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CHARACTERISTIC SUBSURFACES AND DEHN FILLING

STEVE BOYER, MARC CULLER, PETER B. SHALEN, AND XINGRU ZHANG

Abstract. Let M be a simple knot manifold. Using the characteristic sub-
manifold theory and the combinatorics of graphs in surfaces, we develop a
method for bounding the distance between the boundary slope of an essential
surface in M which is not a fiber or a semi-fiber, and the boundary slope of a
certain type of singular surface. Applications include bounds on the distances
between exceptional Dehn surgery slopes. It is shown that if the fundamental
group of M(α) has no non-abelian free subgroup, and if M(β) is a reducible
manifold which is not homeomorphic to S1 ×S2 or P 3#P 3, then ∆(α, β) ≤ 5.
Under the same condition on M(β), it is shown that if M(α) is Seifert fibered,
then ∆(α, β) ≤ 6. Moreover, in the latter situation, character variety tech-
niques are used to characterize the topological types of M(α) and M(β) in
case the bound of 6 is attained.

Introduction

Many results in the theory of Dehn surgery (see [Go1]) assert that if M is a
compact, orientable, atoroidal, irreducible 3-manifold whose boundary is an incom-
pressible torus, and if two Dehn fillings M(α) and M(β) have specified properties,
then the distance ∆(α, β) of the slopes α and β is bounded by a suitable constant.
(The reader is referred to the body of this paper for the definition of “slope” and
“distance”, as well as for precise versions of many definitions, statements and proofs
that are hinted at in this Introduction.)

In this paper, we define a closed 3-manifold to be very small if its fundamental
group has no non-abelian free subgroup. The motivating result of the paper, Corol-
lary 7.4.4, asserts that if M(α) is very small and M(β) is a reducible manifold other
than S2×S1 or P 3#P 3, then ∆(α, β) ≤ 5. This follows from the following stronger
result which deals with essential planar surfaces in M which are not semi-fibers (see
1.3).

Corollary 7.4.3. Let M be a simple knot manifold, and let F ⊂M be an essential
planar surface with boundary slope β which is not a semi-fiber. Let α be a slope in
∂M . If M(α) is very small, or more generally if F ⊂M ⊂M(α) is not π1-injective
in M(α), then ∆(α, β) ≤ 5.
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Corollary 6.2.3 gives a qualitatively similar conclusion when M(α) is very small
and β is the boundary slope of an essential bounded surface F of arbitrary genus
which is not a semi-fiber. Here the upper bound for ∆(α, β) is 15 + (20g − 15)/m,
where g is the genus of F and m is the number of components of ∂F . Note that,
while this result does provide an upper bound in the case where F is planar, the
bound given by Corollary 7.4.3 is much stronger. In a follow-up paper we will
examine the case where g = 1 and show that in this situation, the bounds obtained
in Corollary 6.2.3, and those described in the results mentioned below, can be
significantly improved.

The proofs of these results begin with the observation that a bounded essential
surface F with boundary slope β may be regarded as a non-properly embedded
surface of negative Euler characteristic in M(α), and that if M(α) is very small,
then the inclusion homomorphism from π1(F ) to π1(M(α)) cannot be injective.
From this one can deduce that there is a map of a disk into M(α) which maps
the boundary of the disk into M − F but cannot be homotoped rel boundary into
M − F . After normalizing such a map and restricting it to the inverse image of
M , one obtains a “singular surface” in M , “well positioned” with respect to F ;
according to the precise definitions given in Section 2, such a singular surface is
defined by a map h of a surface S into M having certain properties. In the case we
are discussing here, S is planar, and each component of ∂S is either mapped into
M − F by h, or mapped homeomorphically onto a curve in ∂M of slope α. This
last property is expressed by saying that the singular surface has boundary slope
α.

The main results of the paper, Theorems 6.2.2 and 7.4.2, give bounds on the dis-
tance between two slopes α and β in terms of the data involving an essential surface
F in M which is not a semi-fiber and has boundary slope β, and a singular surface
which is well positioned with respect to F and has boundary slope α. Applying
this in the case of a planar singular surface we obtain such results as Corollaries
6.2.3 and 7.4.3.

By applying Theorems 6.2.2 and 7.4.2 to other kinds of singular surfaces, we
obtain different kinds of information about boundary slopes and Dehn filling. For
instance we prove:

Corollary 7.4.5. Let M be a simple knot manifold, and let F ⊂M be an essential
planar surface with boundary slope β which is not a semi-fiber. Let α be a slope in
∂M . If M(α) is a Seifert fibered space or if there exists a π1-injective map from
S1 × S1 to M(α), then ∆(α, β) ≤ 6.

This implies Corollary 7.4.6, which asserts that if M(α) is a Seifert fibered space
and M(β) is a reducible manifold other than S2×S1 or P 3#P 3, then ∆(α, β) ≤ 6.
Corollary 7.4.5, like Corollary 7.4.3, has a high-genus analogue: Corollary 6.2.4
asserts that if M(α) is a Seifert fibered space and β is the boundary slope of an
essential surface F inM which is not a semi-fiber, then ∆(α, β) ≤ 18+(24g−18)/m,
where g is the genus of F and m is the number of its boundary components. These
results are proved by observing that if M(α) is Seifert fibered, then either it is
very small, in which case the conclusions follow from Corollaries 6.2.3 and 7.4.3, or
it contains a π1-injective singular torus. Such a torus can be used to construct a
genus-1 singular surface in M having boundary slope α, to which Theorems 6.2.2
and 7.4.2 can be applied.
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Still another type of application of Theorems 6.2.2 and 7.4.2 can be obtained
by observing that an essential surface in M with boundary slope α is a special
case of a singular surface with boundary slope α. This leads to upper bounds
for the distance between boundary slopes of two essential surfaces (not both semi-
fibers) in terms of the genera and numbers of boundary components of the surfaces.
Such bounds are given in Corollary 6.2.5 in the general case, and Corollary 7.4.7,
which recovers a result of Gordon and Litherland [GLi, Proposition 6.1] under
the additional hypothesis that one of the surfaces is planar and is not a semi-
fiber. Corollary 6.2.5, which is qualitatively similar to an unpublished result due
to Cameron Gordon, strengthens a result due to Torisu [T], but in turn has been
strengthened slightly by Agol [A], using results of Cao and Meyerhoff [CM].

The constructions of singular surfaces that are needed to pass from Theorems
6.2.2 and 7.4.2 to their various corollaries are given in detail in Section 2.

The statements of Theorems 6.2.2 and 7.4.2 involve an essential surface F which
is not a semi-fiber. We shall sketch the proofs under the simplifying assumption that
M − F has two components, whose closures we shall denote by M+

F and M−
F . The

first step in the proofs, which is carried out in Section 3, involves graph-theoretical
arguments. Suppose that we are given an essential surface F ⊂ M with boundary
slope β and a singular surface which is well positioned with respect to F and has
boundary slope α. Such a singular surface is defined by a certain kind of map h of a
compact 2-manifold S into M . We obtain a surface Ŝ from S by identifying certain
components of ∂S to points, and the images of the arc components of h−1(S) are
the edges of a graph G ⊂ Ŝ. Each vertex of G has valence m∆(α, β), where m is the
number of boundary components of F . By using certain non-degeneracy properties
of G we find a family of parallel edges in G whose size is bounded below in terms
of topological data about F and the valence m∆(α, β).

A parallel family of edges in G gives 3-dimensional information about how the
essential surface F sits in M . While the edges of G do not map to properly em-
bedded arcs in F , each edge of G does give rise to an essential path in (F, ∂F ),
which can be extended to a map of a “pair of glasses” (see Figure 3.3.1) into F
that maps the rims homeomorphically to components of ∂F . A parallel family of
k + 1 edges in G defines a sequence of k + 1 such “singular pairs of glasses” and
k essential homotopies in M+

F and M−
F between the successive pairs of glasses in

the sequence. (Under the homotopies, the images of the rims of the glasses stay
in ∂M .) Furthermore, these homotopies alternate strictly between homotopies in
M+

F and homotopies in M−
F . According to the precise definition given in Section

3 such a sequence of homotopies determines a reduced homotopy of length k. The
graph-theoretical arguments that we have sketched here are used in Section 3 to
show that upper bounds for the length of a reduced homotopy of singular pairs of
glasses in M imply theorems of the type of 6.2.2 and 7.4.2. The rest of the paper
is devoted to obtaining such bounds for the lengths of reduced homotopies, in the
more general context of a map of a polyhedron into M which is “large” in the sense
that the induced homomorphism of fundamental groups has a non-abelian image.

A reduced homotopy of length 1 is by definition an essential homotopy in M+
F

or M−
F whose time-0 and time-1 maps are maps of the domain into F . We are

interested in reduced homotopies whose time-0 maps are large. Such homotopies
can be understood in terms of the characteristic submanifold theory ([JS], [Jo]).
This theory provides a (possibly disconnected) 2-manifold Φ± ⊂ M±

F , which is
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“large” in the sense that the fundamental group of each component of Φ± is non-
abelian and maps injectively into π1(F ). Any large map of a polyhedron into F
which is the time-0 map of an essential homotopy in M±

F is homotopic in F to a
map into Φ±. Furthermore, the identity map of Φ± is itself the time-0 map of an
essential homotopy in M±

F .
In Section 5 we generalize this to reduced homotopies of length k: we define

large 2-dimensional submanifolds Φ±
k of F for k = 1, 2, . . .. If a large map f of a

polyhedron into F is the time-0 map of a length-k reduced homotopy in M which
“begins” in M+

F (or M−
F ), then f is homotopic in F to a map into Φ+

k (respectively
Φ−

k ). Furthermore, the identity map of Φ±
k is itself the time-0 map of a reduced

homotopy in M which begins in M±
F . The Φ±

k for k > 1 are defined inductively,
using the notion of an essential intersection of subsurfaces of F , which is presented
in [Ja]. In Section 4 we give a self-contained account of a version of the theory of
essential intersections that is adapted to the study of large subsurfaces.

The Φ±
k give a natural tool for bounding the length of a reduced homotopy: if n

is a positive integer such that Φ+
n = Φ−

n = ∅, it is clear that any reduced homotopy
with large time-0 map has length < n. (Of course there can be no such bound in
the case that F is a semi-fiber.)

The Φ±
k may be taken to be nested: Φ+

1 ⊃ Φ+
2 ⊃ . . . , and similarly for the

Φ−
k . A crucial step in the argument is provided by Proposition 5.3.9, which asserts

that when F is not a semi-fiber, and if Φ+
k (say) is non-empty for a given k, then

Φ+
k+2 is not isotopic to Φ+

k . Hence in the sequence Φ+
1 ⊃ Φ+

3 ⊃ Φ+
5 ⊃ . . . , the

successive subsurfaces are always non-isotopic until one of them becomes empty.
This means that to bound the length of a reduced homotopy whose time-0 map
is large, it suffices to bound the length of a nested sequence of subsurfaces of F
in which successive subsurfaces are non-isotopic. This is a matter of elementary
surface topology, and the bound can be improved by a factor of 2 using Corollary
5.3.8, which asserts that for odd k the Φ±

k all have even Euler characteristic. This
leads to Theorem 5.4.1, which gives a bound of 8g + 3m − 8 for the length of a
reduced homotopy with a large time-0 map, where g is the genus of F and m, as
above, denotes the number of its boundary components.

While Theorem 5.4.1 is significant for general large maps, it is far from optimal
for the case of singular pairs of glasses arising from essential paths. In Section
6 we introduce a variant of Φ±

k which we denote by Φ̇±
k ; it is simply the union

of the “outer components” of Φ±
k , i.e. those components which have at least one

boundary component which is homotopic to a component of ∂F . If a singular pair
of glasses f arising from an essential path in F is the time-0 map of a length-k
reduced homotopy in M which begins in M+

F (or M−
F ), then f is homotopic in

F to a map into Φ̇+
k (respectively Φ̇−

k ). In Section 6, under the assumption that
there exists a reduced homotopy of length m whose time-0 map is an essential
path, we establish analogues for the Φ̇±

k of all the properties of the Φ±
k that are

established in Section 4, including Corollary 6.1.10 and Proposition 6.1.11 which
are the analogues of Corollary 5.3.8 and Proposition 5.3.9. By definition the Φ̇±

k

have the additional property that they are outer subsurfaces, in the sense that all
their components are outer components. Hence to bound the length of a reduced
homotopy whose time-0 map is an essential path, it suffices to bound the length
of a nested sequence of outer subsurfaces of F in which successive subsurfaces are
non-isotopic. The restriction to outer subsurfaces turns out to improve the bound,
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almost by another factor of 2. The upshot is Theorem 6.2.1, which gives a bound of
4g+3m− 4 for the length of a reduced homotopy whose time-0 map is an essential
path, where g and m are defined as above. Theorem 6.2.2 is proved by combining
Theorem 6.2.1 with the results of Section 2.

In order to prove Theorem 7.4.2 we need to improve the conclusion of Theorem
6.2.1 in the special case where F is planar, i.e. g = 0.

Theorem 7.4.1. Let F be an essential planar surface in a simple knot manifold M .
Suppose that F is not a semi-fiber. Set m = |∂F | and let H be any reduced homotopy
in the pair (M,F ) such that H0 is an essential path in F and Ht(∂I) ⊂ ∂M for
each t ∈ I. Then the length of H is at most m− 1.

The proof formally proceeds by contradiction, beginning with the assumption
that there is a length-m reduced homotopy whose time-0 map is an essential path,
and applying some machinery that is set up in Section 7. We shall sketch this
machinery in the case where F is planar, although many of the results of Section
7 are stated more generally. We introduce yet another variant of Φ±

k which we
denote by Φ̆±

k . It differs from Φ̇±
k in that it contains ∂F , but may have annular

components. Under the assumption that there is a length-m reduced homotopy
whose time-0 map is an essential path, we again obtain analogues for the Φ̆±

k of the
properties that are established in the preceding sections for the Φ±

k and the Φ̇±
k ,

even though the surfaces Φ̆±
k need not be large. In Proposition 7.2.10, which is the

analogue of Propositions 5.3.9 and 6.1.11, the analogue of the conditions Φ±
k = ∅

or Φ̇±
k = ∅ is that Φ̆±

k is a regular neighborhood of ∂F , which is in fact equivalent
to the condition Φ̇±

k = ∅.
The planarity of F implies that if F is not a semi-fiber, then some component

of Φ̆±
1 is tight in the sense that its frontier in F is a single simple closed curve. We

define the size of a tight component of Φ̆±
k to be the number of components of ∂F

that it contains. We call a component of Φ̆+
1 or Φ̆−

1 very tight if its size is at most the
minimum size of any tight component of Φ̆+

1 or Φ̆−
1 . We may assume by symmetry

that Φ̆+
1 has a very tight component. Lemma 7.3.1, the proof of which is based

on the same ideas as that of Corollary 5.3.8, implies that the number |V T (Φ̆+
k )| of

very tight components of Φ̆+
k is always even. A key step in proving Theorem 7.4.1

is Lemma 7.3.7, which implies that if F is not a semi-fiber, then increasing k by
2 always strictly increases |V T (Φ̆+

k )|, unless Φ̆+
k is already a regular neighborhood

of ∂F . From this it is not hard to deduce (cf. Proposition 7.3.8) that Φ̆+
m−1 is a

regular neighborhood of ∂F ; this in turn easily implies that there is no length-m
reduced homotopy whose time-0 map is an essential path, a contradiction which
completes the proof of Theorem 7.4.1.

In Section 8 we further investigate the situation where M is a simple knot mani-
fold and α and β are slopes such thatM(α) is Seifert fibered whileM(β) is reducible.
In Proposition 8.4 we establish restrictions on which Seifert fibered spaces can arise
in this situation when ∆(α, β) > 3. The proof begins by applying Corollary 7.4.6
to deduce that ∆(α, β) is equal to 4, 5 or 6. We then use the PSL2(C) character
variety together with some observations from algebraic number theory to describe
the Seifert fibered structure on M(α). For instance we prove:

Corollary 8.5. Let M be a simple knot manifold and fix slopes α and β on ∂M .
If M(β) is reducible, though not S1 × S2 or P 3#P 3, and M(α) is a Seifert fibered
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space, then ∆(α, β) ≤ 5 unless perhaps M(β) ∼= P 3#L(p, q) and M(α) is a small
Seifert manifold with base orbifold S2(a, b, c), where (a, b, c) is a hyperbolic triple
and 6 divides lcm(a, b, c).

Similar methods lead to restrictions, in Proposition 8.7, of the possible Seifert
fibrations of M(α) when M(β) is a Seifert fibered space containing an (embedded)
incompressible torus and 5 < ∆(α, β) ≤ 10. The method of proof is similar to
that used in Proposition 8.4, except that the role of Corollary 7.4.6 is played by a
theorem due to Agol [A] and Lackenby [La] which implies that ∆(α, β) ≤ 10 in this
situation.

