)-cabled knot over the unknot U) is:

n—1

JT,n(t) _ tqu(n271) Z t4pk(kq+l)JU,2kq+1(t)
k=—n=1
act (1.3)
2 4kq+2 —4qk—2
— oy paph(kgrn) T Z T
12 2

k=ngt
We divide the proof of Theorem 1.1 into the following cases:

(1) sis odd and g > 2;

(2) sis odd and g = 2;

(3) s> 2is even;

(4) s=2.

In each case, we will find an annihilator of J¢ ,,(t) by applying the formulas (1.3)
and (1.2) (where taking the general knot K to be the (p,q)-torus knot 7), and
then proceed to prove that it is the recurrence polynomial ac(t, M, L) of C' when
r is not an integer between 0 and pgs, making use of the degree formulas given in
Sec. 2. Of course we will also compare ac(—1, M, L) with Ac(M, L) given in (1.1)
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to complete the verification of the AJ-conjecture for C. For convenience, we often
get ac(t, M, L) in the form P = Y% P, € Ag, with d minimal and with P; €
Q(t, M) and with P(—1, M, L) # 0. Such P only differs from «a¢ by a factor of
a rational function f(¢t,M) € Q(¢t, M) with f(—1,M) # 0 and thus is clearly as
good as the normalized recurrence polynomial in verification for the AJ-conjecture.
We often simply call such P the recurrence polynomial of C. Also notice from the
formula (1.1) that changing the sign of r or p only changes the A-polynomial of C
up to a power of M, so in checking that P(—1, M,L) = Ac(M,L) up to a factor
of a rational function in M we do not need to worry about the sign of r or p.

Further investigation of the AJ-conjecture for more general cabled knots, such as
iterated torus knots and cabled knots over some hyperbolic knots, is being continued
in [10]. In particular for some cabled knots over the figure 8 knot the AJ-conjecture
has been verified to be true.

2. Degrees of Jr,(t) and Jc,n(t)

From now on in this paper, T denotes the (p, ¢)-torus knot and C the (r, s)-cabled
knot over T, with the index convention given in Sec. 1.

For a polynomial f(t) € Z[t*!], let £[f] and h[f] denote the lowest degree and
the highest degree of f in t respectively. Obviously for f(t),g(t) € Z[t*], ¢[fg] =
C[f]+ ¢lg] and h[fg] = R[f] + Rlg].

Lemma 2.1. (1) When p > ¢,

(Trn(8)) = —pan + pa + (1~ (=1)")(p — 2)(a — 2),
W Jr.n(t)] = 2(p + q — pg)|n| + 2(pg — p — q).

(2) When p < —q,
I ()] = 2(p — g — pa)In| + 2(pg — p + ),

ATzn(0)) = —pan? +pa -+ 5 (1= (<1 (p+2)(a — 2).

Proof. The formula for ¢[Jr,(t)] in part (1) is proved in [12, Lemma 1.4]. The
rest of the lemma can be proved similarly. O

Note that r # pgs since r is relatively prime to s.
Lemma 2.2. (1) When p > ¢,

LJon(t)] = —pgs®n® + (2pqs2 —2pgqs + 2r — 2rs)n + 2rs — 2r + 2pgqs — pgs?
1

+50 - (1)) (p = 2)(g - 2), ifr <pgs,
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(Jon(t)] = —rsn® +rs + %(1 — (=)™ V) (s — 2)(r — pgs)

+5l = (D" (p-2)(g-2), i r> pas,

N =

hlJon(t)] = —rsn® +rs+ %(1 = (=1)" (s = 2)(r = 2pg+ 2p+29), ifr <0,

(2) When p < —q,
hlJcn(t)] = —pgs*n?® + (2pqs® — 2pqs + 2r — 2rs)n + 2rs — 2r + 2pqs — pgs®

1

+51 = ()N p+2)(g -2, ifr > pas

Hen(®)] = ~rsn® + 7 + 2 (1 = (~1)"D)(s = 2)(r  pas)

(1= (1)) (p+2)(g—2), ifr<pgs,

DO | =

+
(on(®)] = —rsn® + 75+ 2(1= (~1)")(s = 2)(r — 2%pg + 2~ 20), i 7 >0,

Proof. (1) From the formula (1.2) for Jo ,(t) (replacing K there by T'), we can
see that

LJon(t)] = —rs(n2 -1

-1 -1
+ min {E[JT,QS;CH(ZE)} +4rk(ks + 1) G 5 <k<” 5 } :

By Lemma 2.1(1), we have
I 2ks+1(t)] + 4rk(ks + 1)

= —pa(2hs + 12+ pa+ 51— (1)~ 2)(g — )+ dkr (ks + 1)

= (rs — 4pgsP)2 + (4r — dpas)b -+ 51— (1) (p = 2)(g —2).

When n is odd, k is integer valued and thus the alternating term vanishes, so the
above expression is quadratic in k. When n is even, k is half-integer valued and the
alternating term is either always equal to zero (when s is even) or is always equal
to (p—2)(¢g — 2) (when s is odd), and thus the above expression is again quadratic
in k. So if r < pgs, it is minimized at k = ”T’l, which yields the first formula in
part (1), and if > pgs, it is minimized at & = 0 when n is odd and at k = —1/2
when n is even, which yields the second formula in part (1).

Similarly to get the third formula in (1), we look at
hlJon(t)] = —rs(n® —1)

—1 1
+ max {h[JT,gskH(t)] + drk(ks + 1) —"T <k<Z . }
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By Lemma 2.1(1), we have
h[JT,kaJrl (t)} +4rk(ks + 1)
=2(p+q—pq)|2ks + 1| +2(pqg — p — q) + 4kr(ks + 1)

4rsk? + (4ps + 4qs — 4pgs + 4r)k for non-negative k’s,
| 4rsk? + (—4dps — 4qs + 4pgs + 4r)k + 4(pg — p — q)  for negative k’s.
If r < 0, it is maximized at kK = 0 when n is odd and at £k = —1/2 when n is even,
which yields the third formula in part (1).
Part (2) can be proved similarly. m|

3. Case s > 2 is Odd and g > 2
3.1. An annihilator P of Jc,n(t)

Define
2(+a)G+D+2 4 4=2(p+a)G+1)+2 _ 42(a—p)(G+1) =2 _ 4—2(¢—p)(j+1)-2
J = 12 — -2 ’

s
_ E —4dpgskn+2pgsn-+4apgk? —12pgsk+6pqs
Sn — t Prq Prq Prq Pq rq 55(n+3)—1—2k‘

k=1
By [12, Lemma 1.1], we have
Jrmao(t) = t74PIHD 1 (1) 4 g 2ant g (3.1)

Note that (3.1) is valid for every torus knot (although in [12], only positive p
was considered). The following two lemmas also hold for general C' and T' (without
restriction on s and ¢) and they shall also be applied in later sections.