This paper had its origins in unpublished work done by M. Culler, C. MacA.
Gordon and P. B. Shalen in 1984. This work established a preliminary version of
the Cyclic Surgery Theorem [CGLS], giving an upper bound of 5 for the distance
between two cyclic filling slopes for a simple knot manifold, which was afterwards
superseded by the bound of 1 established in [CGLS]. The proof used character
variety techniques to reduce the result to a complicated topological statement,
which was in turn proved by combining the graph-theoretical construction of Section
3 and the use of the subsurfaces Φ±

k in the same way as is done in the proof of
Theorem 6.2.2. The techniques that were then available could have produced a
result qualitatively similar to Theorem 6.2.2, but much weaker.

Independently and more recently, techniques similar to ours have been used in a
related context by Cooper and Long [CL] and Li [Li]. While our main results bound
∆(α, β) under the assumption that β is a boundary slope and π1(M(α)) does not
contain a non-abelian free group, the results in [CL] and [Li] imply a weaker bound
for ∆(α, β) under the weaker assumption that β is a boundary slope and π1(M(α))
does not contain the fundamental group of a closed surface of genus > 1. Li proves
a result which is qualitatively similar to our Theorem 6.2.1, but with a bound of
6g + 4m− 6 where Theorem 6.2.1 provides the stronger bound of 4g + 3m− 4.

We are indebted to Cameron Gordon for his role in the development of the ideas
in this paper.

1. Terminology and notation

We describe here various notational conventions that will be used throughout
the paper.

1.1. If X is a topological space, |X | will denote the number of components of X .
A (continuous) map f : X → Y of topological spaces will be called π1-injective

if for each x0 ∈ X , the homomorphism f� : π1(X ;x0) → π1(Y ; f(x0)) is injective.
A subset A of a space Y will be called π1-injective if the inclusion map A → Y is
π1-injective.

A homotopy with domain X and target Y is a map H : X × I → Y . For each
t ∈ [0, 1] we define Ht : X → Y by Ht(x) = H(x, t). We shall sometimes refer to
Ht as the time-t map of H .

Let H1, . . . , Hn be homotopies with domain X and target Y . A homotopy H
with domain X and target Y will be said to be a composition of H1, . . . , Hn if
there exist numbers 0 = x0 < x1 · · · < xn = 1 and monotone increasing linear
homeomorphisms αi : [xi−1, xi] → [0, 1] such that H(x, t) = Hi(x, αi(t)) whenever
t ∈ [xi−1, xi].
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We shall say that a map f : X → Y between spaces is homotopic into a subset
B of Y if f is homotopic to a map g : X → Y for which g(X) ⊂ B. A subset A of
a space Y is said to be homotopic into a subset B of Y if the inclusion map from
A to Y is homotopic into B.

Let f : (X,Y ) → (Z,W ) be a map of topological pairs, where Z is a connected
n-manifold and W ⊂ ∂Z is an (n − 1)-manifold. In the case where X is pathwise
connected, we shall say that f is essential if it is π1-injective as a map from X to
Z and is not homotopic, as a map of pairs, to a map f ′ : (X,Y ) → (Z,W ) where
f ′(X) ⊂ W . In general we shall say that f is essential if X �= ∅ and f restricts to
an essential map from (C,C ∩ Y ) to (Z,W ) for every component C of X . A map
f from a space X to a manifold Z will be termed essential if f : (X, ∅) → (Z, ∂Z)
is essential.

We will denote the unit interval [0, 1] by I. By an essential path in a surface F
with non-empty boundary we shall mean an essential map f : (I, ∂I) → (F, ∂F ).

A manifold M is said to be orientable if all of its components are orientable.
An orientation of M is defined by a choosing an orientation for each component;
a manifold M is said to be oriented if an orientation of M has been fixed. Every
codimension 0 submanifold of an oriented manifold M inherits an orientation.

Suppose that A is a codimension 0 submanifold of a manifold M and that h :
A → M is an embedding. We say that h preserves orientation if it carries the
orientation of A inherited from M to the orientation of h(A) inherited from M ;
we say that h reverses orientation if it carries the orientation of A inherited from
M to the orientation of h(A) which is the opposite of that inherited from M . In
general, if A is disconnected, there may exist embeddings which neither preserve
nor reverse orientation.

If S is a compact surface, then χ(S) denotes the Euler characteristic of S and
genus(S) denotes the total genus of S, i.e. the sum of the genera of the components
of S.

1.2. A compact orientable 3-manifold M is said to be irreducible if it is connected
and every 2-sphere in M bounds a ball. A compact orientable 3-manifold M is said
to be boundary irreducible if it is connected and for any properly embedded disk D
in M the curve ∂D bounds a disk in ∂M .

Let M be a compact, orientable, irreducible 3-manifold, and let Q ⊂ ∂M be
a compact π1-injective surface. We define an essential surface in (M,Q) to be a
compact surface F in M such that (i) ∂F = F ∩ ∂M ⊂ Q, and (ii) the inclusion
map (F, ∂F ) → (Z,Q) is essential. Note that condition (ii) is equivalent to the
condition that F is incompressible and not parallel to a subsurface of Q. By an
essential surface in a 3-manifold M we mean an essential surface in (M,∂M).

Let M be a compact, orientable, irreducible 3-manifold and let Q be a π1-
injective subsurface of ∂M . We will say that the pair (M,Q) is acylindrical if there
does not exist any essential map from (S1 × I, S1 × ∂I) to (M,∂M) which sends
S1× ∂I into Q. By the Annulus Theorem [JS, IV.3.1], (M,Q) is acylindrical if and
only if there is no essential annulus in (M,Q).

We will say that a compact 3-manifold M is atoroidal if there exists no essential
map from (S1 × S1, ∅) to (M,∂M).

A closed orientable 3-manifold will be said to be very small if its fundamental
group contains no non-abelian free subgroup.
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1.3. Given a compact orientable 3-manifold M and a connected, properly embed-
ded, transversely oriented surface F in M , we will implicitly fix a regular neighbor-
hood N(F ) of F and a homeomorphism fF from F × [−1, 1] to N(F ) which sends
the standard orientation of [−1, 1] to the transverse orientation of F and maps
F × {0} to F . The sets fF (F × (−1, 0]) and fF (F × [0, 1)) will be denoted N−(F )
and N+(F ), respectively.

We will use the notation MF to denote the compact manifold

M − fF (F × (−1/2, 1/2)).

The boundary of MF contains the two subsurfaces F × {−1/2} and F × {1/2}
which will be denoted F− and F+, respectively. By restricting the projection map
N(F ) → F we obtain two standard homeomorphisms i− : F− → F and i+ : F+ →
F . Whenever it is convenient to do so we will identify the manifold M with the
quotient of MF obtained by gluing F− to F+ via the homeomorphism i−1

+ ◦ i−.
The surface F will be called a semi-fiber in M if the pair (MF , F− ∪ F+) is an

I-pair in the sense of [Ja]; that is, if there is an I-bundle E over a surface and a
homeomorphism h : MF → E such that h(F− ∪ F+) is the ∂I-bundle associated
to E. (Note that E may be either a trivial I-bundle over a connected orientable
surface, or a twisted I-bundle over a non-orientable surface of two components.)

1.4. Simple knot manifolds and slopes. We will say that a compact connected
orientable 3-manifold M is simple provided that (1) M is irreducible and boundary
irreducible, (2) M contains no essential surface of Euler characteristic 0, and (3)
M is not Seifert-fibered. If in addition the boundary of M is a torus we will say
that M is a simple knot manifold.

If M is a simple knot manifold, then an unoriented isotopy class of homotopically
non-trivial simple closed curves on ∂M will be called a slope. We will write ∆(α, β)
for the geometric intersection number of two slopes α and β. We will denote by
M(α) the Dehn filling of M determined by α. If F is a bounded essential surface in
M , then the boundary curves of F all have the same slope, which will be called the
boundary slope of F . A slope will be called a boundary slope if it is the boundary
slope of some essential surface. A slope will be called a strict boundary slope if it is
the boundary slope of some essential surface which is not a semi-fiber in M .

2. Singular surfaces

Let M be a simple knot manifold. By a singular surface in M we will mean a
triple (S,X, h), where S is a compact, connected, orientable surface, X is a non-
empty union of components of ∂S, and h : (S,X) → (M,∂M) is a map of pairs such
that (i) h(S−X) ⊂ intM and (ii) h maps the components of X homeomorphically
onto disjoint, homotopically non-trivial simple closed curves in ∂M .

If (S,X, h) is a singular surface in M , the components of h(X) are all simple
closed curves with the same slope, which we shall call the boundary slope of (S,X, h).

We shall say that two simple closed curves γ and γ′ on a torus T are in standard
position if there is a covering map p : R2 → T for which p−1(γ) and p−1(γ′) are
Euclidean lines.

Let F be a bounded essential surface in a simple knot manifold M . A singular
surface (S,X, h) will be said to be well positioned with respect to F if (i) h is
transverse to F , (ii) h(∂S − X) ∩ F = ∅, (iii) h(X) is in standard position with
respect to ∂F , and (iv) each component of h−1(F ) is mapped by h to an essential
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path or to a homotopically non-trivial (possibly singular) closed curve in F . It
follows from (ii) that the arc components of h−1(F ) have their endpoints in X . Note
that (iv) implies in particular that no simple closed curve component of h−1(F )
bounds a disk in S, and that no arc component of h−1(F ) is parallel in S to an arc
in X .

In this section we shall give several ways of constructing singular surfaces that
are well positioned with respect to a given bounded essential surface in a simple
knot manifold.

Proposition 2.1. Suppose that F and S are bounded essential surfaces in a simple
knot manifold M . Then the inclusion map from S to M is isotopic to an embedding
h : S → M such that the singular surface (S, ∂S, h) is well positioned with respect
to F .

Proof. After an isotopy we may assume that S and F meet transversely and that
∂S is in standard position with respect to F . We claim that every arc component
of S ∩ F is essential in F . If this is not the case, then there is a disk D ⊂ F whose
frontier in F is an arc A such that A = D ∩ S. Since ∂M is a torus, the essential
surface S is boundary-incompressible; hence A is the frontier in S of a disk E ⊂ S.
Now D ∪ E is a properly embedded disk in the simple knot manifold M and is
therefore parallel in M to a disk J ⊂ ∂M . As ∂J is made up of an arc in ∂F and
an arc in ∂S, we have a contradiction to standard position, and the claim is proved.

To prove the proposition it now suffices to show that if some component of S∩F
is a homotopically trivial simple closed curve C in F , then S is isotopic rel boundary
to a surface S′ such that |S′ ∩ F | < |S ∩ F |. We may suppose C to be chosen so
that there is a disk D ⊂ F such that ∂D = C = D ∩ S. Since S is essential, C
also bounds a disk E ⊂ S; since M is irreducible the disks D and E are isotopic
by an isotopy that fixes C. We may thus obtain the required surface S′ by moving
(S − intE) ∪D into general position with respect to F . �

Proposition 2.2. Let M be a simple knot manifold. Let F be a bounded essential
surface in M , and let α be a slope on ∂M . Suppose that there exist a compact
orientable surface T and a π1-injective map f : T →M(α) such that

(1) f(∂T ) ⊂M − F ⊂M ⊂M(α);
(2) there exists no map from T to M which agrees with f on ∂T and induces an

injection from π1(T ) to π1(M(α)).
Then there exists a singular surface (S,X, h) in M which has boundary slope α

and is well positioned with respect to F . Moreover, we have genusS = genusT ,
and |∂S −X | = |∂T |.

Proof. Let us write M(α) = M ∪ V , where V is a solid torus and a meridian curve
of V is identified with a curve of slope α in ∂M .

By transversality and uniqueness of regular neighborhoods, there exists a map
h : T →M(α) such that

(i) h is π1-injective and agrees with f on ∂T ;
(ii) the components of h−1(V ) are disks in the interior of T which are mapped

homeomorphically by h to disjoint meridian disks of V , whose boundaries are all
in standard position with respect to all of the components of ∂F ;

(iii) each component of h−1(F ) is a properly embedded 1-manifold in the bounded
surface h−1(M).
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Define the complexity of a map h satisfying conditions (i)—(iii) to be the ordered
pair (v(h), b(h)), where v(h) is the number of components of h−1(V ) and b(h) is
the number of components of h−1(F ). Note that hypothesis (2) and condition (i)
imply that v(h) must be strictly positive.

Among all maps satisfying (i)—(iii), we suppose h to be chosen so that the
complexity of h−1(F ) is minimal with respect to lexicographical order.

We set S = T − h−1(int V ) = h−1(M) and X = ∂S − ∂T = h−1(∂M). By (ii),
the components of h(X) are simple closed curves of slope α.

We shall show that the map h satisfies the following additional condition:
(iv) Each component of h−1(F ) is mapped by h to an essential path or to a

homotopically non-trivial (possibly singular) closed curve in F .
It follows from the definitions that if h satisfies (i)–(iv), then the triple (S,X, h|S)

is a singular surface, well positioned with respect to F and having boundary slope
α. Furthermore, we have genusS = genusT and |∂S − X | = |∂T |, since S was
obtained from T by removing a collection of disjoint disks bounded by X . Hence
the proof of the proposition will be complete when we have shown that h satisfies
(iv).

To prove (iv), first suppose that some curve component C of h−1(F ) is mapped
by h to a homotopically trivial closed curve in F . Then, since h is π1-injective,
the curve C bounds a disk D in T . Thus there is a map h′ : T → M(α) which
agrees with h on the complement of D, and maps D into F . Moving h′ into general
position would produce a map of lower complexity than h, giving a contradiction.

To complete the proof of (iv), we consider an arc component A of h−1(F ) , and
let p, q ∈ X be the endpoints of A. We must show that the path h(A) is essential
in F .

It will be convenient to work in the smooth category for this argument. Fix an
orientation on the manifold M and give ∂M the induced orientation. Given an
ordered pair (γ1, γ2) of oriented 1-manifolds on ∂M , intersecting transversely at a
point, we define the sign of their intersection at that point to be the sign of the
frame (u1,u2) with respect to the orientation of ∂M , where ui is a tangent vector
to γi which is positive with respect to its orientation.

Next we fix orientations of F and T . The orientation of T restricts to an ori-
entation of S. Give the components of ∂F and X the orientations induced from
those of F and S, and then push the orientation of X forward under h to obtain
orientations of the meridian curves that make up h(X). The points h(p) and h(q)
are transverse intersection points of the oriented 1-manifolds ∂F and h(X) on ∂M .
A key step in the proof that h(A) is an essential path is to show that the signs of
these intersections are opposite.

The orientations of M and F define a transverse orientation of F . Because the
map h is transverse to F , we can pull back the transverse orientation of F to a
transverse orientation of A in S. Let up and uq be tangent vectors to X at p and q
which are positive with respect to the orientation of X . Let vp and vq be tangent
vectors to ∂F at the points h(p) and h(q) which are positive with respect to the
orientation of ∂F . Let wp and wq be tangent vectors to ∂M which are transverse
to vp and vq and positive with respect to the transverse orientation of F . Observe
first that, since A is a properly embedded arc in S, the transverse orientation of
A is consistent with the orientation of X at p if and only if it is inconsistent with
the orientation of X at q. Second, observe that the signs of (vp,wp) and (vq ,wq)
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agree. It follows that the signs of (Dh(up),vp) and (Dh(uq),vq) are opposite. In
other words, the signs of the intersections of ∂F and h(X) are opposite at h(p) and
h(q).

Now assume that the path h(A) is inessential in F . In particular the points h(p)
and h(q) then lie on the same component of ∂F . But the signs of the intersections
of ∂F and h(X) are opposite at h(p) and h(q), and by (ii) the components of h(X)
are all in standard position with respect to all the components of ∂F . It follows
that p and q lie on distinct components C1 and C2 of X , and that the orientations
inherited from h(X) by the meridian curves h(C1) and h(C2) are opposite on the
torus ∂M . Let D1, D2 ⊂ T be the disk components of h−1(V ) bounded by C1 and
C2, and define D to be a regular neighborhood of D1 ∪A ∪D2 in T . Then h(∂D)
is homotopic in M to a (possibly singular) closed curve on the torus ∂M which
is the composition of conjugates of the oppositely oriented meridian curves h(C1)
and h(C2). In short, h(∂D) is homotopically trivial in M . Hence there is a map
h′ : T →M(α) which agrees with h on the complement of D, and maps D into M .
Then h′ has lower complexity than h. This contradiction completes the proof that
A is essential and hence that h satisfies (iv). �

The following results are corollaries to Propositions 2.1 and 2.2.

Corollary 2.3. Let M be a simple knot manifold, and let F ⊂ M be an essential
bounded surface. Let α be a slope in ∂M . If M(α) is very small, or more generally
if F ⊂M ⊂M(α) is not π1-injective in M(α), then there exists a singular surface
(S,X, h), well positioned with respect to F and having boundary slope α, such that
S is planar and ∂S −X is non-empty and connected.

Proof. It follows from the definition of a simple manifold that if F is a bounded
essential surface in a simple knot manifold M , then χ(F ) < 0, so that π1(F ) is a
non-abelian free group. Hence if M(α) is very small, then F ⊂ M(α) is not π1-
injective inM(α). We must show that if F ⊂M(α) is not π1-injective inM(α), then
there exists a singular surface (S,X, h) with the stated properties. We will apply
Proposition 2.2, taking T to be a disk and constructing the map f : T → M(α) as
follows. Since F is not π1-injective in M(α), there exists a homotopically non-trivial
closed curve γ on the surface F which is null-homotopic in M(α). Deform the curve
γ by a homotopy to a curve γ′ which is disjoint from F . Let f be a null-homotopy
of γ′ in M(α). Then f is π1-injective since π1(T ) is trivial, and condition (1) of
Proposition 2.2 holds by construction. Since F is essential, there does not exist a
null-homotopy of γ′ in M , so condition (2) of Proposition 2.2 holds as well. �

Corollary 2.4. Let M be a simple knot manifold, and let F ⊂ M be an essential
bounded surface. Let α be a slope in ∂M . If M(α) is reducible, then there exists
a singular surface (S,X, h), well positioned with respect to F and having boundary
slope α, such that S is planar and X = ∂S.

Proof. If M(α) is reducible, then there is an essential planar surface in M with
boundary slope α. The assertion therefore follows from Proposition 2.1. �

Corollary 2.5. Let M be a simple knot manifold, and let F ⊂ M be an essential
bounded surface. Let α be a slope in ∂M and let g be a positive integer. Suppose
that π1(M(α)) contains a subgroup which is isomorphic to the fundamental group of
a closed connected surface of genus g, and that π1(M) does not. Then there exists
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a singular surface (S,X, h), well positioned with respect to F and having boundary
slope α, such that genusS = g and X = ∂S.

Proof. If π1(M(α)) contains a genus-g surface group, then there is a π1-injective
map from a surface of genus g to M(α). Note that condition (1) of Proposition 2.2
holds vacuously, and condition (2) holds because of our hypothesis on π1(M(α)).
The assertion therefore follows from Proposition 2.2. �

Corollary 2.6. Let M be a simple knot manifold, and let F ⊂ M be an essential
bounded surface. Let α be a slope in ∂M . If M(α) is a Seifert fibered space, then
there exists a singular surface (S,X, h), well positioned with respect to F and having
boundary slope α, such that either (i) genusS = 1 and X = ∂S, or (ii) S is planar
and ∂S −X is non-empty and connected.

Proof. If π1(M(α)) is finite, or if M(α) is reducible and hence homeomorphic to
S1 ×S2 or P 3#P 3, then M(α) is very small and conclusion (ii) holds by Corollary
2.3.

If π1(M(α)) is infinite and M(α) is irreducible, then there exists a π1-injective
map f : T → M(α), where T is a torus. Since M is atoroidal, any π1-injective
map from T to M is homotopic to a map into ∂M . But such a map cannot be
π1-injective as a map from T to M(α) ⊃ M , since ∂M bounds a solid torus in
M(α). It follows that f is not homotopic to a map whose image is contained in M .
Therefore f satisfies the hypotheses of Proposition 2.2, which asserts the existence
of a singular surface satisfying condition (i) of the statement. �

3. Reduced homotopies

3.1. Basic homotopies. Let M be a simple knot manifold and let F be a trans-
versely oriented essential surface in M . A homotopy in (M,F ) with domain K is a
homotopy H with domain K and target M such that H(K×∂I) ⊂ F . A homotopy
H in (M,F ) is a basic homotopy if H−1(F ) = K × ∂I.

We shall say that a basic homotopy H : (K × I,K × ∂I) → (M,F ) starts on the
+ side (or the − side) if H(K × [0, δ]) is contained in N+(F ) (or in N−(F )) for
sufficiently small δ > 0. Similarly, H will be said to end on the + side (or the −
side) if H(K × [1− δ, 1]) is contained in N+ (or in N−) for sufficiently small δ > 0.
Of course in the case where F separates M , a basic homotopy starts on the + side
(or, respectively, the − side) if and only if it ends on the + side (or the − side). In
this case we shall simply refer to it as a homotopy on the + side (or − side).

As a notational convention we will treat the symbols + and − as abbreviations
for 1 and −1, respectively. Thus if ε ∈ {±1} we may say that a homotopy H starts
on the ε-side, meaning that it starts on the + side if ε = 1 or that it starts on the
− side if ε = −1.

There is a natural one-to-one correspondence between basic homotopies H in
(M,F ) with domain K which start on the ε side, and homotopies H ′ in (MF , F− ∪
F+) with domain K such that H ′−1(F− ∪F+) = K × ∂I and H ′

0(K) ⊂ Fε. A basic
homotopy H is said to be essential if the corresponding homotopy

H ′ : (K × I,K × ∂I) → (M,F− ∪ F+)

is an essential map of pairs.



CHARACTERISTIC SUBSURFACES AND DEHN FILLING 2401

l

b

l

v v1 2

21

.

Figure 3.3.1

3.2. Reduced homotopies. Let M be a simple knot manifold and F an essential
surface in M . Let K be a finite polyhedron. Suppose that n is a positive integer. A
homotopy H : (K× I,K×∂I) → (M,F ) is said to be a reduced homotopy of length
n in (M,F ) if we may write H as a composition of n essential basic homotopies
H1, . . . , Hn in such a way that, for i = 1, . . . n−1, if εi denotes the element of {±1}
such that Hi+1 starts on the εi side, then we have that Hi ends on the −εi side.
If ε0 denotes the element of {±1} such that H1 starts on the ε0 side, then we shall
also say that the reduced homotopy H starts on the ε0 side.

We define a reduced homotopy of length 0 in (M,F ) to be a map H from K to
F . The time-0 and time-1 maps of H are defined to be H itself. If H is a reduced
homotopy of length 0 and H ′ is a reduced homotopy of length ≥ 0 whose time-1
(or time-0) map is equal to H , we define the composition of H with H ′ (or of H ′

with H) to be H ′.

3.3. Let Γ denote the 1-complex shown in Figure 3.3.1, consisting of two vertices
v1 and v2, and three oriented edges l1, l2 and b. By an admissible pair of glasses in
a surface F we will mean a map γ : Γ → F such that the restriction of γ to b̄ is an
essential path, and, for i = 1, 2, the restriction of γ to l̄i is a homeomorphism onto
a boundary component of F . It is easy to show that if γ is an admissible pair of
glasses in a surface F of negative Euler characteristic, then γ : (Γ, l̄1∪ l̄2) → (F, ∂F )
is an essential map of pairs; and furthermore that if α is any map from S1 to Γ which
is not homotopic into l1 or l2, then g = γ ◦ α : S1 → F is essential. In particular
this remark applies when F is an essential surface in a simple knot manifold, since
the definition of simplicity then implies that χ(F ) < 0.

3.4. Let F be an essential surface in a simple knot manifold M . Suppose that
f : (I, ∂I) → (F, ∂F ) is an essential path and that

H : (I × I, I × ∂I) → (M,F )

is a reduced homotopy of length n such that H0 = f and Ht(∂I) ⊂ ∂M for all
t ∈ I. Let us identify the set b̄ ⊂ Γ with I, respecting the orientations, so that
f becomes a map from b̄ to F . Let us fix a product structure on ∂M ∼= S1 × S1

such that each simple closed curve in ∂F has the form {x} × S1 for some x ∈ S1,
and for i = 1, 2 let us fix orientation-respecting identifications of l̄i with S1. In
this situation we shall describe a canonical way to extend f to an admissible pair
of glasses f̂ : Γ → F , and to extend H to a reduced homotopy Ĥ of length n in the
pair (M,F ) such that Ĥ0 = f̂ . The reduced homotopy Ĥ will have the additional
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property that for all t ∈ [0, 1] the two closed curves Ht|l̄i, i = 1, 2, are homotopic
to boundary components of F .

For i = 1, 2 the point f(vi) lies in a component {xi} × S1 of ∂F . As we have
identified li with S1, there is a unique rotation ρi of S1 such that f(vi) = (xi, ρi(vi)).
We extend f to a map f̂ : Γ → F by sending θ ∈ l̄i to (xi, ρi(θ)) for i = 1, 2. Since
the map f is an essential path, it follows that f̂ is an admissible pair of glasses.
Similarly, we extend H to a homotopy Ĥ as follows. For i = 1, 2 we map each
(θ, t) ∈ l̄i × I to (xi,t, ρi,t(θ)), where xi,t is chosen so that H(vi, t) ∈ {xi,t} × S1,
and ρi,t is the unique rotation of S1 such that H(vi, t) = (xi,t, ρi,t(vi)). Since H is
a reduced homotopy of length n, it is clear that Ĥ is also a reduced homotopy of
length n.

3.5. Suppose that F is an essential surface in a simple knot manifold M and that
γ : Γ → F is an admissible pair of glasses. Any length-n reduced homotopy Ĥ
in (M,F ) with domain Γ and time-0 map γ can be used to produce a length-n
reduced homotopy in (M,F ) whose domain is S1, and whose time-0 map is an
essential map of S1 into F . We map S1 to the circuit in Γ corresponding to the
edge path l1bl2b−1. Composing this map with γ we obtain a map g : S1 → F . The
map g is essential by the remark in Subsection 3.3. Composing Ĥ with g × id we
obtain a reduced homotopy of length n whose time-0 map is g.

Definition 3.6. Let G be a (possibly disconnected) graph in the interior of a
compact surface S, and let E and E′ be distinct edges of G. We shall say that
E and E′ are adjacent parallel edges if there exists a topological disk D, whose
boundary is a union of two arcs A1 and A2 with A1 ∩ A2 = ∂A1 = ∂A2, and a
map i : D → S, such that i|(D − ∂A1) is one-to-one, i(Aj) = Ej for j = 1, 2,
and i(intD) ∩ G = ∅. We shall say that E and E′ are parallel edges if there exist
edges E = E1, . . . , En = E′ such that Ei and Ei+1 are adjacent parallel edges for
i = i, . . . , n− 1. Note that parallelism is an equivalence relation on the set of edges
of a graph.

3.7. For the statement of the next lemma we introduce the following notation,
which will be used throughout the rest of the paper. If s ≥ 0, n ≥ 0 and v > 0 are
integers, we define

N(s, n, v) = max(1, 6 +
[
12s+ 6n− 12

v

]
).

Lemma 3.8. Let S be a compact, connected orientable surface having genus s ≥ 0
and n ≥ 0 boundary components. Let G ⊂ int S be a non-empty (but possibly
disconnected) graph with v > 0 vertices. Assume that no two (distinct) edges of G
are parallel, and that no loop in G bounds a disk whose interior is disjoint from G.
Then G has a vertex of valence at most N(s, n, v).

Proof. We may assume without loss of generality that G has no vertex of valence
0 or 1.

Let φ be any component of S−G. Since G has no valence-0 vertices, there exist
a compact surface (with boundary) φ̂ and a map iφ : φ̂ → S, such that iφ maps
int φ̂ homeomorphically onto φ, and ∂φ̂ has a cell decomposition in which every
edge or vertex is mapped homeomorphically by iφ onto an edge or vertex of G. We
denote by o(φ) the number of edges in the cell decomposition of ∂φ̂.
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We claim that

(∗) o(φ) ≥ 3χ(φ̂)

for every component φ of S − G. This is clear if φ̄ is not a disk, as in that case
χ(φ̂) ≤ 0. Now suppose that φ̄ is a disk; we need to show that o(φ) ≥ 3. If o(φ) = 1,
then there is a loop in G bounding a disk whose interior is disjoint from G; this
contradicts the hypothesis. If o(φ) = 2, and iφ maps the edges of φ̂ to distinct
edges E1 and E2 of G, then E1 and E2 are parallel, and again the hypothesis is
contradicted. If o(φ) = 2, and iφ maps the edges of φ̂ to the same edge of G,
then S ∼= S2 and the graph G has one edge and two vertices. This contradicts our
assumption that G has no vertices of valence 1. Thus (∗) is proved in all cases.

Summing (∗) over the components of S −G, we find that

2e =
∑

φ

o(φ) ≥ 3t,

where e denotes the number of edges of G and

t =
∑

φ

χ(φ̂).

Now
2 − 2s− n = χ(S) = v − e+ t ≤ v − e

3
.

If k denotes the minimum valence of any vertex of G, then we have 2e ≥ kv, and
so

2 − 2s− n ≤ v − kv

6
.

Since k is an integer it follows that k ≤ N(s, n, v). �

Proposition 3.9. Let M be a simple knot manifold. Let F be a bounded connected
essential surface in M with boundary slope β and m boundary components. Let
(S,X, h) be a singular surface in M which has boundary slope α �= β and is well
positioned with respect to F . Set s = genusS, n = |∂S −X |, v = |X |.

Then there exists an essential homotopy H : I × I →M having length at least

m∆(α, β)
N(s, n, v)

− 1

such that H0 is an essential path in F and Ht(∂I) ⊂ ∂M for all t ∈ I.

Proof. The definition of a singular surface gives X �= ∅, so that v > 0. Let Ŝ denote
the surface obtained from S by identifying each component of X to a point. The
surface Ŝ contains a non-empty graph whose vertices are the v points in the image
of X , and whose edges are the images of the arc components of h−1(F ). Each
component of h(X) is a curve on ∂M of slope α, and each component of ∂F is a
curve of slope β. Thus it follows from standard position that each component of
X meets h−1(F ) in m∆(α, β) points. In other words, each vertex of the graph G
has valence m∆(α, β), which is strictly positive since α �= β. Since (S,X, h) is well
positioned with respect to F , there is no loop in G bounding a disk whose interior
is disjoint from G.

We may apply Lemma 3.8 to a subgraph of G containing exactly one edge from
each class of parallel edges. We conclude that the edges emanating from some vertex
of G fall into at most N(s, n, v) parallel classes. Thus there must exist some class
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of parallel edges containing at least m∆(α, β)/N(s, n, v) edges. Label the edges
of this class E1, . . . , Ek, where k ≥ m∆(α, β)/N(s, n, v). For each i = 1, . . . , k let
Ai be the arc component of h−1(F ) which maps to Ei under the quotient map
from S to Ŝ. For each i = 1, . . . , k − 1 there is a disk Qi in S bounded by two
subarcs of X together with Ai and Ai+1. Because (S,X, h) is well positioned with
respect to F , the interior of Qi is disjoint from f−1(F ). The restriction of h to this
quadrilateral disk defines a basic homotopy Hi whose time-0 map is the path h(Ai)
and whose time-1 map is the path h(Ai+1). The paths h(Ai) are essential because
(S,X, h) is well positioned with respect to F . It is an immediate consequence
of standard position that each of the basic homotopies Hi is essential; since h is
transverse to F , the composition of H1 . . . Hk−1 is a reduced homotopy of length
k− 1. The time-0 map of this reduced homotopy is the essential path h(A1). Since
k ≥ m∆(α, β)/N(s, n, v), this completes the proof of the proposition. �

Corollary 3.10. Let M be a simple knot manifold that contains an essential surface
F with boundary slope β. Suppose that the pair (MF , F− ∪F+) is acylindrical. Let
(S,X, h) be a singular surface with boundary slope α which is well positioned with
respect to F . Set s = genusS, n = |∂S −X |, v = |X |, and m = |∂F |. Then

∆(α, β) ≤ N(s, n, v)
m

.

Proof. We may assume α �= β. According to Proposition 3.9, there exist an essential
path γ : I → F and a reduced homotopy in (M,F ) which has time-0 map γ and
length at least

l ≥ m∆(α, β)
N(s, n, v)

− 1.

It therefore follows from Subsections 3.4 and 3.5 that there exists a reduced homo-
topy of length l in (M,F ) whose time-0 map is a (possibly singular) essential curve
in M . But since (MF , F− ∪ F+) contains no properly embedded essential annuli,
the Annulus Theorem implies that there can exist no essential basic homotopy in
M whose time-0 map is an essential curve in F . Hence we must have

m∆(α, β)
N(s, n, v)

− 1 ≤ 0,

which is equivalent to the conclusion of the corollary. �

Corollary 3.11. Let M be a simple knot manifold that contains an essential surface
F with boundary slope β. Suppose that the pair (MF , F− ∪F+) is acylindrical. Let
α be a slope on ∂M .

(1) If M(α) is a very small manifold, then ∆(α, β) ≤ 5.
(2) If M(α) is a Seifert fibered space, then ∆(α, β) ≤ 6.