Lemma 3.1.

Jo 2 (t) — t74rsn74r5JC n(t) + (t2(r7rs)nf2rs+2r74pqs(n+1)

_ t2(7r7rs)n72r572r)JT,S(n_‘_l)_l (t) + t2(r7rs)n72rs+2rf2pqs(n+1)55(n+1)_1.
Proof. We know by the cabling formula (1.2)
3t
JC,n+2(t) _ t—rs((n+2)2_1) Z t4rk(ks+1)JT,2ks+1 (t)
S
n=1
2
_ t—rs(n2+4n+3) Z t4rk(ks+1)JT ksl (t) + t4r(”T+l)(("T+l)s+l)
k=—n=1

2

X Jr s(ny1)41(t) + t4r(7%ﬂ)((7%ﬂ)s+l)JT,—s(n+1)+1(t)
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Noting that Jp _s(nt1)+1(t) = —J1s(nt1)-1(t), we have

n—1
2

JC,n+2 (t) _ t*TS(n2+4n+3) trs(n271)t7rs(n271) Z t4rk(ks+l)JT72ks+1(t)

—_n—1
k=—nz1

2 2
+t(n+1) TS+2T(n+1)JT75(n+1)+1(t) _ t(n+l) TS?zT(TH»l)JT,s(n—Q—l)—l(t)

— t—4rsn—4r5JC7n (t) + t2(r—rs)n—2rs+2rJT’S(n+1)+1(t)

o tg(77‘77“5)71727”8727‘JT’s(’anl)*]- (t)

Since Jr s(n41)+1(t) and Jp gn41)—1(t) are related by Eq. (3.1) as

L+ t72pqs(n+1

IT s(nt1)+1 = 74pqs(n+1)JT,s(n+1) )5s(n+1)—17

we have

Jo 2 (t) _ t—4rsn—4r5JCn(t) + (t2(r—rs)n—2r5+2r—4pqs(n+1)

_ t2(—r—7‘5)"_2rs_2r)JT,s(n+1)*1 (t)

_|_t2(r—rs)n—2rs+2r—2pqs(n+1)6S(n+1)71' 0

Lemma 3.2. For all positive integers m, we have

Jrn(t) = t—4pam(nt1)+dpgm(m+1) g, nom (t)

m
—4pqk+2 4pqk® —4pqk+2
+ § 1(—4pak-+2pg)n+4dpq pak+2pas
k=1

and in particular, with s any positive integer,

JT,s(n+3)—1(t) _ t74pq82n78pq8274pqSJT,s(n+1)—1(t) +8,.

Proof. We induct on m. The base case m = 1 follows directly from Eq. (3.1).
Then assume the formula holds for some positive integer m. Applying equation
(3.1) again yields

JTn(t) _ t—4pqm(n+1)+4pqm(m+1)JT n—2m(t)

m

+ Z +(—4pak-+2pq)n+4pgk® —dpgk-+2pq S on
k=1
_ t74pqm(n+l)+4pqm(m+l) (t74pq(n72m71) Jr n72m72(t)

m
p— 2_
)_|_§ (= 4pak+2pg)n+4pgk” —dpak+2pg 5

k=1

+ t—2pq(n—2m—1)5

n—2m—2 k

_ t—4pqm(n+1)+4pqm(m+1)—4pq(n—2m—2+1) Jr n72m72(t)
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+ t74pqm(n+1)+4pqm(m+l)*2PQ(”*2m*1)5n_2m_2

m
—4pqk+2 4pqk?® —4pqk+2
+ § (—4pak+2pq)n-+4pq pak+2pas
k=1

If we compare the terms in the summation to the §,_2,,_2 term outside, we can
easily see that this is precisely the term where k = m + 1. So moving it inside, we
have

(t) = 2574pq(m+1)(nJr1)+4pq(m2Jrvw)Jr411q(2m+2)JT o

Jrom (m+1) (1)

m—+1
—4pqk+2 4pqk® —4pqk+2
+ E (—4pak-+2pg)n+4dpq pak+2pas

k=1
= t*4pq(M+1)(n+1)+4pq(M+1)(m+2)JT n—2(m+1)(t)

m—+1
—4pqk+2 4pqk® —4pqk+2
+ § 1(—4pak+2pg)n+4dpq pak+2pas

k=1
as needed. Applying the formula at s(n + 3) — 1 gives the particular equation. O
We shall now find an annihilator for J¢ ,(¢). By Lemma 3.1, replacing #>" with
M gives us
JC n+2(t) _ M—2rst—4r5JCn(t) + (Mr—rs—qust—2T5+2T—4pqs
_ M_T_Tst_Qrs_Qr)']T,s(n+l)71(t) 4 Mr—rs—pqst—2rs+2r—2pq558(n+1)71,
and since Jo ,42(t) = L% Jc n(t), we find
(L2 _ M_Qrst_4rs)(]c,n(t)
_ (Mr7r572pqst72rs+2r74pqs
_ M7T7T8t72T872T)JT,S(n+1)—1(t) + Mrfrsqu8t72rs+2r72PQS§S(n+1)_1.
In this equation, let

a(t M) _ Mr—rs—qust—2rs+2r—4pqs o M—r—rst—2rs—2r
)

which is the coefficient of Jp 4(541)—1(t), then obviously a(t, M) # 0, and we have
a(t, MY(L? — M=2rt4%) Je 0 ()
= Jrsnan)—1(t) +a H(t, M)M"TTSTPISTEISERITIRASS Ly (3.2)
From Lemma 3.2, we have
(L% — 800" = 4pas \p=2005%) o oy (8) = S
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So multiplying (3.2) from the left by (L% — t=8Ps"~4pas [ =2p4s*) gives
(L2 _ L;fqus2 74pqu72pqs2)a71(t, M) (L2 _ M72T8t74rs)¢]c n(t)