Proof. To prove (1) we invoke Corollary 2.3 to obtain a singular surface (S,X, h),
well positioned with respect to F , such that genusS = 0 and |∂S − X | = 1.
The conclusion now follows from Corollary 3.10 because for any v ≥ 1 we have
N(0, 1, v) ≤ 5. To prove (2) we invoke Corollary 2.6 to obtain a singular surface
(S,X, h), well positioned with respect to F , such that either genusS = 0 and
|∂S −X | = 1, or genusS = 1 and |∂S −X | = 0. The conclusion now follows from
Corollary 3.10 because for any v ≥ 1 we have N(0, 1, v) ≤ 5 and N(1, 0, v) = 6. �
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4. Essential intersections

This section introduces a version of the notion of essential intersection for sub-
surfaces of a 2-manifold, a notion which has appeared implicitly in much of the
literature on the characteristic submanifold of a Haken manifold. The version we
present here is adapted to the case of “large” subsurfaces, which we now define.

Let S be a compact orientable surface. We say that a subsurface A of S is
large if each component of A is π1-injective and has negative Euler characteristic.
Note that the empty set is considered to be a large subsurface according to this
definition. If the components of S have Euler characteristic ≥ 0, then the empty
set is the only large subsurface.

The large part of a π1-injective subsurface A of S, denoted by L(A), is the union
of all the large components of A.

The next lemma is preliminary to the proof of Proposition 4.2, which will provide
the definition of the “large intersection” of two large subsurfaces.

Lemma 4.1. Let A and B be large subsurfaces of a compact orientable surface S,
and suppose that A is homotopic into B.

(1) A is isotopic in S to a subsurface of B.
(2) If B is homeomorphic to a large subsurface of A, then A and B are isotopic

subsurfaces of S.
(3) If B is homotopic into A, then A and B are isotopic subsurfaces of S.

Proof. Without loss of generality we may assume that S is connected.
We begin with the proof of (1). We may assume that A has been chosen within

its isotopy class so that ∂A meets ∂B transversely and in the minimal number of
points. Moreover, we may assume that A has been chosen, among all surfaces in
its isotopy class which minimize |∂A ∩ ∂B|, to minimize the number components
of ∂A which are not contained in B. Under these assumptions we will show that
A ⊂ B, proving (1).

Let A0 be any component ofA. By hypothesis, A0 is homotopic into a component
B0 of B. We will prove that A0 ⊂ B0. As A0 is an arbitrary component of A, the
assertion will follow.

Fix a base point in B0, and consider the covering p : S̃ → S determined by
im(π1(B0) → π1(S)). There is a subsurface B̃0 of S̃ which is mapped homeomor-
phically onto B0 by p. Since B0 is large, ∂B0 is π1-injective in S, and hence each
component of X = S̃ − int B̃0 is a half-open annulus. Since A0 is homotopic into
B0, the inclusion i : A0 → S is homotopic to a map which admits a lift to S̃. Hence
i itself admits a lift to S̃; that is, we have a subsurface Ã0 of S̃ which is mapped
homeomorphically onto A0 by p. In order to show that A0 ⊂ B0, it suffices to show
that Ã0 ⊂ B̃0.

As a preliminary, we will prove that ∂Ã0 is disjoint from ∂B̃0. Assume this is
false. Then ∂Ã0 contains a properly embedded arc α̃ ⊂ X . Since the component
X0 of X containing α̃ is a half-open annulus, ∂α̃ is the boundary of an arc β̃ ⊂
∂X0 ⊂ B̃0, and α̃∪ β̃ bounds a disk D̃ ⊂ S̃. Among all disks in S̃ whose boundaries
are made up of an arc in p−1(∂A) and an arc in p−1(∂B), choose one, say D̃0, which
is minimal with respect to inclusion. Write ∂D̃0 = α̃0 ∪ β̃0, where α̃0 ⊂ p−1(∂A)
and β̃0 ⊂ p−1(∂B) are arcs with ∂α̃0 = ∂β̃0. We claim that p|∂D̃0 is one-to-one.
It is clear from the minimality of D̃0 that p(int α̃0) ∩ p(int β̃0) = ∅. If p| int α̃0 is
not one-to-one, then α = p(int α̃0) is an entire component of ∂A, which contains
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p(∂α̃0) and therefore meets B; hence int α̃0 meets p−1(B), and the minimality
of D̃0 is contradicted. Thus p| int α̃0 is one-to-one, and similarly p| int β̃0 is one-
to-one. Hence if p|∂D̃0 is not one-to-one, then α0 = p(α̃0) and β0 = p(β̃0) are
simple closed curves meeting in a single point; as these curves must be components,
the intersection is transverse. But this is impossible, as the hypothesis that A is
homotopic into B implies that α0 and β0 are homotopic to disjoint curves. Thus
p|∂D0 must be one-to-one.

According to [E, Lemma 1.6], it follows that p|D̃0 is one-to-one; hence D0 =
p(D̃0) is a disk in S whose boundary consists of two arcs, one in B and one in A,
and intD0 is disjoint from ∂A and from ∂B. It follows that ∂B is isotopic to a
curve system that meets ∂A transversely in fewer points than ∂B, a contradiction
to our choice of B. This proves that ∂Ã0 ∩ ∂B̃0 = ∅.

We are now ready to prove that Ã0 ⊂ B̃0. If this is false, then either Ã0 ⊂ X
or Ã0 ∩ ∂X �= ∅. If Ã0 ⊂ X , then since the components of X are half-open annuli,
im(π1(A0) → π1(S)) is cyclic, a contradiction since A is a large subsurface of S.
There remains the possibility that Ã0 meets the boundary of some component X1

of X . Since ∂Ã0 ∩ ∂B̃0 = ∅, the compact subsurface Z̃ = Ã0 ∩ X1 must have
γ̃1 = ∂X1 as one boundary component. If γ̃ is any other component of ∂Z̃, then
γ̃ lies in the interior of the half-open annulus X1; furthermore, γ̃ is a component
of ∂Ã0, and is therefore homotopically non-trivial (since the large subsurface A0

of S is in particular π1-injective). It follows that Z̃ is an annulus bounded by γ̃1

and a single component γ̃2 of ∂Ã0. Since p maps Ã0 homeomorphically onto A0,
it in particular maps Z̃ homemorphically onto an annulus Z ⊂ A0. There is an
isotopy supported on a small neighborhood W of Z in S which carries γ1 = p(γ1)
into intB0. Since W may be taken to meet ∂A only in γ1, it is clear that the image
of A under the isotopy has the same intersection with B as A has, and has fewer
components ∂A which are not contained in B than A has. This contradiction to
the minimality of A completes the proof of (1).

We now turn to the proof of (2). By part (1) we may assume that A is a subsur-
face of intB. Let B′ be a π1-injective subsurface of intA which is homeomorphic
to B. Any disk component of B −A would also be a component of S −A. Since
A is large it follows that no component of B −A is a disk. Hence χ(B) ≤ χ(A).
Similarly, χ(A) ≤ χ(B′) = χ(B). Thus each component of B −A is an annulus,
and each component of A−B′ is an annulus. Since A and B are large it follows
that each component of B contains at least one component of A and that each
component of A contains at least one component of B′. Since B is homeomorphic
to B′, a given component of B can contain only one component of B′. Hence each
component of B contains exactly one component of A.

We may therefore index the components of A as A1, . . . , An, and index the
components of B as B1, . . . , Bn, in such a way that Ai is a subsurface of Bi for
i = 1, . . . , n, and each component of Bi −Ai is an annulus.

To complete the proof of (2) it suffices to show that there is no annulus compo-
nent of Bi −Ai whose boundary is contained in Ai. If such an annulus component
did exist the genus of Bi would be strictly greater than the genus of Ai. In par-
ticular we would have genusB =

∑
genusBi >

∑
genusAi = genusA. (Recall

that genusB denotes the total genus of B.) But since B is homeomorphic to the
subsurface B′ of A, we have genusB = genusB′ ≤ genusA. This contradiction
completes the proof of (2).
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To prove (3), note that if B is homotopic into A, then by (1) it is isotopic into A.
The time-1 map of the isotopy is a homeomorphism onto a subsurface of A which
is clearly large since it is isotopic to B. It now follows from (2) that A and B are
isotopic. �

A map f from a finite polyhedron K to a surface S is called large if for each
component K0 of K, the subgroup f#(π1(K0)) of π1(S) is non-abelian.

Proposition 4.2. Suppose that A and B are large subsurfaces of a compact ori-
entable surface S. Then up to non-ambient isotopy there is a unique large subsurface
C of S with the following property:

(∗) Any large map from a polyhedron into S is homotopic into C if and only if
it is homotopic into A and homotopic into B.

Furthermore, if C ⊂ int S is a large subsurface satisfying (∗), then there are sub-
surfaces A0 ⊂ int S and B0 ⊂ int S, isotopic to A and B, such that ∂A0 and ∂B0

meet transversely and C = L(A0 ∩B0).

Proof. We may assume without loss of generality that A,B ⊂ int S. We prove
uniqueness first. Suppose that C and C′ are large subsurfaces of S satisfying (∗).
Then the inclusion C → S is homotopic into C′, and vice versa. Lemma 4.1(3) now
implies that C and C′ are isotopic in S.

To complete the proof of the proposition, it suffices to show that there is a
subsurface B0 of int S isotopic to B, such that ∂A and ∂B0 meet transversely and
such that L(A ∩ B0) satisfies (∗). We define B0 as follows: among all subsurfaces
of int S which are isotopic to B, and whose boundaries meet ∂A transversely, we
choose B0 so that the number of points of ∂A∩ ∂B0 is as small as possible. We set
C = L(A ∩B0).

It is clear that if a large map from a connected polyhedron K into S is homotopic
into C, then it is homotopic into A and homotopic into B. The proof of (∗) will be
completed by showing that, conversely, if a large map f : K → S is homotopic into
A and homotopic into B, then it is homotopic into C. We may assume without
loss of generality that K is non-empty and connected. We fix a component A1 of
A such that f is homotopic into A1.

Let S̃ denote the covering space of int S corresponding to the subgroup

im(π1(A1) → π1(int S)).

Then S̃ has a subsurface Ã such that the covering projection p : S̃ → int S maps
Ã homeomorphically onto A1. Set X = S̃ − int Ã. Since A is π1-injective, each
component of X is a half-open annulus meeting Ã in a component of ∂Ã.

Since f : K → S is homotopic into A1 it admits a lift f̃ to the covering space S̃.
Since f is also homotopic into B0, there is a homotopy from f̃ to a map g : K → S̃
such that g(K) is contained in a component B̃0 of p−1(B0).

We claim that B̃0∩Ã �= ∅. Suppose not; then g(K) ⊂ B̃0 ⊂ X . But g�(π1(K)) ⊂
π1(S̃) is non-abelian since f is a large map. Since each component of X is a half-
open annulus, we have a contradiction, and the claim is proved.

We next claim that if Z is any component of B̃0 ∩ X , then Z deforms into
W = Z ∩ ∂X ⊂ ∂Ã. (This means that the identity map of Z is homotopic in Z,
rel W , to a map whose image is contained in W .) To prove the claim, first note
that W is a 1-manifold in the boundary of the 2-manifold Z. Furthermore, since
B̃0 ∩ Ã �= ∅, we have W �= ∅. Hence, in order to prove that Z deforms into W ,
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it suffices to show that if α ⊂ Z is an arc with endpoints in W , then α is parallel
in Z to an arc in W . Since X is a half-open annulus, α is parallel in X to an arc
β ⊂ ∂X . We must show that the disk D ⊂ X bounded by α ∪ β is contained in Z.

If D �⊂ Z, then D contains a component γ of the frontier of Z relative to X .
Note that γ ⊂ ∂B̃0, and that γ is a properly embedded 1-manifold in X . But γ
cannot be a simple closed curve, since B0 is π1-injective in S; hence γ is an arc
whose endpoints lie in β. Thus there is a disk in S̃ whose boundary is the union of
the arc γ ⊂ p−1(∂B0) and a sub-arc of β ⊂ p1(∂A). Among all disks in S̃ bounded
by the union of an arc in p−1(∂A) with an arc in p−1(∂B0), choose one, say D′,
which is minimal with respect to inclusion. According to [E, Lemma 1.6], p|D′ is
one-to-one and hence p(D′) is a disk in S whose boundary consists of two arcs,
one in B0 and one in A, which meet at their endpoints. Since B0 is large we have
int p(D′) ∩B0 = ∅. We may therefore isotope B0 across the disk p(D′) to obtain a
surface whose boundary meets ∂A in fewer points than ∂B0. This contradicts our
choice of B0, and the claim is proved.

We have shown that B̃0 ∩ Ã �= ∅ and that every component of B̃0 ∩X deforms
into its intersection with ∂X = ∂Ã. It follows that B̃0 deforms into B̃0∩ Ã. Since f̃
is homotopic to g and g(K) ⊂ B̃0, it follows that f̃ is homotopic in S̃ to a map of K
into B̃0∩Ã. In particular, f is homotopic in S to a map f ′ whose image is contained
in B0 ∩A1 ⊂ B0 ∩A. As f is large it follows that f(K) ⊂ L(B0 ∩A) = C. �

Definition 4.3. If A and B are large subsurfaces of a compact orientable surface
S, then the subsurface provided by Proposition 4.2, which is well defined up to
non-ambient isotopy, will be called the large intersection of A and B and will be
denoted A∧LB. Clearly A∧LB is isotopic to B∧LA, and A∧L (B∧LC) is isotopic
to (A ∧L B) ∧L C.

The following result will be needed in the next two sections.

Proposition 4.4. Suppose that A is a large subsurface of a compact orientable
surface S, and that f and g are large maps of a polyhedron K into A. If f and g
are homotopic in S, then they are homotopic in A.

Proof. We may assume that K and S are connected. Let A0 denote the component
of A containing f(K), and let p : S̃ → S denote the largest covering space of S
to which the inclusion map i : A0 → S lifts. If ĩ : A0 → S̃ is the lift of i, then
Ã0 = ĩ(A0) is a deformation retract of S̃, and each component of S̃ − Ã0 has
cyclic (and possibly trivial) fundamental group. Let f̃ : K → S̃ be a lift of f with
f̃(K) ⊂ Ã0, and let g̃ : K → S̃ be a lift of g which is homotopic to f̃ in S̃. Since
g is large, g̃(π1(K)) is not cyclic; thus g̃(K) cannot be contained in a component
Ã′

0 �= Ã0 of p−1(A0). Hence g̃(K) ⊂ Ã0, and f̃ and g̃ are homotopic in Ã0. The
conclusion follows. �

Lemma 4.5. Let A be a large subsurface of a compact orientable surface B, and
suppose that B admits an involution τ such that τ(A) is isotopic to A in B. Then
A is isotopic to a subsurface A′ of B such that τ(A′) = A′.

Proof. Choose a negatively curved metric on B which is invariant under the invo-
lution τ and has the property that the boundary components of B are geodesics.
Given a large subsurface C of B we divide its boundary components into two types:

Type 1: those which are not isotopic to any other boundary component of C.
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Type 2: those which are isotopic to some other boundary component of C.
There is a small positive real number t0 such that A can be isotoped in B to

a surface A′ whose type 1 boundary components are geodesics and whose type
2 boundary components form the boundary of a t0-bicollar of a finite union of
geodesics. Then ∂A′ is invariant under the involution τ . To see that τ(A′) = A′ let
A′

0 be a component of A′. If τ(A′
0) �⊂ A′, then the interior of τ(A′

0) is disjoint from
A′ and hence we may isotope τ(A′

0) into the complement of A′. Let p : B̃ → B be
the maximal connected cover for which the inclusion map i : τ(A′

0) → B lifts to a
map ĩ : τ(A′

0) → B̃ and define Y = ĩ(τ(A′
0)). Then X = B̃ − int Y is a disjoint

union of half-open annuli. By hypothesis ĩ is homotopic to a map with image in
X so that in particular Y may be homotoped into an annulus. It follows from
Lemma 4.1 that Y is isotopic to a subsurface of an annulus. Since Y is π1-injective
and homeomorphic to A0, this contradicts our assumption that A0 is large. Thus
τ(A′

0) ⊂ A′ and we deduce that τ(A′) = A′. �

4.6. Let A be a subsurface of a compact orientable surface S. By an outer com-
ponent of A we will mean a component of A which contains a simple closed curve
that is isotopic to a boundary component of S. We will say that A is outer if every
component of A is outer. We define the outer part of A, denoted Ȧ, to be the
union of all outer components of A, i.e. the largest outer subsurface of A. Thus A
is an outer subsurface if and only if A = Ȧ.

If A and B are subsurfaces of S with A ⊂ B, note that Ȧ ⊂ Ḃ. If A and B are
large subsurfaces of S, we define A∧̇LB to be the outer part of A ∧L B. It is a
formal consequence of this definition that a large outer subsurface of S is homotopic
into both A and B if and only if it is homotopic into A∧̇LB. It follows from this,
together with Lemma 4.1, that if A, B and C are large subsurfaces of S, then A∧̇LB
is homotopic to B∧̇LA and (A∧̇LB)∧̇LC is isotopic to A∧̇L(B∧̇LC).

Lemma 4.7. Suppose that A and B are large subsurfaces of a compact orientable
surface S. Then A∧̇LB is isotopic in S to Ȧ∧̇LḂ.

Proof. Since each component of Ȧ∧̇LḂ contains a simple closed curve that is iso-
topic to a boundary component of S, it is clear that A∧̇LB ⊃ Ȧ∧̇LḂ. To prove
the reverse inclusion, let C be a component of A∧̇LB. We have that C is isotopic
into X ∧L Y , where X and Y are components of A and B respectively. Since C
contains a simple closed curve isotopic to a boundary component of S, so do X and
Y . Thus X and Y are in fact components of Ȧ and Ḃ, respectively. This shows that
C is isotopic into a component of Ȧ ∧L Ḃ. But, since C contains a simple closed
curve isotopic to a boundary component of S, it is isotopic into a component of
Ȧ∧̇LḂ. Since C was an arbitrary component of A∧̇LB, we have shown that A∧̇LB
is homotopic into Ȧ∧̇LḂ. The lemma now follows from Lemma 4.1. �

5. Reduced homotopies and the characteristic pair

The final result of this section, Theorem 5.4.1, concerns a pair (M,F ), where
M is a simple knot manifold and F ⊂M is an essential surface in M which is not
semi-fiber. The theorem provides an upper bound, in terms of the genus and the
number of boundary components of F , for the length of a reduced homotopy in
(M,F ) having a large time-0 map.
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5.1. Splitting surfaces.

Definition 5.1.1. Let M be simple knot manifold. A splitting surface in M is a
transversely oriented essential surface F̃ ⊂ M such that MF̃ is a disjoint union of
two compact submanifolds M+

F̃
and M−

F̃
with the property that Nε(F̃ ) ⊂ M ε

F̃
for

ε = ±1.

It is easy to see that M+

F̃
and M−

F̃
are uniquely determined by F̃ . Note that any

transversely oriented, separating, connected, essential surface in M is a splitting
surface. In general, however, a splitting surface need not be connected.

Since F̃ comes equipped with a transverse orientation, any orientation of M
induces an orientation of F̃ . An orientation of F̃ will be called consistent if it is
induced from an orientation of M in this way. If F̃ has n components, then it has
2n possible orientations; but since M is connected, only two of these orientations
are consistent.

If F̃ is a splitting surface, then for ε = ±1 the natural map from M ε
F̃

to M is
injective and we shall identify M+

F̃
and M−

F̃
with submanifolds of M . In particular

F̃ε is identified with F̃ via the homeomorphism iε (see Subsection 1.3). Furthermore
we shall identify basic homotopies in (M,F ) with the corresponding homotopies in
(MF̃ , F̃− ∪ F̃+) (see Subsection 3.1).

An orientation of M determines an orientation of M ε
F̃

by restriction, and this
orientation of M ε

F̃
induces an orientation of F̃ε. The two orientations of F̃ε which

arise in this way are identified with the two consistent orientations of F̃ .

5.2. Supports of reduced homotopies. Throughout this subsection we shall
assume that M is a simple knot manifold, and that F̃ is a splitting surface in M .

5.2.1. It follows from the characteristic submanifold theory of Jaco-Shalen [JS] and
Johannson [Jo] that for each ε ∈ {±1} there is an (I, ∂I)-bundle pair (Σε,Φε) ⊂
(M ε

F̃
, F̃ ), well defined up to ambient isotopy in (M ε

F̃
, F̃ ), such that

(1) the frontier of Σε in M ε
F̃

consists of essential annuli in (M ε
F̃
, F̃ );

(2) no component (σ, φ) of (Σε,Φε) is homotopic (as a pair) into (Σε−σ,Φε−φ);
and

(3) if K is a polyhedron and H : (K× I,K×∂I) → (M ε
F̃
, F̃ ) is an essential basic

homotopy such that H0 : K → F̃ is a large map, then H is homotopic as a map of
pairs to a homotopy whose image lies in Σε.

The I-fibers of the I-bundle structure on Σε can be used to build an essential
basic homotopy of Φε in Σε. Indeed, define a fundamental homotopy of Φε to be
any essential basic homotopy

HΣε : (Φε × I,Φε × ∂I) → (Σε,Φε) ⊂ (M ε
F̃
, F̃ )

satisfying the following conditions:
(1)The time-0 map of HΣε is the identity map of Φε.
(2) For each x ∈ Φε, HΣε({x} × I) is an I-fiber of Σε.
(3) For each component φ of Φε which is contained in a trivial I-bundle compo-

nent σ of Σε, the map HΣε restricts to a homeomorphism of φ× I onto σ.
(4) For each component φ of Φε which is contained in a non-trivial I-bundle

component σ of Σε, the map HΣε restricts to a 2-fold covering map from φ × I to
σ.
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It is clear that a fundamental homotopy exists and is unique up to composition
with a fiber-preserving homeomorphism of Σε which restricts to the identity on Φε.
Note also that a fundamental homotopy is a two-sheeted covering map from Φε × I
to Σε. The involution of Φε induced by its ∂I-bundle structure is the restriction of
the deck transformation of this two-sheeted covering map. This involution will be
denoted by τε. Thus

HΣε(x, 1) = τε(x)
for every x ∈ Φε.

The notation Σε, Φε and τε will be used throughout this section.

Lemma 5.2.2. Let F̃ be given a consistent orientation. Then the embedding τε :
Φε → F̃ reverses orientation. (See Subsection 1.1.)

Proof. By Subsection 5.1, the orientation of Φε is induced from an orientation of
M ε

F̃
. Hence, if we orient Σε by restricting the orientation ofM ε

F̃
, then the orientation

of Φε is induced by the orientation of Σε. The involution τε extends to an involution
σ of Σε which leaves each I-fiber invariant while reversing its orientation. Since σ
clearly reverses the orientation of Σε, it follows that τε reverses the orientation of
Φε. �

Definition 5.2.3. An essential basic homotopy H : (K × I,K × ∂I) → (Σε,Φε)
is said to be standard if it is of the form H(x, t) = HΣε(f(x), t), where HΣε is a
fundamental homotopy and f is some map from K to Φε. Note that we then have
H0 = f . Note also that if f ′ : K → Φε is homotopic to f in Φε, then the standard
homotopies H(x, t) = HΣε(f(x), t) and H ′(x, t) = HΣε(f ′(x), t) are homotopic as
maps of pairs (K × I,K × ∂I) → (Σε,Φε).

Lemma 5.2.4. If H : (K × I,K × ∂I) → (M ε
F̃
, F̃ ) is an essential basic homotopy

such that H0 : K → F̃ is a large map, then H is homotopic as a map of pairs to a
standard essential basic homotopy.

Proof. Appealing to the characteristic submanifold theory [JS], [Jo], we may as-
sume, without loss of generality, that H(K × I) ⊂ Σε and H(K × ∂I) ⊂ Φε. It is
not hard to see that H lifts to a map H̃ : (K × I,K × ∂I) → (Φε × I,Φε × {0, 1})
such that H = HΣε ◦ H̃. Write H̃(x, t) = (H ′(x, t), T (x, t)) ∈ Φε × I and observe
that T (x, 0) = 0 for each x ∈ K, while the essentiality of H implies that T (x, 1) = 1
for each x.

Let J : ((K × I) × I, (K × I) × {0, 1}) → (Σε,Φε) be given by

J((x, t), s) = HΣε(H ′(x, (1 − s)t), (1 − s)T (x, t) + st).

Then

J((x, t), 0) = (HΣε ◦ H̃)(x, t) = H(x, t), and

J((x, t), 1) = HΣε(H ′(x, 0), t) = HΣε(H0(x), t),

while for each x ∈ K,

J((x, 0), s) = H(x, 0) ∈ Φε, and

J((x, 1), s) = HΣε(H ′(x, 1 − s), 1) ∈ Φε.

Thus H = J0 is homotopic as a map of pairs to the standard essential basic homo-
topy J1. �
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5.2.5. We define Φε
1 = L(Φε) ⊂ F̃ . Note that the free involution τε restricts to a

free involution of Φε
1. We shall denote this restriction by τε as well.

Lemma 5.2.6. The surface Φε
1 has the following property.

For any large map f : K → F̃ , there exists an essential basic homotopy H in the
pair (M, F̃ ) on the ε-side with H0 = f if and only if f is homotopic in F̃ to a map
with image in Φε

1.
Furthermore, any large subsurface of F with this property is isotopic to Φε

1.

Proof. If f : K → F̃ is a large map homotopic in F̃ to some f ′ for which f ′(K) ⊂ Φε
1

and HΣε : (Φε × [0, 1],Φε × {0, 1}) → (Σε,Φε) is a fundamental homotopy, then
H : (K × [0, 1],K × {0, 1}) → (Σε,Φε) ⊂ (M ε

F̃
, F̃ ) defined by

H(x, t) = HΣε(f ′(x), t)

is an essential basic homotopy in (M, F̃ ) on the ε-side, with H0 = f ′. The desired
essential basic homotopy with time-0 map f is now readily constructed.

Conversely let H : (K × [0, 1],K × {0, 1}) → (M, F̃ ) be an essential basic ho-
motopy in (M, F̃ ) on the ε-side with H0 = f . According to Subsection 3.1, any
essential basic homotopy in (M, F̃ ) which starts on the ε-side corresponds to an
essential homotopy in the pair (M ε

F̃
, F̃ ). So it follows from Lemma 5.2.4 that H is

homotopic as a map of pairs to a standard essential basic homotopy H ′. It follows
from Subsection 5.2.1 and Definition 5.2.3 that H ′

t(K) ⊂ Φε for t = 0, 1, that H ′
0 is

homotopic to f and that H ′
1 = τε ◦H ′

0. Since f , and hence H ′
0, is large, the image

of H ′
0 is contained in Φε

1.
Finally suppose that Ψε

1 ⊂ F̃ is another large subsurface of F̃ which has the
stated property. Then the inclusion Φε

1 → F̃ is homotopic into Ψε
1 and vice versa.

Thus by Lemma 4.1, Ψε
1 is isotopic to Φε

1 in F̃ . �

Lemma 5.2.7. Let H : (K × I,K × ∂I) → (M, F̃ ) be an essential basic homotopy
on the ε-side such that H0 is a large map from K to F̃ . If f : K → Φε

1 is any map
which is homotopic in F̃ to H0, then H1 is homotopic in F̃ to τε ◦ f .

Proof. By Lemma 5.2.4 the homotopy H is homotopic as a map of pairs to a
standard essential basic homotopy H ′. By Proposition 4.4 H ′

0 is homotopic to f in
Φε

1 and so by the remark at the end of Definition 5.2.3 we may assume that H ′
0 = f .

Thus H1 is homotopic in F̃ to H ′
1 = τε ◦ f . �

Our next goal is to extend Lemma 5.2.6 to reduced homotopies of length n in
(M, F̃ ).

Proposition 5.2.8. For each fixed ε ∈ {±1}, there is a sequence of large (possibly
empty) subsurfaces (Φε

k)k≥0 of F̃ , such that Φε
0 = F̃ , Φε

1 is the surface defined in
Subsection 5.2.5, and for each k ≥ 0 we have:

(1) Φε
k ⊃ Φε

k+1; and
(2) a large map f : K → F̃ is homotopic in F̃ to a map with image in Φε

k if and
only if there exists a reduced homotopy H of length k starting on the ε-side with
H0 = f .

Furthermore condition (2) determines Φε
k, up to isotopy, among the class of large

subsurfaces of F̃ .
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Proof. We construct the surfaces inductively in such a way that (1) and (2) hold.
Set Φε

0 = F̃ and let Φε
1 be defined as in Subsection 5.2.5. According to Lemma

5.2.6, condition (2) holds for k = 1. Let m ≥ 2 be given, and suppose that for
ε = ±1 we have defined large subsurfaces

F̃ = Φε
0 ⊃ Φε

1 ⊃ Φε
2 ⊃ · · · ⊃ Φε

m−1

such that condition (2) holds for k < m and for ε = ±1. As we observed in
Definition 4.3, there is a surface Aε

m ⊂ Φε
1 which is isotopic to the large intersection

Φε
1 ∧L Φ−ε

m−1. For ε = ±1 we define

Ψε
m = τε(Aε

m).

Note that by Subsection 5.2.5, Φε
1 is invariant under the map τε and so we have

Ψε
m ⊂ Φε

1.

For ε = ±1, we claim that:
(∗) a large map f : K → F̃ is homotopic in F̃ to a map with image in Ψε

m if
and only if there exists a reduced homotopy H of length m starting on the
ε-side with H0 = f .

To prove this, we first consider a large map f : K → F̃ and assume that there
exists a reduced homotopy H : K × I → (M, F̃ ) of length m starting on the ε-
side with H0 = f . Write H as a composition of m essential basic homotopies
H1, . . . , Hm, whereHi starts on the (−1)i−1ε side for i = 1, . . . ,m. Define f1 : K →
F̃ by f1 = H1

1 = H2
0 and let H ′ be the composition of H2, . . . , Hm. Then f1 is

large and H ′ is a reduced homotopy of length m− 1 starting on the −ε-side, with
H ′

0 = f1. Our inductive hypothesis implies that f1 is homotopic to a map with
image in Φ−ε

m−1. On the other hand, H1 is an essential basic homotopy on the ε-
side with H1

0 = f and H1
1 = f1; hence by Lemma 5.2.7 we see that f1 is homotopic

in F̃ to a map f ′
1 whose image lies in Φε

1, and that f is homotopic in F̃ to τε ◦ f ′
1.

Proposition 4.2 now implies that f ′
1 is homotopic in F̃ to a map f ′′

1 whose image lies
in Aε

m. Proposition 4.4 implies that f ′
1 is homotopic to f ′′

1 in Φε
1. Composing this

homotopy with τε we see that f is homotopic to a map with image in τε(Aε
m) = Ψε

m.
To prove the converse observe that the fundamental homotopy

H = HΣε : (Φε × [0, 1],Φε × {0, 1}) → (Σε,Φε)

is an essential basic homotopy H in (M, F̃ ) on the ε-side such that H1 is the
inclusion i0 : Φε

1 → F̃ , andH1 = τε|Φε
1. Since Ψε

m ⊂ Φε
1, we may restrictH to Ψε

m×I
to obtain an essential basic homotopy H1 in (M, F̃ ) on the ε-side. The time-0 map
of H1 is the inclusion Ψε

m → F̃ and the time-1 map of H1 is a homeomorphism
ψ : Ψε

m → Aε
m. By Proposition 4.2 and Definition 4.3, Aε

m is isotopic to a subsurface
of Φ−ε

m−1. Since our induction hypothesis implies that the inclusion Φ−ε
m−1 → F̃ is

the time-0 map of a reduced homotopy of length m− 1 starting on the −ε side, it
follows that ψ is also the time-0 map of a reduced homotopy H ′ in (M, F̃ ) of length
m− 1 starting on the −ε-side. The composition of the two homotopies H1 and H ′

is a reduced homotopy of length m starting on the ε-side whose time-0 map is the
inclusion Ψε

m → F̃ . This completes the proof of (∗).
It follows from (∗) that there is a reduced homotopy of length m starting on the

ε-side with time-0 map equal to the inclusion map of Ψε
m into F̃ . Clearly there also

exists a reduced homotopy of length m − 1 starting on the same side and having
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the same time-0 map. Thus we may apply property (2) again to conclude that the
inclusion map of Ψε

m is homotopic to a map with image in Φε
m−1. By Lemma 4.1,

Ψε
m is isotopic to a subsurface Φε

m of Φε
m−1. It follows from (∗) that condition (2)

holds for k = m. The induction is now complete.
To prove the last assertion of the proposition, suppose that Ψε

k ⊂ F̃ is another
large surface in F̃ which satisfies condition (2) of the theorem. Taking f to be the
inclusion map of either surface into F̃ , we see that Φε

k is homotopic into Ψε
k and

vice versa. Thus by Lemma 4.1, Ψε
k is isotopic to Φε

k in F̃ . �

5.3. Time-1 maps of reduced homotopies. Throughout this section M will
denote a simple knot manifold and F̃ will denote a splitting surface in M . We will
define Φε and τε as in Subsection 5.2. We shall also fix subsurfaces Φε

k of F̃ for
which the conclusions of Proposition 5.2.8 hold. A crucial ingredient in obtaining a
bound of the type given by Theorem 5.4.1 is provided by Proposition 5.3.9, which
asserts that if the inclusion Φε

k+2 ⊆ Φε
k is a homotopy equivalence, then F̃ is a

semi-fiber. The estimate is strengthened by using Proposition 5.3.7, which asserts
that for each odd k, Φε

k admits a fixed-point free involution.