= S, (L2 — 7 8pas’ —dpas p=2pas® o ~1(¢ )
% Mrfrsqust72rs+2r72pq355(n+1)_1
— Sn + afl(t7 t4M)Mr7rsqust76rs+6r76pqs§S(n+3)_1
o afl(t7 M)Mrfrsqusf2pq52t72rs+2r78pq5276pqs(ss(n+1)_1' (33)

Let b(t, M)/(t* —t=?) denote the right-hand side of (3.3). Then b(¢, M) is a rational
function in ¢ and M. We claim that b # 0, which we show by checking b(—1, M) :=
limy—, 4 b(t, M) # 0. Recall

S

_ Z —2pqsk+pgs 44pgk? —12pgsk+6pgs
Sn — M Prq prq t Pq Pq rq 5s(n+3)—1—2k'
k=1

So we have

L2 -2
tlgill(t £77)5n

= 25: N —2pask+pgs (MS(p+q) + Mstera) _ prsla—p) _ M*S(qu))
k=1
MPas(1 — M —2pas’)
M?2pes — 1 ’

= (M) 4 pp=stera) _ ppsla—p) _ pp—sla=p)) (3.4)

Also
lim (t2 _ t_2)(a_1 (t, t4M)Mr—rs—pqstGr’—Grs—qus5S(n+3)71

t——

—1 r—rs—pqs—2pqs°> —2rs+2r—=8 2 —6pgs
—a (t7M)M pq Pas ¢ Pq Pq §s(n+1)—1)

— a—l(_LM)(Mr—rs—pqs _ Mr—rs—pqs—qusz)
> (MS(p+q) + Msera) _ ppsta—p) _ M—S(q—p))

_ 1 (Mr—rs—pqs o Mr—rs—pqs—qusz)

Mr—rs—2pqs _ \[—r—Ts
x (M*P+D) 4 p=steta) _ ppsta=p) _ pp=sla=p)y,

Summing up the two limits above, we get
b(—1,M)
= tlirzll b(t, M)

Mpqs(l _ M—qusz) MT—rs—pgs _ Mr—rs—pqs—2pq52
M?2pas — 1 + Mr—rs—2pqs _ \[—r—Ts

1550051-9
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X (MS(p+q) + Mstera) _ ppsta—p) _ M*S(qu))

(_Mpqs—r—rs + Mr—rs+pqs)(1 _ M—qusz)(Mps _ M—ps)(qu _ M—qs)
(M2pqs _ 1)(Mr7rsf2pqs _ Mfrfrs) ’

which is not zero. So b # 0 and we conclude that our recurrence (3.3) is inhomoge-
neous. Therefore,

P(t,M,L) = (L — 1)b~(t, M)(L2 — ¢~ 8pas” ~4pas py—2pas”
% a_l(t,M)(LQ _ M—2rst—4r5)

is an annihilator of Je,(t) in Ac.

Up to this point all the results above in this section are valid for general C'
over T'. From now on in this section, we put in the restriction that s is odd and
q > 2. Once we prove that P is of minimal degree in L, it will follow that P is
the recurrence polynomial of Je () up to normalization. We can check the AJ-
conjecture by evaluating P at t = —1.

P(_l’Ma L) = b_l(_lyM)a_l(—l,M)(L — 1)(L2 — M_2pq52)(L2 _ M—2rs)’

which, up to a nonzero rational function in M, is equal to the A-polynomial of C'.

3.2. P is the recurrence polynomzal of C

We now wish to show that the operator P is the recurrence polynomial of C, up to

normalization. It is enough to show that if an operator Q = DyL*+ DsL3 + Dy L% +

Dy L + Dy is an annihilator of Je,(t) with Dy, ..., Dy € Z[t*', M*!], then Q = 0.
Suppose QJc (t) = 0, that is,

DyJonta(t) + DsJents(t) + DadJom2(t) + Didonta(t) + DoJeon(t) = 0.
We wish to show that D; = 0 for i = 0,1,2,3,4. Applying our Lemma 3.1, we have
0 = DyJonta(t) + DsJonts(t) + DaJonia(t) + Didonti(t) + DoJon(t)
= Dy(M 120 Jo o (t) + (M7 7o 2pasg=Orodor=tapas
B M—r—rst—6rs—67’)JT,S(n_‘_S)_l(t) n Mr—rs—pqst—Grs—i-Gr—GP(Is§S(n+3)_1)
+ Dy(M 7258 oy () + (Mo 2pasgArstar=spas
_M—r—rst—4rs—47’)JT,S(n+2)71(t) i MT—TS—Pq5t4r—4rs—4p(Is5S(n+2)71)
+ DaJen+2(t) + DiJens1(t) + Doden(t)
= (DaM 27571275 4 Do) (M 27547478 Jo (£) + (M7 757 2Pasg—2rst2r—dpas
MRS A T (f) + M s 22 2pasg
+ Dy((Mrrs2pasy=Orstbr=12pas _ ppororsy=6rs=6ry g sy 1 (t)

+Mrfrsqust6r76r376pqs§s(n+3)_1) 4 Dg(M72rst78TSJC7n+1(t)
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T (Mrfrsf2pqst74rs+4r78pqs _ Mfrfrst74rsf4r)JT7s(n+2)_1(t)

+Mrfrsqust4r74rsf4pq855(n+2)_1) + DyJenst (t) + Dodon(t)
= (Do + Dy M~25t=4m% 4 DyM4t7167%) Jo ()
(D) + DSM—QTSt—STS)JC’n+1(t)
- Dy(M7 T 2pasy—6rst+6r—12pgs _ M—r—rst—Grs—Gr)JT’S(n+3)71(t)
- Dy( M7 2pasy—drstdr—8pgs _ M—r—rst—4rs—4r)JT’S(n+2)71(t)
4 (DyM™2rsm12rs | D) (M7 s~ 2pasy—2rs+2r—dpas
_ M7T7T8t72T872T)JT’S(,rH,]_)f]_(t)
S+ (DyM2rsg12rs | D2)MT7Tsqust27“72rsf2pqs§S(n+1)_1
+ D3Mrfrsqust4r74rsf4pq855(n+2)_1 + D4Mr7rsqust6r76r576pq355(n+3)_17
and applying Lemma 3.2,
= (Dy + Do M~2rsg=4rs D4M74rst716rs)JC}n(t)
+(Dy + D3M72rst78rs)JC7n+1(t)
+ (D4(Mrfr572pqst767“s+6rf12pqs . M*T*Tstfﬁrsf&“)Mprqut*Spq5274pqs
4 (DyM™2rsg=12rs 4 p,Y(MT TS 2pas = 2rs+2r—dpgs
_M—r—rst—Qrs—Qr))JT,S(n+1)71(t) 4 Dy(M7—rs—2pas—drs+ar—8pas
_ M—r—rst—4rs—4r)JT,S(n+2)71(t) 4 (DyM sy 12s
n D2)Mr—rs—pqst2r—2rs—2pqsas(n+l)71 T Dng—rs—pqst4r—4rs—4pqs6s(n+2)71
_|_D4Mr7rsqust6r76r576pqs6s(n+3)71 Dy (M7 s =2pasy—6rs+6r—12pgs
— MTTs =6y g
= D} Jen(t) + DyJont1(t) + DyJr sini1)—1(t) + DyJr s(nr2)—1(t) + D

We claim that each D = 0, and it then follows that each D; = 0. Indeed, it follows
easily from D4 = D} = 0 that D3 = Dy = 0. For the rest, it is enough to show that
the two linear equations defined by D = 0 and D) = 0 are linearly independent
(with Dy and Dy as variables). We can check that the determinant of the linear
system is nonzero, and in particular, we multiply by (2 —¢~2) and then evaluate
at t = —1 in order to use Eq. (3.4):

(Mrfrsf2pqs _ Mfrfrs) <M’I‘3’I‘Spq8 4 MTTTs—Pgs + (Mrfrsf2pqs o Mfrfrs)

(1 — M—2pas*)

pgs
x M e — 1

) (MePFD 4 pp=spra) _ ppsta=p) _ py—sla—p)y
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_ (Mr7r572pq372pq32 _ M7T7r572pq32 + Mr73r572pqs _ Mfrf?)rs)

% MrfrsquS(MS(erq) + Mstera) _ prsla—p) _ M*S(qu))
B 1
- M?2es — 1

X (Mfrs(Mrfrsqus (M72rs + 1)(M2pqs _ 1)
+ (Mrfrsqus o Mfrfrs+pqs)(1 o M72pqs2))
o Mrfrsqus(M72pqs27rs + M73rs)(M2pqs _ 1))7

(MS(p+q) 4 Msteta) _ prsta—p) _ M—S(q—p))(Mr—2pqs — M)

expanding some of the terms to observe cancelation,

= — 1 (MS(p+q) + M—sp+a) _ prsla—p) _ M*S(qu))(Mrqus — M)
M?2pas — 1

% (Mr74rs+pqs o Mr74rsqus 4 Mr72rs+pqs o Mr72rsqus
+Mr72rsqus o Mr72rsqusf2pq32 o M7r72rs+pqs 4 ]\477“727“.94»1)q572pqs2

+Mr 2rs—pqs—2pgqs +Mr 4rs Pas _ pqv 2rs+pqs—2pgqs —M" 4rs+pqs>

Mr72pqs — M-
= ( M 2pgs 1 )(MPS - Mﬁps)(MqS - qus)(M72pq52 - 1)

% (M7r72rs+pqs _ Mr72rs+pqs)

which is indeed nonzero.

We now prove that if r is not an integer between 0 and pgqs, we have D} = 0 for
each i =0,1,2,3,4 and thus our annihilator P is of minimal L-degree.

We say that a function f : Z — Z is a quasi-polynomial if there exist periodic

functions ag, ..., aq each with integral period such that
d
fln) = Z a;(n)n’,
i=0

and f is of degree d if aq # 0. In particular, we say f is quasi-quadratic if f is a
quasi-polynomial of degree 2.

Lemma 3.3. (1) When p > q and either r < 0 or r > pqs, we have D = 0 for
i=0,1,2,3,4.
(2) When p < —q and either r > 0 or r < pqs, we have D, =0 fori=0,1,2,3,4.

Proof. (1) Suppose p > ¢, r > pgs, and some D) # 0. Then there must be another
nonzero D} such that one of the following equalities hold:

(D} Jen(t)] = (D3 Jomn+1(t)],

(DY Jon(t)] = LDy smi1y—-1(1)],

UDyJen(t)] = (D17 s(nt2)-1(8)],
(D5 J0ny1(t)] = LD Ir s(ng1y—1 (1)),

1550051-12
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(D3 Jcns1(t)] = €D} 1 s(nt2)-1 ()],
(DY s(nt1)—1 ()] = D17 s(nv2)—1(1)]-

That is, two of the summands must share a lowest degree, and since ¢[D{] is only
linear in n for large enough n while £[J¢ ()] and £[Jr ,(t)] are quasi-quadratic by
Lemmas 2.2 and 2.1, we can immediately dispose of the cases involving Dj.

Subcase 3.1. ([D}Jc ()] = L[DyJcnt1(t)]:
From the second formula of Lemma 2.2(1), we have
([D}] = 4[D3] = [Jen41(t)] = L Jom ()]
= —2rsn—rs — (=1)"((s = 2)(r — pgs) + (p — 2)(¢ — 2)),

but for sufficiently large n, ¢[D}] — £[D4] is a linear function in n, while the right-
hand side is not a polynomial, so we have a contradiction.

Subcase 3.2. ([D}Jon(t)] = £[DyJr s(nt1)—1()]:
From Lemmas 2.2(1) and 2.1(1), we have
([D4] = D3] = L J1,s(nt1)-1(1)] — L[ Jom (t)]

= s(r — pqs)n2 + (2pgs — 2pqs2)n — pgs® + 2pgs — s

_ %(1 — (=)™ Y (s = 2)(r — pgs),

which is quasi-quadratic, while the left-hand side is at most linear, giving us another
contradiction.