Proposition 5.3.1. For each ε ∈ {±1} and each k ≥ 0 there exists a homeomor-
phism hε

k : Φε
k → Φ(−1)k+1ε

k which has the following property:

(∗) For any reduced homotopy H of length k with domain K which starts on
the ε side and has a large time-0 map, there exists a map f : K → Φε

k such
that H0 is homotopic in F̃ to f and H1 is homotopic in F̃ to hε

k ◦ f .
The homeomorphism hε

k is unique up to isotopy. Furthermore, if F̃ is given a
consistent orientation, then the embedding hε

k : Φε
k → F̃ reverses orientation if k is

odd and preserves orientation if k is even. (See Subsection 1.1.) We may take hε
1

to be the map τε|Φε
1 described in Subsection 5.2.5.

Proof. We construct the maps hε
k by induction on k. For each ε ∈ {±1} define hε

0

to be the identity map of F̃ and hε
1 to be the map τε. It is clear that property (∗)

holds for hε
0 and Lemmas 5.2.6 and 5.2.7 imply that it holds for hε

1.
Suppose that for ε = ±1 we have constructed a homeomorphism hε

k : Φε
k →

Φ(−1)k+1ε
k with property (∗). In particular, since Φε

k is a π1-injective subsurface, hε
k

is a π1-injective map. By Proposition 5.2.8, for ε = ±1, we may choose a reduced
homotopy H of length k + 1 starting on the ε side such that H0 is the inclusion
Φε

k+1 → F̃ . Write H as the composition of a reduced homotopy H′ of length k
and an essential basic homotopy H′′. The induction hypothesis implies that the
time-1 map of H′ is homotopic to the embedding hε

k|Φε
k+1. By reversing the time

variable of H′ and applying Proposition 5.2.8 we see that hε
k|Φε

k+1 is homotopic to

an embedding h : Φε
k+1 → Φ(−1)k+1ε

k ⊂ Φ(−1)k+1ε
1 . We define θε : Φε

k+1 → F̃ to be
τ(−1)k+1ε ◦h. Note that h is π1-injective since Φε

k+1 is a π1-injective subsurface and
since hε

k is a π1-injective map. Furthermore since τ(−1)k+1ε is an involution of a
π1-injective subsurface, it follows that θε is a π1-injective map for ε = ±1.

Since τ(−1)k+1ε is an involution of Φ(−1)k+1ε
1 we know that θε is the time-0 map of a

standard basic essential homotopy whose time-1 map is τ(−1)k+1ε◦θε = h. Since h is
in turn the time-0 map of a reduced homotopy of length k starting on the (−1)k+1ε-
side, it follows that θε is the time-0 map of a length k + 1 homotopy starting on



CHARACTERISTIC SUBSURFACES AND DEHN FILLING 2415

the (−1)kε-side. It thus follows from Proposition 5.2.8 that the embedding θε is
homotopic into Φ(−1)kε

k+1 , i.e. that the surface θε(Φε
k+1) is homotopic into Φ(−1)kε

k+1 .

Replacing ε by (−1)kε we find that θ(−1)kε(Φ(−1)kε
k+1 ) is homotopic into Φε

k+1. By

Lemma 4.1(1), θ(−1)kε(Φ(−1)kε
k+1 ) is isotopic to a subsurface of Φε

k+1, which is π1-

injective since θ(−1)kε is a π1-injective map. In particular Φ(−1)kε
k+1 is homeomorphic

to a π1-injective subsurface of Φε
k+1, and hence to a π1-injective subsurface of

θε(Φε
k+1). Apply Lemma 4.1(2), taking A = θε(Φε

k+1) and B = Φ(−1)kε
k+1 . It follows

that A and B are isotopic and hence that θε is isotopic in F̃ to a homeomorphism
hε

k+1 : Φε
k+1 → Φ(−1)kε

k+1 .
We now show that hε

k+1 has property (∗). Let H be any reduced homotopy of
length k + 1 starting on the ε side such that H0 is a large map. By Proposition
5.2.8, H0 is homotopic in F̃ to a map f : K → Φε

k+1. Write H as the composition
of a reduced homotopy H ′ of length k and a basic essential homotopy H ′′. Since
hε

k has property (∗), the map H ′′
0 = H ′

1 is homotopic in F̃ to hε
k ◦ f , which is in

turn homotopic to h ◦ f . Then Lemma 5.2.7 implies that H1 = H ′′
1 is homotopic to

τ(−1)kε ◦ h ◦ f = θε ◦ f , and hence to hε
k+1 ◦ f . This establishes (∗) and completes

the inductive definition of the hε
j .

By Lemma 5.2.2, if F̃ is given a consistent orientation, the involutions τ±1 are
orientation reversing embeddings of φ±1 into F̃ . It follows from the inductive
construction that h±1

k reverses orientation if k is odd and preserves orientation if k
is even.

It remains to prove that a homeomorphism satisfying (∗) is unique up to isotopy.
Suppose that h, h′ : Φε

k → Φ(−1)k+1ε
k both satisfy (∗). We apply Proposition 5.2.8,

taking K = Φε
k and taking f : Φε

k → F̃ to be the inclusion. This gives a length-k
reduced homotopy H starting on the ε side with time-0 map f . By property (∗),
h and h′ are both homotopic in F̃ to H1, and hence to each other. By Proposition
4.4, h and h′ are homotopic as maps from h, h′ : Φε

k to Φ(−1)k+1ε
k . It follows from

Theorem 6.4 and Theorem A.4 of [E] that they are isotopic. �

For the rest of this section, it will be understood that for each k and each ε

we have fixed homeomorphisms hε
k : Φε

k → Φ(−1)k+1ε
k for which condition (∗) of

Proposition 5.3.1 holds.

Lemma 5.3.2. Let ε ∈ {±1} and k ≥ 0 be given. Suppose that H is a reduced
homotopy in (M, F̃ ) of length k with domain K which starts on the ε side. Supppose
that f = H0 is large and that f(K) ⊂ Φε

k. Then H1 is homotopic in F̃ to hε
k ◦ f .

Proof. By condition (∗) of 5.3.1 there is a map f ′ : K → Φε
k such that H0 = f is

homotopic in F̃ to f ′ and such that H1 is homotopic in F̃ to hε
k ◦f ′. It follows from

Proposition 4.4 that f is homotopic to f ′ in Φε
k. Thus hε

k ◦ f is homotopic in F̃ to
hε

k ◦ f ′, and hence to H1. �

Proposition 5.3.3. Let ε ∈ {±1} and k ≥ 0 be given. Then the homeomorphism
h

(−1)k+1ε
k : Φ(−1)k+1ε

k → Φε
k is isotopic to the inverse of hε

k : Φε
k → Φ(−1)k+1ε

k .

Proof. It follows from Proposition 5.2.8 that there is a reduced homotopy H of
length k starting on the ε-side such that H0 is the inclusion ι : Φε

k → F̃ . By Lemma
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5.3.2 we have that H1 is homotopic in F̃ to hε
k. Applying Lemma 5.3.2 to the

homotopyH ′ obtained by reversing the time variable ofH , we see that ι = H0 = H ′
1

is homotopic in F̃ to the composition h
(−1)k+1ε
k ◦ H ′

0. Since H ′
0 = H1 ∼ hε

k we

have that h(−1)k+1ε
k ◦ hε

k is homotopic in F̃ to the inclusion ι. It now follows from

Proposition 4.4 that the self-homeomorphism h
(−1)k+1ε
k ◦ hε

k of Φε
k is homotopic

to the identity in Φε
k, and therefore isotopic to the identity by Theorem 6.4 and

Theorem A.4 of [E]. �

Proposition 5.3.4. Let i and j be non-negative integers, and set k = i+ j. Then
for each ε ∈ {±1}, the map hε

i |Φε
k is homotopic in F̃ to an embedding gε

i : Φε
k →

Φ(−1)iε
j such that h(−1)iε

j ◦ gε
i is homotopic in F̃ to hε

k.

Proof. Let H be a reduced homotopy of length k starting on the ε side such that
H0 is the inclusion Φε

k → F̃ . Write H as the composition of a reduced homotopyH ′

of length i starting on the ε side and a reduced homotopy H ′′ of length j starting
on the (−1)iε side. Applying Lemma 5.3.2, with the roles of k, H and f played
respectively by i, H ′ and the inclusion map Φε

k → Φε
i , we find that H ′

1 = H ′′
0 is

homotopic to the embedding hε
i |Φε

k.
On the other hand it follows from Proposition 5.3.1 that H ′′

0 is homotopic in
F̃ to a map gε

i : Φε
k → Φ(−1)iε

j . Since gε
i is homotopic to the embedding hε

i |Φε
k it

follows from part (1) of Lemma 4.1 that we may take gε
i to be an embedding. After

modifying the homotopy H we may assume that H ′
1 = H ′′

0 = gε
i .

Applying Lemma 5.3.2 again, with j, H ′′ and gε
i playing the roles of k, H and

f , we conclude that H1 = H ′′
1 is homotopic in F̃ to h(−1)iε

j ◦ gε
i .

Finally, applying Lemma 5.3.2 directly to the homotopy H , we see that H1 is
homotopic in F̃ to hε

k. The conclusion of the proposition follows. �

Proposition 5.3.5. Let i and j be non-negative integers, and set k = i+ j. Then
for each ε ∈ {±1} the subsurface hε

i(Φ
ε
k) is isotopic in F̃ to Φ(−1)i+1ε

i ∧L Φ(−1)iε
j .

Proof. We have hε
i(Φ

ε
k) ⊂ hε

i(Φ
ε
i) = Φ(−1)i+1ε

i . On the other hand it follows from

Proposition 5.3.4 that hε
i(Φ

ε
k) is isotopic in F̃ to a subsurface of Φ(−1)iε

j . Hence

by Definition 4.3 the subsurface hε
i(Φ

ε
k) is isotopic to a subsurface of Φ(−1)i+1ε

i ∧L
Φ(−1)iε

j .
To complete the proof of the proposition, it now suffices by Lemma 4.1(2) to

show that the large surface Φ(−1)i+1ε
i ∧L Φ(−1)iε

j is homeomorphic to a π1-injective

subsurface of Φε
k and hence of hε

i(Φ
ε
k). To prove this, note that Φ(−1)i+1ε

i ∧L Φ(−1)iε
j

is isotopic to a subsurface A of Φ(−1)i+1ε
i . By Proposition 5.2.8 there is a reduced

homotopy of length i whose time-0 map is the inclusion A → F̃ and whose time-1
map is homotopic to h(−1)i+1ε

i : A → F̃ . By reversing the time variable we obtain

a homotopy H such that H0 is homotopic in F̃ to h
(−1)i+1ε
i : A → F̃ , and H1 is

the inclusion A → F̃ . Since A is isotopic to a subsurface of Φ(−1)iε
j there is also a

reduced homotopy H ′′ of length j starting on the (−1)iε side whose time-0 map is
the inclusion A→ F̃ . The composition ofH andH ′ is a reduced homotopy of length
k starting on the ε side and having time-0 map homotopic to h(−1)i+1ε

i |A : A→ F̃ .
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In particular, by Proposition 5.2.8 and Lemma 4.1, h(−1)i+1ε
i (A) is isotopic to a

subsurface of Φε
k. �

One of the main results of this section is that Φε
2k+1 admits a free involution.

The proof of this fact is based on our next lemma.

Lemma 5.3.6. The subsurface hε
k(Φε

2k+1) is isotopic in F̃ to a subsurface A of

Φ(−1)kε
1 with the property that τ(−1)kε(A) is isotopic to A in Φ(−1)kε

1 .

Proof. By Proposition 5.3.5 we have that hε
k(Φε

2k+1) is isotopic to Φ(−1)k+1ε
k ∧L

Φ(−1)kε
k+1 . In particular, hε

k(Φε
2k+1) is isotopic to a subsurface A of Φ(−1)kε

k+1 ⊂ Φ(−1)kε
1 .

Since τ(−1)kε(A) = h
(−1)kε
1 (A) ⊂ h

(−1)kε
1 (Φ(−1)kε

k+1 ), Proposition 5.3.4 implies that

τ(−1)kε(A) is isotopic to a subsurface of Φ(−1)k+1ε
k . On the other hand, since A

is isotopic to a subsurface of Φ(−1)k+1ε
k we know that the inclusion A → F̃ is the

time-0 map of a reduced homotopy H ′′ of length k starting on the (−1)k+1ε side.
Since A ⊂ Φ(−1)k+1ε

1 , by reversing the time variable in the basic homotopy provided
by Lemma 5.2.7 we obtain a basic homotopy H ′ whose time-0 map is the inclusion
τ(−1)kε|A and whose time-1 map is the inclusion A → F̃ . The composition of
H ′ and H ′′ is a reduced homotopy of length k + 1 starting on the (−1)kε side
whose time-0 map is τ(−1)kε|A. It follows from Proposition 5.2.8 that τ(−1)kε(A)

is homotopic into Φ(−1)kε
k+1 . By Definition 4.3 we have that τ(−1)kε(A) is homotopic

into Φ(−1)k+1ε
k ∧L Φ(−1)kε

k+1 which in turn is isotopic to A in F̃ . By Lemma 4.1(2)

and Proposition 4.4, τ(−1)kε(A) is isotopic to A in Φ(−1)kε
1 . �

Proposition 5.3.7. The surface hε
k(Φε

2k+1) is isotopic in F̃ to a subsurface of

Φ(−1)kε
1 which is invariant under the free involution τ(−1)kε. In particular, Φε

2k+1

admits a free involution.

Proof. This is an immediate consequence of Lemmas 5.3.6 and 4.5. �

Corollary 5.3.8. For each odd integer k > 0, the Euler characteristic χ(Φε
k) is

even. �

Proposition 5.3.9. If Φε
k and Φε

k+2 are isotopic in F̃ for a given k ≥ 0, then
either Φε

k = ∅ or F̃ is a semi-fiber.

Proof. In this proof all isotopies will be understood to take place in F̃ unless spec-
ified otherwise.

First we claim that (1) Φε
k is isotopic to Φε

m for all m ≥ k. Since Φε
m−1 ⊃ Φε

m ⊃
Φε

m+1, and Φε
m is π1-injective, it suffices to consider the case where m− k is even.

The case m = k+2 holds by hypothesis. Thus we need only show that if m−k ≥ 2
is even and Φε

m is isotopic to Φε
m−2, then Φε

m+2 is isotopic to Φε
m. By Proposition

5.3.5 we have that hε
2(Φ

ε
m+2) and hε

2(Φ
ε
m) are respectively isotopic to Φ−ε

2 ∧L Φε
m

and Φ−ε
2 ∧L Φε

m−2. These two surfaces are isotopic by the induction hypothesis. It
follows that Φε

m+2 is isotopic to Φε
m. Claim (1) follows.

Next we claim that (1′) Φ−ε
m is isotopic to Φ−ε

k+1 for all m ≥ k+1. By Proposition
5.3.5 we have for any m > k + 1 that h−ε

1 (Φ−ε
m+1) is isotopic to Φ−ε

1 ∧L Φε
m, while
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h−ε
1 (Φ−ε

k+1) is isotopic to Φ−ε
1 ∧L Φε

k. These two surfaces are isotopic by (1), so (1′)
follows.

Next we claim that (2) hε
j(Φ

ε
k+j) is isotopic to Φε

k for every even integer j ≥ 0.
By Proposition 5.3.5 we have that hε

j(Φ
ε
k+j) is isotopic to Φ−ε

j ∧L Φε
k. In particular

hε
j(Φ

ε
k+j) is isotopic to a subsurface of Φε

k. Now since Φε
k+j is isotopic to Φε

k by (1),
Lemma 4.1(2) implies that hε

j(Φ
ε
k+j) is isotopic to Φε

k.
A similar argument using (1′) shows that (2′) h−ε

j (Φ−ε
k+1+j) is isotopic to Φ−ε

k+1

for all j ≥ 0.
More generally we claim that (3) if j is even and l ≥ max(k, j), then hε

j(Φ
ε
l ) is

isotopic to Φε
k. To show this we first note that by (1), Φε

l is isotopic in F̃ to Φε
k+j

and so by Proposition 4.4 Φε
l is isotopic to Φε

k+j in Φε
j . Hence hε

j(Φ
ε
l ) is isotopic in

F̃ to hε
k(Φε

k+j), which we have already shown is isotopic to Φε
k.

In the same way, using (2′), we see that (3′) if j is even and l ≥ max(k + 1, j),
then h−ε

j (Φ−ε
l ) is isotopic to Φ−ε

k+1.
We claim that (4) for all j ≥ 0 the surface Φε

k is isotopic to a subsurface of Φ−ε
j

and that (4′) Φ−ε
k+1 is isotopic to a subsurface of Φε

j . Since the Φ±ε
j are nested up

to isotopy, we need only prove this for even j. By (2) we have that hε
j(Φ

ε
k+j) is

isotopic to Φε
k. Lemma 5.3.5 implies that hε

j(Φ
ε
k+j) is isotopic to Φ−ε

j ∧L Φε
k. The

fact that Φε
k is isotopic to Φ−ε

j ∧L Φε
k implies that Φε

k is isotopic to a subsurface of
Φ−ε

j , as asserted by (4). A similar argument using (2′) proves (4′).
We next claim that (5) if j is odd, then hε

j(Φ
ε
k) is isotopic to Φ−ε

k+1 and (5′)
if j is odd, then h−ε

j (Φ−ε
k+1) is isotopic to Φε

k. First by (1) we have that hε
j(Φ

ε
k)

is isotopic to hε
j(Φ

ε
k+1+j) which, by Proposition 5.3.5, is isotopic to Φε

j ∧L Φ−ε
k+1.