Subcase 3.3. ([D}Jcn(t)] = {[D)Jr s(n+2)-1(1)]:
Here we have
[D}] = DY) = €lJ7 s(n+2)-1(1)] — U Jcn(t)]

= s(r — pqs)n2 + (2pgs — 4pqs2)n — pq(4s2 —4s) —rs

50— (1) s = 2~ pgs) + (<1 (p—2)(a — 2)

again giving us a quasi-quadratic function on the right and a linear function on the
left, which is a contradiction.

Subcase 3.4. ([D3Jc ni1(t)] = £[DyJr s(nr1y—1(t)]:
We have
£[D3] — (D3] = LI s(ns1)-1 ()] — L[ Tcn+1(t)]

= s(r — pgs)n® + (2pgs + 2rs — 2pgs?)n — pq(s* — 2s)

1

—51- (=1)"" (s = 2)(r —pgs) + (=1)"(p — 2)(q — 2)
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which is again quasi-quadratic on the right and linear on the left, again a contra-
diction.

Subcase 3.5. ([D5Jc ny1(t)] = £[D1Jr s(nt2)—1(1)]:
We have
£[D3] — (D] = LI s(ny2)-1 ()] — L[ Tcn+1(t)]

= (rs — pgs®)n® + (2pgs + 2rs — 4pgs®)n — pq(4s® — 4s)

1

=51 =(=1)")(s = 2)(r — pgs)

giving us another contradiction.
Subcase 3.6. ([D5J7 s(ni1)—1(t)] = £[DI7 s(nt2)-1(1)]:
This time we have
(D) — £[DY] = LI s(nr2)—1 ()] = LT p,s(nr1)—1(1)]
= —2pgs%n -+ 2pgs — 3pas® + 5(—1) (1 = (<1)°)p - 2)(¢ — 2)

= —2pgs’n + 2pgs — 3pgs” — (=1)"(p — 2)(q — 2)
which is alternating on the right and eventually linear on the left, which is a con-
tradiction. This exhausts the possibilities of the case r > pgs.
Now assume p > ¢ and r < 0. We first consider the highest degrees of the
summands in the equation

0= DiJcn(t) + DsJens1(t) + DoJrsminy—1(t) + DiJrsny2)—1(t) + D

for large positive n’s. If D% # 0 or D) # 0, then both of them cannot be zero since by
Lemma 2.2(1) h[Jc,,] and A[Jc n+1] are each quasi-quadratic while by Lemma 2.1(1)
B[ J7,s(nt1)—1(t)] and A[Jp s(42)—1(t)] are each linear in n (for positive n’s), and
we must have the following

Subcase 3.7. h[D}Jc,(t)] = h[D5Jc n+1(t)]:
Then we have, by Lemma 2.2(1),
h[D}y] — k(D3] = Bl Jcnsa (t)] — Bl Jon (t)]
= —2rsn—rs— (—1)"(s — 2)(r — 2pq + 2p + 2q)

which is a linear polynomial for large n on the left but is not a linear polynomial
on the right, giving a contradiction.

So both D} and Djy are zero. So we have 0= Dy J7 s(n+1)—1(t) + D1 J7 s(n42)—-1
(t) + D{. We can then analyze the lowest degrees in a similar fashion as above; if
one of the D; is not zero, we must have

Subcase 3.8. ([D5J7 s(n+1)—1(t)] = £[D1I7 s(nt2)-1(1)]:
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This can be treated similarly as Subcase 3.6. We conclude that each D} = 0.
This completes the proof of part (1).

Part (2) of the lemma can be proved similarly with the use of Lemmas 2.1(2)
and 2.2(2). O

Remark 3.1. In the proof of Lemma 3.3 we used the condition that s > 2 odd
and ¢ > 2 in several subcases. Some of these subcases will disappear accordingly
in later sections when we impose the condition s odd and ¢ = 2 or s > 2 even or
s =2.

4. Case s > 2 is Odd and q = 2
4.1. An annihilator P of Jcn(t)

Define:

S 5 t4sn+837274k _ t74sn783+2+4k
U, = (_1)k71t2psn74psnk¢+2pk —8psk+2pk+4ps
n 2 -2

k=1
When ¢ = 2, we have by [12, Lemma 1.5] the identity

t4n+2 _ t74n72

Jrmi1(t) = —t TP I (8) ¢ 7200 o (4.1)
Note again that (4.1) is valid for negative p as well.
Lemma 4.1. When q = 2, for all positive integers m, we have
() = (1)t 2R (1)
+ i(_l)k_lt_(4k_2)1’"+(2k2—2k+2)p (el
k=1 2=t
and in particular, when s is odd,
Trystntay—1(t) = —t~ AP =60® 1 1 (8) + Une
Proof. Apply the relation (4.1) m times. O

Note that the relation (3.2) is valid for general C' over T'. Specializing it at ¢ = 2
and s odd, we have

a”t(t, M)(L? = M2t 747) Jo (1)
= Jrs(n+1)-1(t) + a l(t, M)MT*”*%Stzr*2”74”568(,1“),1. (4.2)
From Lemma 4.1, we get

(L + M72ps2t417876p52)JT7s(n+1)_1(t) = Un
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Multiplying (4.2) from the left by (L + M ~2P" ¢4ps=605" ) yields
(L + M72p82t4p876ps2)a71(t’M)(LQ . M72rst74rs)JC’n(t)
= U, + (L+ M72p82t4p876p82)a71(t7M)MT77‘872])81527“727“8741)855("_‘_1)_1
—U, + a*l(t’t2M)Mrfr872p8t4r747“8781)855(”4_2)_1
+a—1(t7M)Mr—rs—zps—zpszt2r—2rs—6psz5s(n+1)_1_ (4.3)

As in Sec. 3, let b(t, M)/(t> — t=2) denote the right-hand side of (4.3). Then
b(t, M) is a rational function in ¢ and M. We now show that b # 0 by checking
b(—1, M) :=limy_,_1 b(t, M) # 0. Rewrite U, as a function of t and M by changing
2" to M:

S 2548s—2—4k __ —2531—8s5+2+4k
_ k—1 3 yps—2psk 12pk? —8psk+2pk—+4ps M=t M l
Up = 3 (= 1)k~ are—2rsky =
te —t—
k=1
So we have

S

: 2 4—2 _ _1\k—1psps—2psk 25 —2s
lim (£ —72)U, S (-1FtM (M3 — M%)

(MQS o M—QS)M—ps(l + M—2p52)
- Ve . (4.4)

Also
lim (t2 _ tiz)(ail(t, t2M)MT7T872pst4r74”781)8(55("_._3)_1

=1
+ a—l(t’ M)Mr—rs—2p5—2p52t2r—2rs—6psz5S(n+1)71)
MT-Ts—2ps +MT7T872p872ps2
Mr—rs—4ps _ \[—r—Ts
X (MS(p+2) 4 M) _ ppsep) M*S(%p)).

Summing up the two limits above, we get

b(=1,M) := lim b(t, M)

(M2s _ M72S)M7ps(1 + M72p32) Mrfrsf2ps + Mrfrsf2psf2ps2
1+ M —2ps + Mr—rs—dps _ pN[—T—TSs
X (MS(p+2) 4+ Mser2) _ pps(2-p) _ M*S(%p))
B (M2s o M—2s)(1 + M—QpSZ)M—rs—ps(Mr o M—r)
(]_ + M72ps)(Mr7rsf4ps _ Mfrfrs) ’

which is not zero. So b # 0 and we conclude that our recurrence (4.3) is inhomoge-
neous. Therefore,

P(t,M,L) = (L — 1)b~"(t, M)(L + M 20" ¢4ps=60" ) g =1 (¢ N[)(L% — M ~2rs=47s)

is an annihilator of Jo ,(t) in Ac.
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Once we prove that P is of minimal degree in L, it will follow that P is the recur-
rence polynomial of Je ., (t) up to normalization. We can check the AJ-conjecture
by evaluating P at t = —1.

P(=1,M,L) =b"" (=1, M)a~'(—=1, M)(L — 1)(L + M~ )(L? — M~2"%),
which, up to a nonzero factor in Q(M), is equal to the A-polynomial of C.

4.2. P 1is the recurrence polynomaial of C

We now wish to show that the operator P is the recurrence polynomial of C.
It is enough to show that if an operator Q = DsL® + DyL? + DL + Dy with
Dy, ..., D3 € Z[t*', M*!] is an annihilator of Jo,,(t), then Q = 0.

Suppose QJc ., (t) = 0, that is, DsJo nys(t) + DaJonia(t) + Didonsi(t) +
DoJepn(t) = 0. We wish to show that D; = 0 fori = 0, 1, 2, 3. We have by Lemma 3.1
(specialized at ¢ = 2)

0= D3Jc,n+3(t) + Dchm_._Q (t) + D, JC,n+1(t) + DoJcm (t)

_ D3(M72T8t78TSJC,n+1(t) + (Mrfrsf4pst74rs+4r716ps
o Mfrfrst74rsf4r)JT7s(n+2)_1(t) 4 Mr7rsf2pst4r74r578p555(n+2)_1)

4 DQ(M72T8t74TSJC}n(t) =+ (Mrfrsf4pst72rs+2r78ps
_ M_T_Tst_2rs_2r)JT75(n+1)_1(t) + Mr—rs—2pst2r—2rs—4ps(Ss(n_H)_1)
+ D1JC,n+1(t) + DOJCJl(t)

— (DO 4 DQM_2T5t_4TS)JC7n(t) 4 (Dl 4 DSM_2TSt_8TS)JC,n+1(t)
_|_D3(Mr—rs—4pst—4rs+4r—16ps _ M_T_rst_4rs_4r)JT’S(n+2)71(t)
_|_D2(Mr7rsf4pstf2rs+2r78ps _ M7T7T8t72T872T)JT,S(TL+1)71(t)
+D2Mrfrsf2pst2r72rsf4p35s(n+1)_1 + DSMrfrsf2pst4r74r378p35s(n+2)_17

and applying Lemma 4.1,
_ (DO 4 DQM_QTSLL_ALTS)JC,”(LL) 4 (Dl 4 D3M_2T5t_8rs)<]c7n+1(t)
_|_D3(Mr—rs—4pst—4rs+4r—16ps _ M—r—rst—4rs—47’)
X (— D25 pAps—0ps® IT,s(ne1y)—1() + Un)
_|_D2(Mr7rsf4pst72rs+2r78ps _ Mﬁrin%izrs*zr)JT,S('rH»l)fl(t)
+ D2Mr7rsf2pst2r72r574ps(5s(n+1)_1 4 Dng7rsf2pst4r74r578ps(5s(n+2)_1
= (Do + DaM 2"t} Jon (8) + (D1 4+ D3M =27t %"%) Jo 41 (1)
+ (D3(Mrfrsf4pst74rs+4r716ps _ M7T7r5t74r574r)(_M72p32 t4p376ps2)

+ Dz(Mrfrsf4pst72rs+2r78ps _ M7T7T8t727ﬂ872r))JT75(n+1)_1(t)
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=+ D2MT7T872p8t2T72T874p8(Ss(n_._l)_1 + DS((Mrfrsf4pst74rs+4r716ps
—M7T7T8t74T874T)Un 4 Mr7rsf2pst4r74r578p555(n+2)_1)
= DiJon(t) + DhJens(t) + D;_JT,s(n—O—l)—l(t) + Dj,.