Claim (4′) implies that this essential intersection is isotopic to Φ−ε
k+1. The proof of

(5′) is similar but uses (1′) and (4) in place of (1) and (4′).
Now fix an even integer m > k. By Proposition 5.3.7 we have that hε

m(Φε
2m+1)

is isotopic to a τε-invariant subsurface Bε of Φε
1. By (3) we have that Φε

k is isotopic
to hε

m(Φε
2m+1) and hence to Bε. Similarly, using (3′), we see that Φ−ε

k+1 is isotopic
to a τ−ε-invariant subsurface B−ε of Φ−ε

1 . Moreover, since τε = hε
1, we have that

Φε
k is isotopic to τε(Φε

k) = hε
1(Φ

ε
k) which in turn is isotopic to Φ−ε

k+1 by (5).
Thus we have defined surfacesBε ⊂ Φε

1 and B−ε ⊂ Φ−ε
1 which are invariant under

τε and τ−ε, respectively, and are both isotopic to Φε
k. By Subsection 5.2.1 it follows

that there exist I-pairs (Eε, Bε) ⊂ (M ε
F̃
, F̃ ) whose associated ∂I-subbundles are

both isotopic to the subsurface Φε
k of F̃ . After modifying these I-pairs by isotopies

we obtain a semi-fibered submanifold N = E+ ∪ E− contained in M whose semi-
fiber B is isotopic to the large subsurface Φε

k of F̃ . We may take N to be contained
in intM .

We are now ready to show that if Φε
k is non-empty, then F̃ is a semi-fiber. First

we argue that each component of ∂N is a π1-injective torus in M . Since N has
a large semi-fiber, it is clear that each component of ∂N is π1-injective in N . It
therefore suffices to show that N is π1-injective in M . A homotopically non-trivial
loop in N which is contained in B is homotopically non-trivial in M because B is
π1-injective in F̃ . Now consider a loop α in N which is not homotopic to a loop in
B. After modifying α by a free homotopy we may take it to be a composition of
paths α1, . . . , α2n for some n > 0 such that each αi is a path in E(−1)i which has its
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endpoints in B and is not fixed-endpoint homotopic in N to a path in B. The map
of pairs αi : (I, ∂I) → (E(−1)i , B(−1)i) must be homotopic to a homeomorphism
onto a fiber. Since the I-bundles E+ and E− are essential in MF̃ the path αi is not
fixed-endpoint homotopic in M to a path in F̃ . It follows that N is π1-injective in
M .

Since M is a simple knot manifold, every component of ∂N is boundary parallel.
Furthermore, since N has a large semi-fiber, it cannot be homeomorphic to S1 ×
S1 × I. Thus C = M −N is a collar on ∂M . The surface A = F̃ −B is a π1-
injective subsurface of F̃ without disk component which is properly embedded in C.
In particular A is π1-injective in C and hence each component of A is an annulus.
Furthermore, by [Wa], either A has a boundary parallel component or A is vertical
in the sense that it is mapped by some homeomorphism of C onto S1 × S1 × I
which maps A to X × S1 × I, where X is a finite subset of S1. Assume that A
has a boundary parallel component A0. Then A0 ⊂ F̃ is isotopic relative to ∂A0

to an annulus A′
0 in ∂N . But the torus ∂N is a union of essential annuli which are

components of the frontiers of the I-pairs (Eε, Bε). Thus the inclusion map of the
annulus A′

0 can be regarded as a reduced homotopy between the inclusion maps of
the two boundary components of A0. In particular, A′

0 is not homotopic into F̃ .
This is a contradiction, hence A is vertical. It follows easily that the semi-fibration
of N can be extended over C to obtain a semi-fibration of M with semi-fiber F̃ . �

5.4. Bounding the length of a reduced homotopy.

Theorem 5.4.1. Let F be a connected essential surface in a simple knot manifold
M . Suppose that F is not a semi-fiber. Let g and m denote respectively the genus
and number of boundary components of F . Then any reduced homotopy in the pair
(M,F ) having a large time-0 map has length at most 8g + 3m− 8.

For the proof of this theorem we will need the following construction.

5.4.2. Suppose that F is any connected, non-separating, essential surface in M ,
and let F̃ denote the boundary of a regular neighborhood N of F . It is clear
that F̃ has a unique transverse orientation such that F̃ is a splitting surface and
M+

(F̃ )
= N . We shall call F̃ , equipped with this transverse orientation, a splitting

surface associated to F .
If F is any connected, separating, essential surface in M , we refer to F itself,

equipped with either transverse orientation, as a splitting surface associated to F .

5.4.3.

Proof of Theorem 5.4.1. Let F̃ be a splitting surface associated to F . Since F is
not a semi-fiber, it is clear that F̃ is not a semi-fiber. We define the subsurfaces
Φε

k for k ≥ 0 and ε ∈ {±1} as in Subsection 5.2. Let H be a reduced homotopy of
length l in the pair (M,F ) starting on the ε side. Let us set l̃ = l if F separates
M , and l̃ = 2l if F does not separate M . Then the homotopy H determines a
reduced homotopy H̃ of length l̃ in the pair (M, F̃ ) such that H̃0 is large. This is
obvious if F separates; if F does not separate, it follows from the fact that the two
components of F̃ cobound a product. Let g̃ and m̃ denote, respectively, the total
genus and number of boundary components of F̃ . We have g̃ = g and m̃ = m in
the separating case, and g̃ = 2g and m̃ = 2m in the non-separating case. Hence
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it suffices to show that the length l̃ of H̃ is at most 8g̃ + 3m̃− 8 in the separating
case, and is at most 8g̃ + 3m̃− 16 in the non-separating case.

Set n =
[

l̃+1
2

]
, and consider the subsurfaces

Φε
1 ⊃ Φε

3 ⊃ . . . ⊃ Φε
2n−1 ⊃ Φε

2n+1

of F̃ . Since the reduced homotopy H̃ has length l̃ ≥ 2n − 1, it follows from
Proposition 5.2.8 that Φε

2n−1 �= ∅. Since F̃ is not a semi-fiber, it now follows from
Proposition 5.3.9 that Φε

2i−1 is not a regular neighborhood of Φε
2i+1 for i = 1, . . . , n.

Furthermore, by Corollary 5.3.8, each of these surfaces has even Euler characteristic.
Using these facts, we will show that n ≤ 4g̃ + 3m̃/2 − 4 in the separating case,
and that n ≤ 4g̃ + 3m̃/2 − 8 in the non-separating case; this implies the desired
conclusion, since l̃ ≤ 2n.

If A is any large subsurface of F̃ , then we will set c(A) = genus(A)− 3χ(A)/2−
|A|. Note that c(A) is always non-negative, and is an integer if A has even Euler
characteristic. We have c(F̃ ) = 4g̃+3m̃/2−4 in the separating case, and c(F̃ ) = 4g̃+
3m̃/2−8 in the non-separating case. Hence it suffices to show that n ≤ c(F̃ ). Thus
the proof reduces to the following general claim: if A and B are large subsurfaces of
F̃ , each of which has even Euler characteristic, and if B is contained in the interior
of A, then c(B) < c(A) unless A is a regular neighborhood of B.

To prove the claim, it suffices to show that if A0 is a component of A, and if
we set B0 = B ∩ A0, then c(B0) < c(A0) unless A0 is a regular neighborhood of
B0. Note that we have genus(B0) ≤ genus(A0) and, since A and B are large,
χ(B0) ≥ χ(A0). Thus we need only consider the two cases where B0 = ∅ and
where B0 is connected. The case B0 = ∅ is easy because c(A) > 0 for any non-
empty large subsurface A. For the case where B0 is connected we may assume
that genus(B0) = genus(A0) and χ(B0) = χ(A0), and we must show that A0 is a
regular neighborhood of B0. Since A and B are large, no component of A0 −B0 is
a disk. Thus the condition χ(B0) = χ(A0) implies that each component of A0 −B0

is an annulus. None of these annuli can separate A0 since B0 is connected. On
the other hand, since genus(B0) = genus(A0) there cannot exist a simple closed
curve in A0 which has non-zero intersection number with a core curve of an annulus
component of A0 −B0. It follows that each component of A0 −B0 is a collar on
a boundary component of A0 and hence that A0 is a regular neighborhood of B0.
This completes the proof of the claim, and of the theorem. �

6. Boundary slopes of essential surfaces and singular surfaces

Most of the work in this section is devoted to proving Theorem 6.2.1, which is a
refinement of Theorem 5.4.1 and gives a bound on the length of a reduced homotopy
whose time-0 map is an essential path. Combining Theorem 6.2.1 with the results
in Section 3 we obtain a proof of Theorem 6.2.2 and its Corollaries 6.2.3, 6.2.4 and
6.2.5. These results give bounds on ∆(α, β), where β is a boundary slope and α is
either another boundary slope, a very small filling slope or a Seifert-fibered filling
slope.

We will need the following definition in this section.

Definition 6.0.1. Let F̃ be a splitting surface in a simple knot manifold M . We
say that F̃ admits a long rectangle if there exists a reduced homotopy H : I × I →
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M in the pair (M, F̃ ) having length at least |∂F̃ | in the pair (M, F̃ ) such that
Ht(∂I) ⊂ ∂M for all t ∈ I and H0 is an essential path.

6.1. Reduced homotopies and outer subsurfaces.

6.1.1. Hypotheses. Throughout Subsection 6.1 we will assume that M is a simple
knot manifold and that F̃ is a splitting surface in M which admits a long rectangle.

We will define Φ±1 and τ±1 as in Subsection 5.2. For every k ≥ 0 we fix subsur-
faces Φ±1

k of F̃ for which the conclusions of Proposition 5.2.8 hold and homeomor-
phisms h±1

k for which the conclusions of Proposition 5.3.1 hold.

Lemma 6.1.2. For each ε ∈ {±1}, every component of ∂F̃ is isotopic in F̃ to a
unique boundary component of Φε

1. Furthermore, if c and c′ are components of ∂F̃
which cobound an annulus component of M ε

F̃
∩ ∂M , then the boundary components

of Φε
1 which are isotopic to c and c′ are interchanged by τε.

Proof. Set m = |∂F̃ |. The existence of a long rectangle means that there is a
reduced homotopy H of length m, such that Ht(∂I) ⊂ ∂M for all t ∈ I and f = H0

is an essential path. As in Subsection 3.4 we extend f to an admissible pair of
glasses f̂ : Γ → F̃ , and extend H to a length-m reduced homotopy Ĥ with Ĥ0 = f̂ .
By construction the homotopy Ĥ has the property that for each of the “rims” l̄i,
we have Ĥt(l̄i) ⊂ ∂M for all t ∈ [0, 1].

Write Ĥ as a composition of essential basic homotopies Ĥ1, . . . , Ĥm. Because
the Ĥi are essential homotopies, Ĥi maps l̄1 × I to an annulus component Ai of
MF̃ ∩ ∂M and maps the two components of l̄1 × ∂I to distinct components of ∂Ai.
Since Ĥ is reduced, the annuli Ai and Ai+1 are on opposite sides of their common
boundary component Ĥi

1(l̄1) = Ĥi+1
0 (l̄1) for each i = 1, . . . ,m − 1. Since m is the

number of components of F̃ ∩ ∂M , it follows that the annuli Ai are distinct and
that every annulus component of MF̃ ∩ ∂M appears as one of the Ai. If we set
A0 = Am, then for each component c of ∂F̃ there is some i with 0 ≤ i < m such
that c is the common boundary curve of the two annuli Ai and Ai+1, one of which
is contained in M+

F̃
and the other in M−

F̃
.

To prove the first assertion of the lemma let c be a component of ∂F̃ and let
ε ∈ {±1} be given. The curve c is a boundary component of some annulus Aj ⊂
M ε

F̃
∩ ∂M . Lemma 5.2.6 implies that Ĥj

0 is homotopic to a map from Γ to Φε
1. In

particular c is homotopic in F̃ to a (singular) curve in Φε
1. Since c is a boundary

component of F̃ , it follows that c is homotopic to a boundary component of Φε
1.

To prove the second assertion, suppose that c and c′ are boundary curves of F̃
which cobound an annulus component A of M ε

F̃
∩ ∂M . Then we have A = Aj for

some j. Let γ be the boundary component of Φε
1 which is homotopic to c. Lemma

5.2.6 implies that Ĥj
0 is homotopic to a map g : Γ → Φε

1 such that g(l̄1) = γ.
Applying Lemma 5.2.7 to the homotopy Hj , with g in place of f and Γ in place of
K, we conclude that c′ = Ĥj

1(l̄1) is homotopic in F̃ to τε(γ). The assertion follows
immediately. �
Lemma 6.1.3. If ε ∈ {±1} and if γ is a simple closed curve in Φε

k which is isotopic
in F̃ to a component of ∂F̃ , then hε

k(γ) is also isotopic to some component of ∂F̃ .

Proof. For k = 0 the assertion is trivial. To prove the lemma for k = 1, we may
assume that γ is a component of ∂Φε

k. Let c denote the component of ∂F̃ which is
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isotopic in F̃ to γ, and let A denote the annulus component of M ε
F̃
∩ ∂M having c

as a boundary curve. If c′ denotes the other boundary curve of A, then it follows
from Lemma 6.1.2 that c′ is isotopic in F̃ to a boundary component γ′ of Φε

1 and
that hε

1(γ) = τε(γ) = γ′. This proves the assertion in this case.
Now assume that k > 1 and that the assertion holds with k replaced by k − 1,

both for ε = 1 and ε = −1. Suppose we are given ε ∈ {±1} and a simple closed
curve γ ⊂ Φε

k ⊂ Φε
k−1 which is isotopic in F̃ to a component of ∂F̃ . We will apply

Proposition 5.3.4 with i = k − 1 and j = 1. According to Proposition 5.3.4, the
map hε

k−1|Φε
k is homotopic to a map gε

k−1 : Φε
k−1 → Φ−ε

1 such that hε
k is homotopic

to h(−1)k−1ε
1 ◦ gε

k−1. Now gε
k−1(γ) is homotopic to hε

k−1(γ) which, by the induction
hypothesis, is homotopic to some component of ∂F̃ . By the case k = 1 of the
proposition we know that h(−1)k−1ε

1 (hε
k−1(γ)) is homotopic to a component of ∂F̃ .

Since hε
k is homotopic to h(−1)k−1ε

1 ◦ gε
k−1 this shows that hε

k(γ) is homotopic to a
component of ∂F̃ . �

Recall from Subsection 4.6 that if A is a subsurface of a compact orientable
surface S, then the outer part of A is denoted Ȧ.

Lemma 6.1.4. For either ε ∈ {±1} and for any large subsurface A of Φε
k, the

outer part of hε
k(A) is hε

k(Ȧ).

Proof. Set B = hε
k(A). It follows from Lemma 6.1.3 that hε

k(Ȧ) ⊂ Ḃ. Let

g : Φ(−1)k+1ε
k → Φε

k denote the inverse of hε
k, so that g(B) = A. According to

Proposition 5.3.3 the map g is isotopic to h(−1)k+1ε
k as a map from Φ(−1)k+1ε

k to Φε
k.

It therefore follows from Lemma 6.1.2 that g(Ḃ) ⊂ Ȧ, i.e. that Ḃ ⊂ hε
k(Ȧ). �

6.1.5. We now consider the outer parts of the surfaces Φε
k which, according to our

conventions, are denoted Φ̇ε
k. Note that since

F̃ = Φε
0 ⊃ Φε

1 ⊃ Φε
2 ⊃ · · ·

for ε ∈ {±1}, it follows from Subsection 4.6 that

F̃ = Φ̇ε
0 ⊃ Φ̇ε

1 ⊃ Φ̇ε
2 ⊃ · · · .

It follows from Lemma 6.1.4 that hε
k restricts to a homeomorphism from Φ̇ε

k to

Φ̇(−1)k+1ε
k . This homeomorphism will be denoted by ḣε

k. In particular the involution
τε = hε

1 of Φε
1 restricts to an involution τ̇ε = ḣε

1 of Φ̇ε
1. It also follows from Lemma

6.1.4 that if A is any large subsurface of Φε
k, then ḣε

k(Ȧ) is the outer part of hε
k(A).

Note also that, according to Proposition 5.3.1, if F̃ is given a consistent orientation,
ḣε

k : Φ̇ε
k → F̃ is orientation reversing if k is odd and orientation preserving if k is

even.
The following six results, 6.1.6–6.1.11, are analogues of 5.3.4–5.3.9. (Of course

these results, unlike their counterparts in Section 4, depend on the hypothesis stated
at the beginning of the section that F̃ admits a long rectangle.)