We claim that each D} = 0, and it then follows as in the previous section that each
D; = 0. We again wish to show that the two linear equations defined by D} =
and D} = 0 are linearly independent (with Dy and D5 as variables). So let us check
the determinant of the linear system, multiplied by (> — ¢t=2) and then valued at
t = —1, is nonzero:

(Mrfrsfélps _ Mfrfrs)(_M72ps2)Mr7r572ps (MS(P+2) + M*S(P+2)
o Ms(2—p) _ M—s(2—p)) _ (Mr—rs—4ps _ M—T’—’r‘s)

(M2s _ M*QS)prS(l + M72ps2)
14 M—2ps

% ((Mrrs4ps o Mfrfrs)
M () s D) ps(a) M—s<2—p>)>

_ _(Mr—rs—4ps . M—T’—T‘S)(M—stz + 1) <Mr—rs—2pS(Ms(p+2) + M—s(p+2)

25 —2s —ps
_ Ms(27p) _ Mfs(2fp)) + (Mrfrsf4ps _ Mfrfrs) (M - M )M P )

1+ M—2ps
— _(Mr—rs—4ps _ M—r—rs)(M—2p52 4 1)(M2s _ M—2s)

1
> <Mrrs2ps(Mps _ M*Ps) + (Mrfrsfﬁlps _ Mrrs)m)

1 r—rs—4ps —r—rs —2ps? s —2s
= e (MR AT (M (M M)
% (Mr—rs—QpS(MQ;Ds _ M—2ps> =+ (Mr—rs—4ps _ M—T’—’r‘s))
1
— _ Mrfrsfélps _ M
Mps _|_ M_ps( )

% (M—2p52 + 1)(M25 _ M—QS)(MT—TS _ M—T‘—T’S)

which is indeed nonzero.
The following lemma shows that each D} = 0 if r is not a number between 0
and pgs.

Lemma 4.2. (1) When p > q = 2 and either r < 0 or v > pgs, we have D} = 0
fori=0,1,2,3.
(2) When p < —q and either r > 0 or r < pgs, we have D, =0 fori=0,1,2,3.

Proof. The proof is entirely similar to that of Lemma 3.3 (also cf. Remark 3.1).
|
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5. Case s > 2 is Even
5.1. An annihilator P of Jc,n(t)

Recall our definition
2+a)G+D+2 4 4—2(p+a)G+D)+2 _ 42(a—p)(G+1) -2 _ 4—2(¢—p)(+1)—2
i~ t2 _ t72
and further define:

s/2
. —4dpgsnk+2pgsn-+4apgk? —8pgsk+4pgs
v, _§ :t pq pq pq PISkHAPIS g Lo 1 o
k=1
Lemma 5.1. If s is even, then

JT»S("“’?)—l(t) = t72pq82n73pq82+2pqSJT,s(n+1)—1(t) + Vo
Proof. Apply Lemma 3.2, setting m = s/2. |

Lemma 5.1 yields the relation
(L — M7Posiy=3pas 42008y oy 1 (8) = Vi
So applying the operator (L — M‘pqszt_3pq52+2pq5) to both sides of (3.2) gives:
(L — prqs2t73pq52+2pqs)a71(t7 M)(L2 _ M72Tst74rs)JC}n(t)
=V, + (L — prq52t73pqs2+2pqs)a71(t, M)Mrfrsqust%“72T572pq555(n+1)_1
—V, +a (¢, t2M)Mr—rs—pqst4r—4rs—4pqs§s(n+2)_1
- a—l(t, M)Mr—rs—pq52—pqst2r—2rs—3pq52 5S(n+1)71'

To see this is an inhomogeneous recursion for Jc ., (t), let b(t, M)/(t? —t=2) be the
right-hand side of this equation and check it is nonzero. As before it suffices to
check that lim; .1 b(t, M) # 0, considering V,, and d(,,4x)—;’s as functions of ¢
and M (changing 2" to M). We have

b(=1,M) = lim b(t, M)

= lim (12 = 172)(V,, + a7 (¢, (M) MR sy

t——

_ Cl_l(t, M)Mr—rs—pqsz—pqst2r—2rs—3pqsz 6s(n+1)71)
s/2
— ZM72pqu+pqs + afl(_LM)(Mrfrsqus _ Mrfrsqu327pqs)
i=1

~ (MS(p+q) 4 Msteta) _ prsta—p) _ M—S(q—p))

M —Ppas — M—pqsz—pqs MT—Ts—Pas _ Mr—rs—pqsz—pqs
= 1 — M —2pgs + Mr—rs—2pqs _ N[—T—Ts
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X (MS(p+q) + Mstera) _ ppsta—p) _ M*S(qu))

- (1 _ M—pqsz)M—rs—pqs (Mr _ M—r)(Mps _ M—ps)(qu _ M—qs)
(]_ _ M72pqs)(Mr7rsf2pqs _ Mfrfrs) ’

which is indeed nonzero. Hence
P(t,M,L) = (L — 1)b~(t, M)(L — M P t~3pas” +2pas)
% a’l(t,M)(Lz _ M72T8t74rs)

is an annihilator of Jo ,(t). Assuming P is of minimal degree in L, we can now
check the AJ-conjecture by evaluating P at t = —1. We have

P(=1,M,L) =b"" (=1, M)a~" (=1, M)(L — 1)(L — M 79" )(L2 — M~2"%),

which agrees with the A-polynomial of C, up to a nonzero factor of a rational
function in Q(M).

5.2. P is the recurrence polynomaial of C

We now want to show that the operator P is the recurrence polynomial of C'. It is
enough to prove that if Q = DsL? + DyL? + DL + Dy is an element in A, then
Q = 0. As in Sec. 4.2 we have
0 = D3Jeni3(t) + Dadonya(t) + DiJemyi(t) + DoJon(t)
— (Dl 4 DSM_2TSt_8TS)JC,n+1(t) 4 (DO 4 DQM_2T5t_4TS)JC7n(t)
_|_D3(Mrfrsf2pq8t74rs+4r7817qs _ Mfrfrst74rsf4r)JT’S(n+2)71(t)
+ D2(Mrfrsf2pqst72rs+2r74pqs _ M7T7T8t72T872T)JT,s(n+1)—1(t)

+ D2Mr7rsqust2r72rsf2pqs§s(n+1)_1 4 Dng7rsqust4r74rsf4pqs§S(n+2)_1,
and applying Lemma 5.1,
_ (Dl 4 D3M72T8t78TS)JC’n+1(t) =+ (DO + D2M72rst74rs)JC}n(t)
=+ D3(Mr—rs—qust—4rs+4r—8pqs _ M—r—rst—4rs—4r)
X (M IR Iy (8) 4 Vi)
_|_D2(Mr—rs—qust—2r5+2r—4pqs _ M_T_rst_2r5_2r)']T,s(n+l)71(t)
4 DQMr—rs—pqst2r—2rs—2pq558(n+1)71 4 DSMT—rs—pqst4r—4rs—4pqs5S(n+2)71

= (D1 + DsM™2"5t78%) Jo i1 (t) + (Do + DaM ™2 5747) Jo (1)

+ (D3(Mrfrsf2pqst74rs+4r78pqs _ Mfrfrst74rsf4r)M7pqs2t73pqs2+2pqs
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+ D2(Mrfrsf2pqst72rs+2r74pqs o M7T7T8t72T872T))JT,s(n+1)—1(t)
+ D2Mr7rsqust2r72rsf2pqs(ss(n+l)_1 4 D3(Mr7rsqust4r74r574pqs(ss(n+2)_1
+ (Mr7r572pqst74rs+4r78pqs o Mfrfrst74rsf4r)vn)

= DiyJen(t) + DyJons1(t) + DiJr s(ni1)-1(t) + Dy

As in the previous section, we show that D, =0, i = 1,...,3, implies D; = 0,
1 =0,...,3. We just need to show that the two linear equations defined by D{, = 0
and D] = 0 are linearly independent. Again we just need to check the determinant
of the linear system, multiplied by (2 —¢~2) and then valued at ¢t = —1, is nonzero:

((Mrrs2pqs o Mfrfrs)prqﬁMrfrsqus o (Mrfrsf2pqs _ Mfrfrs)

—pgs —pgs®—pqs
X <Mr—rs—pqs+(Mr—rs—2pqs _M—r—rs)M pas — MPe Pa ))

1— M—2as

« (MS(p+q) 4 Msteta) _ prsta—p) _ M—S(q—p))

Mr—rs—2pqs — M-S
_ ( ; T )(Mr—rs—pqsz—pqS(l _ M—2pq5)

_ Mr—rs—pqs(l _ M—2pqs) _ (Mr—rs—qus _ M—r—rs)
X (M~P3s — M—pqsz—pqS))(MS(Hq) + M—swta) _ ppsta=p) _ pp—sta=p)y
_ (Mr—rs—2pqs _ M—r—rs)(M—pqs2 _ 1)(Mr—rs—pqs _ M—r—rs—pqs)

x (MPS — M~P) (M — M)

which is indeed nonzero.
The following lemma shows that each D} = 0 if r is not a number between 0
and pgs.

Lemma 5.2. (1) When p > q and either r < 0 or r > pqs, we have D, = 0 for
i=0,1,2,3.
(2) When p < —q and either r > 0 or r < pqs, we have D} =0 fori=0,1,2,3.

The proof is similar to that of Lemma 3.3.

6. Case s =2
6.1. An annihilator P of Jc,n(t)

In this section, we assume that C is a (r,2)-cabled knot over a torus knot 7' =
T(p,q)- In

N3

JC,n+1(t) _ t72r((n+1)271) t4rk(2k+1)JT,4k+l(t)7
ke

N3
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let k= —(j+ 3), then

Jonia(t) = =2 (=1 Z I g g ()

t—2r((n+1 -1) Z 4r(2]+1 ]JT,4j+1(t)

n—1

2 ) .
_ _t72r((n+1) —1) t2rn(n+l)JT72n+1 + Z t4r(2j+1)jJT74j+1(t)

s n—1
J="3

_ _t72r((n+1)271)[t2rn(n+l)JT’72n71 + t2r(n271)JC}n(t)]
=t 2" Jpons1 —t T o (1), (6.1)
Turning 2" into M and Jc ,11(¢) into LJc ,(t), we see that

(L+ M2t Jon(t) = M7 Jroni1(t),
or

M"™(L+ M2t Jon(t) = Jronsi(t).

We now wish to find an inhomogeneous recurrence for Jra,41(t). Recall equa-
tion (3.1):

Jrnsa(t) = t—4pq(n+1)JT,n(t) + t—2pq(n+1)5m
which implies that
Jronya(t) = t72PICHD 1o (8) 429D s,
= M98 T (8) + Mg, (6.2)
and so
(L — M~4P9=80) Jp o,y (1) = M 2PIE4P05,,, .

Letting b(t, M)/ (t? —t=2) = M ~2P9t=4P48,,, 1. Then b(t, M) € Z[tT', M*!], which
is obviously nonzero, and we obtain an operator P(¢, M, L) which annihilates Jc ,,(¢)
given by

P(t,M,L) = (L — 1)b™ (t, M)(L — M P9~ 8PO) V" (L + M ~2"t~2").

Assuming P has the minimal L degree, we can check the AJ-conjecture. Eval-
uating P(—1, M, L) gives

P(—=1,M,L) =b" (=1, M)(L — 1)(L — M~*9)M" (L + M "),
which is equal to the A-polynomial of C' up to a nonzero factor in Q(M).
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6.2. P 1is the recurrence polynomzial of C

Next we show that the operator P given above is a generator of the ideal Ac. Tt
amounts to show that if an operator Q = DyL? + DL + Dy, where each D; ¢
Z[t*!, M*1], is an annihilator of Jc,,(¢), then @ = 0.

So suppose that QJc ,(t) =0, i.e.

Do Jcny2(t) + DiJons1 + DoJon(t) = 0. (6.3)

Our goal is to show that D; =0,7=0,1,2.

Using (6.1) and (6.2) we can transform (6.3) into
0= Dot 4™ 2 Jp gy 5(t) — 40" (M Jggt () — 42 I (1))
+ Di(t™ " I ont1 (t) — T2 Jo, (8) + DoJon (t)
= (Dyt =58 _ D=2 4 Doy T (8)
+ Dgt_2m_2r(t_8pq"_8pqJT72n+1 (t) + t_4pq"_4pq52n+1)
+ (=Dat == L Dyt Jp 0y (t)
— (Dot=8 (") _ D=2 4 DY T (1)
(Do (2D =8palnt 1) y=6r(nt D)) o p =2y ()
+ D2t*2r(n+1)74pq(n+1)(52n+1
= DyJen(t) + Dy Jr2n4a(t) + Dy

If we can show that D} = 0,7 =0, 1,2, then it will follow right away that D; = 0,

it =0,1,2. As in Lemma 3.3, we can show that D, = 0, ¢ = 0,1,2, if r is not an
integer between 0 and 2pq.
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