Proposition 6.1.6. Let i and j be non-negative integers, and set k = i+ j. Then
for each ε ∈ {±1}, the map ḣε

i |Φ̇ε
k is homotopic in F̃ to an embedding ġε

i : Φ̇ε
k →

Φ̇(−1)iε
j such that ḣ(−1)iε

j ◦ ġε
i is homotopic in F̃ to ḣε

k.
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Proof. By Proposition 5.3.4 we have that hε
i |Φε

k is homotopic in F̃ to an embedding

gε
i : Φε

k → Φ(−1)iε
j such that h(−1)iε

j ◦ gε
i is homotopic in F̃ to hε

k. Set ġε
i = gε

i |Φ̇ε
k,

and set A = ġε
i (Φ̇

ε
k). To complete the proof it suffices to show that A ⊂ Φ̇(−1)iε

j .

Since h(−1)iε
j ◦gε

i is homotopic to hε
k, the subsurface h(−1)iε

j (A) is homotopic into

hε
k(Φ̇ε

k) which, by Subsection 6.1.5, is equal to Φ̇(−1)k+1ε
k . In particular h(−1)iε

j (A) is

homotopic into Φ̇(−1)k+1ε
j . Since h(−1)iε

j (A) is a large subsurface of h(−1)iε
j (Φ(−1)iε

j )=

Φ(−1)k+1ε
j , and since Φ̇(−1)k+1ε

j is a union of components of Φ(−1)k+1ε
j , it follows

that h(−1)iε
j (A) is contained in Φ̇(−1)k+1ε

j , which by Subsection 6.1.5 is equal to

h
(−1)iε
j (Φ̇(−1)iε

j ). We therefore have A ⊂ Φ̇(−1)iε
j , as required. �

Proposition 6.1.7. Let i and j be non-negative integers, and set k = i+ j. Then
for each ε ∈ {±1} the subsurface ḣε

i(Φ̇
ε
k) is isotopic in F̃ to Φ̇(−1)i+1ε

i ∧̇LΦ̇(−1)iε
j .

Proof. We may assume by Proposition 5.3.5 that hε
i(Φ

ε
k) = Φ(−1)i+1ε

i ∧L Φ(−1)iε
j . It

follows from Subsection 6.1.5 that ḣε
i(Φ̇

ε
k) is the outer part of hε

i(Φ
ε
k) and is therefore

equal to the surface Φ(−1)i+1ε
i ∧̇LΦ(−1)iε

j . By Lemma 4.7 this surface is isotopic in

F̃ to Φ̇(−1)i+1ε
i ∧̇LΦ̇(−1)iε

j . �

Lemma 6.1.8. For any non-negative integer k and for each ε ∈ {±1} the subsur-
face ḣε

k(Φ̇ε
2k+1) is isotopic in F̃ to a subsurface A of Φ̇(−1)kε

1 with the property that

τ̇(−1)kε(A) is a subsurface of Φ̇(−1)kε
1 which is isotopic to A in Φ̇(−1)kε

1 .

Proof. By Lemma 5.3.6 we know that hε
k(Φε

2k+1) is isotopic in F̃ to a subsurface A0

of Φ(−1)kε
1 with the property that τ(−1)kε(A0) is isotopic to A0 in Φ(−1)kε

1 . It follows
from Subsection 6.1.5 that ḣε

k(Φ̇ε
2k+1) is isotopic in F̃ to Ȧ0. It also follows from

Subsection 6.1.5 that τ̇(−1)kε(Ȧ0) = h
(−1)kε
1 (Ȧ0) = ḣ

(−1)kε
1 (Ȧ0) is equal to the outer

part of h(−1)kε
1 (A0) = τ̇(−1)kε(A0). Since τ̇(−1)kε(A0) is isotopic to A0 it follows that

τ̇(−1)kε(Ȧ0) is isotopic in F̃ to Ȧ0. Since the subsurfaces τ̇(−1)kε(Ȧ0) and Ȧ0 of Φ̇ε
1

are isotopic in F̃ , it follows from Lemma 4.1 that they are isotopic in Φ̇(−1)kε
1 . Thus

we may take A = Ȧ0. �

Proposition 6.1.9. For any non-negative integer k and for each ε ∈ {±1} the
surface ḣε

k(Φ̇ε
2k+1) is isotopic in F̃ to a subsurface of Φ̇(−1)kε

1 which is invariant
under the free involution τ̇(−1)kε. In particular, Φ̇ε

2k+1 admits a free involution.

Proof. This is an immediate consequence of Lemmas 6.1.8 and 4.5. �

Corollary 6.1.10. For each ε ∈ {±1} and each odd integer k > 0, the Euler
characteristic χ(Φ̇ε

k) is even. �

Proposition 6.1.11. Let k be a non-negative integer and let ε ∈ {±1} be given. If
Φ̇ε

k and Φ̇ε
k+2 are isotopic in F̃ , then either Φ̇ε

k = ∅ or F̃ is a semi-fiber.

Proof. This is formally identical with the proof of Proposition 5.3.9. All occurrences
of Φ, h, τ and ∧L are replaced by Φ̇, ḣ, τ̇ and ∧̇L, respectively. References to
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Propositions 5.3.5 and 5.3.7 are replaced by references to Proposition 6.1.7 and
6.1.9. �

6.2. The distance bounds. The next result is a strengthened version of Theorem
5.4.1 that applies to a reduced homotopy whose time-0 map is an essential path.

Theorem 6.2.1. Let F be a connected essential surface in a simple knot manifold
M . Suppose that F is not a semi-fiber. Set g = genus(F ) and m = |∂F |. Let H
be any reduced homotopy in the pair (M,F ) such that H0 is an essential path in F
and Ht(∂I) ⊂ ∂M for each t ∈ I. Then the length of H is at most 4g + 3m− 4.

Proof. The proof will be similar to that of Theorem 5.4.1. Let F̃ be a splitting
surface associated to F . Since F is not a semi-fiber, it follows that F̃ is not a
semi-fiber.

Let l denote the length of H . We may assume l > m. Set l̃ = l if F is separating
and l̃ = 2l if F is non-separating. As in the proof of Theorem 5.4.1, the homotopy
H determines a homotopy H̃ of length l̃ in the pair (M, F̃ ) such that H̃0 is an
essential path. Let g̃ and m̃ denote, respectively, the total genus and number of
boundary components of F̃ . We have m̃ = m and g̃ = g in the separating case
and m̃ = 2m, g̃ = 2g in the non-separating case. It therefore suffices to prove that
l̃ ≤ 4g̃ + 3m̃− 4 if F is separating and l̃ ≤ 4g̃ + 3m̃− 8 if F is non-separating.

Since l > m we also have l̃ > m̃. In particular this means that F̃ admits a long
rectangle and hence that the hypotheses stated in Subsection 6.1.1 hold. We define
the subsurfaces Φ±1

k and Φ̇±1
k for k ≥ 0 as in Subsections 6.1.1 and 6.1.5.

Let us say that a subsurface A of F̃ is allowable if A is a large subsurface with
even Euler characteristic and if A is an outer subsurface (see Subsection 4.6). If A is
any large subsurface of F̃ , let ν(A) denote the number of components of ∂F̃ which
are homotopic into A. Note that ν(A) > 0 for any non-empty allowable subsurface
A. We set

c(A) = genus(A) − χ(A)
2

− |A| + ν(A) = 2 genus(A) +
|∂A|

2
− 2|A| + ν(A).

Note that c(A) is non-negative and integer-valued if A is allowable. Moreover,
c(A) > 0 if A is non-empty and allowable.

Set n =
[

l̃+1
2

]
and define ε ∈ {±1} by the condition that the homotopy H̃ starts

on the ε-side. Consider the subsurfaces

Φ̇ε
1 ⊃ Φ̇ε

3 ⊃ . . . ⊃ Φ̇ε
2n−1 ⊃ Φ̇ε

2n+1.

Since the hypotheses stated in Subsection 6.1.1 hold, Corollary 6.1.10 implies that
each of these surfaces has even Euler characteristic, and, in view of the definition
of the Φ̇ε

k, it follows that each of these surfaces is allowable. On the other hand,
since the reduced homotopy H̃ has length l̃ ≥ 2n−1, it follows from Subsection 3.4
and Proposition 5.2.8 that there is an admissible pair of glasses γ : Γ → F̃ which is
homotopic in F̃ to a map from Γ to Φε

2n−1. In particular there is a map α : S1 → ∂F̃

which is homotopic in F̃ to a map from S1 to a component A of Φε
2n−1. It follows

that A must be an outer component of Φε
2n−1, and hence that Φ̇ε

2n−1 �= ∅. Since
F̃ is not a semi-fiber and since the hypotheses stated in Subsection 6.1.1 hold, we
may apply Proposition 6.1.11 to conclude that Φ̇ε

2i−1 is not a regular neighborhood
of Φ̇ε

2i+1 for i = 1, . . . , n. We will show that in this situation n ≤ 2g̃ + 3m̃/2 − 2 if
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F is separating and n ≤ 2g̃ + 3m̃/2 − 4 if F is non-separating. Since l̃ ≤ 2n this
will imply the theorem.

We have c(F̃ ) = 2g̃+ 3m̃/2− 2 if F is separating and c(F̃ ) = 2g̃+ 3m̃/2− 4 if F
is non-separating. Hence it will suffice to show that if A and B are two allowable
subsurfaces with B ⊂ intA, then c(B) < c(A) unless A is a regular neighborhood
of B.

As in the proof of Theorem 5.4.1 it suffices to show, for a component A0 of
A and the subsurface B0 = B ∩ A0, that c(B0) < c(A0) if A0 is not a regular
neighborhood of B0. We have that genus(B0) ≤ genus(A0), that χ(B0) ≥ χ(A0),
and ν(B0) ≤ ν(A0). Thus we need only consider the two cases where |B0| ≤ |A0| =
1, i.e. where B0 is empty and where B0 is connected. The case B0 = ∅ is easy
since A0 �= ∅ implies c(A0) > 0. For the case where B0 is connected we observe
that if c(B0) = c(A0), then we have genus(B0) = genus(A0) and χ(B0) = χ(A0);
it then follows as in the proof of Theorem 5.4.1 that A0 is a regular neighborhood
of B0. �

We are now ready to state and prove one of the main results of this paper. Recall
that the function N(s, n, v) was defined in Subsection 3.7.

Theorem 6.2.2. Let M be a simple knot manifold, and let F ⊂M be an essential
bounded surface with boundary slope β which is not a semi-fiber. Let (S,X, h) be a
singular surface which is well positioned with respect to F and has boundary slope
α. Set s = genusS, n = |∂S −X |, v = |X |, g = genusF and m = |∂F |. Then

∆(α, β) ≤
(

4g − 3
m

+ 3
)
N(s, n, v).

Proof. According to Proposition 3.9, there exists an essential homotopyH : I×I →
M having length

(1) l ≥ m∆(α, β)
N(s, n, v)

− 1,

such that H0 is an essential path in F and Ht(∂I) ⊂ ∂M for all t ∈ I. By Theorem
6.2.1 we have that

(2) l ≤ 4g + 3m− 4.

The conclusion follows from the inequalities (1) and (2). �

Corollary 6.2.3. Let M be a simple knot manifold, and let F ⊂M be an essential
bounded surface with boundary slope β which is not a semi-fiber. Set g = genusF
and m = |∂F |. Let α be a slope in ∂M . If M(α) is very small, or more generally
if F ⊂M ⊂M(α) is not π1-injective in M(α), then

∆(α, β) ≤ 20g − 15
m

+ 15.

Proof. We invoke Corollary 2.3 to obtain a singular surface (S,X, h), well positioned
with respect to F , such that genusS = 0 and |X | = 1. The conclusion now follows
from Theorem 6.2.2 because for any v ≥ 1 we have N(0, 1, v) ≤ 5. �

Corollary 6.2.4. Let M be a simple knot manifold, and let F ⊂M be an essential
bounded surface with boundary slope β which is not a semi-fiber. Let α be a slope
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in ∂M . Set g = genusF and m = |∂F |. If M(α) is a Seifert fibered space or if
there exists a π1-injective map from S1 × S1 to M , then

∆(α, β) ≤ 24g − 18
m

+ 18.

Proof. We invoke Corollary 2.6 to obtain a singular surface (S,X, h), well positioned
with respect to F , such that either genusS = 0 and |X | = 1, or genusS = 1 and
|X | = 0. The conclusion now follows from Theorem 6.2.2 because for any v ≥ 1 we
have N(0, 1, v) ≤ 5 and N(1, 0, v) = 6. �

Corollary 6.2.5. Let M be a simple knot manifold. Suppose, for i = 1, 2, that
Fi ⊂ M is an essential bounded surface of genus gi with boundary slope βi. Let
mi = |∂Fi|. If F1 is not a semi-fiber, then we have

∆(β1, β2) ≤
(

4g1 − 3
m1

+ 3
)([

12g2 − 12
m2

]
+ 6

)
.

Proof. We apply Proposition 2.1 with F = F1 and S = F2. This gives a singular
surface (F2, ∂F2, h) which is well positioned with respect to F1. Theorem 6.2.2 then
implies that

∆(β1, β2) ≤
(

4g1 − 3
m1

+ 3
)
N(g2, 0,m2).

Note that since M is a simple knot manifold, the surface F2 cannot be a disk or an
annulus. It then follows from Subsection 3.7 that

N(s, n, v) =
[
12g2 − 12

m2

]
+ 6.

�

Ian Agol has informed us that a slightly stronger estimate follows from the
techniques in his paper [A]. By combining his Theorem 5.1 with the proof of his
Theorem 8.1 he can show under the hypotheses of Corollary 6.2.5 that

∆(β1, β2) ≤
36

3.35

(
2g1 − 2
m1

+ 1
)(

2g2 − 2
m2

+ 1
)
.

In particular the coefficient of g1g2/m1m1 is less than 43 for this estimate, while in
the estimate provided by Corollary 6.2.5 the corresponding coefficient is 48. Agol’s
methods depend on the rigorous computational results of Cao and Meyerhoff [CM].

Corollary 6.2.6. Let M be a simple knot manifold, and let F ⊂M be an essential
bounded surface with boundary slope β which is not a semi-fiber. Set g = genusF
and m = |∂F |. If α is the boundary slope of an essential planar surface in M , then

∆(α, β) ≤ 20g − 15
m

+ 15.

Proof. If M(α) is reducible, then there is an essential planar surface F2 with bound-
ary slope α. The result follows from Corollary 6.2.5 by taking F = F1, β = β1, and
α = β2. �

Still another corollary to Theorem 6.2.2 can be obtained by using Corollary 2.5.
The reader is invited to formulate the statement.
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7. Tight surfaces

The goal of this section is to prove Theorem 7.4.2, which provides a major
improvement on conclusion of Theorem 6.2.1 in the special case where F is planar,
i.e. g = 0. This leads to corresponding improvements to the corollaries of the
previous section in cases where the planarity assumption hold.

The techniques used in this section make use of some variants of the surfaces Φ̇ε
k

which are denoted Φ̆ε
k. We start with some preliminaries which are needed for the

definition of these surfaces.

7.1. Perfect surfaces. In this subsection S will denote a compact orientable
surface of negative Euler characteristic. If A is a subsurface of S we will denote the
frontier of A by Fr A.

Definition 7.1.1. A subsurface A of S will be said to be perfect if
(i) A is π1-injective;
(ii) A contains ∂S; and
(iii) every component of A contains a component of ∂S.

Thus if A is a perfect subsurface of S then each component of A is either a large
subsurface of S which contains a component of ∂S or a regular neighborhood of a
component of ∂S.

Suppose that A is a large outer subsurface of a compact orientable surface S.
Let A′ denote a subsurface in the non-ambient isotopy class of A such that for every
component C of ∂A′, either C ⊂ ∂S, or C ⊂ int S and C is not parallel to any
component of ∂S. The surface A′ is unique up to ambient isotopy. We define a
perfection of A, denoted P(A), to be a surface of the form A′ ∪ N , where N is a
regular neighborhood of the union of all components of ∂S which are not contained
in ∂A′, and N ∩A′ = ∅. Note that P(A) is a perfect surface and that the ambient
isotopy class of P(A) is uniquely determined by the non-ambient isotopy class of
A. Moreover, if c is a component of ∂S and if C is the component containing c,
then no other component of P(A) contains a curve isotopic to c.

7.1.2. There is an obvious inverse operation to perfection: if B is a perfect subsur-
face of S, then L(B) is a large outer subsurface of S. It is clear that if A is any large
outer subsurface of S, then L(P(A)) is (non-ambiently) isotopic to A, and that if
B is any perfect subsurface of S, then B is ambiently isotopic to P(L(B)). Thus
we have a natural bijective correspondence between non-ambient isotopy classes of
large outer subsurfaces of S and ambient isotopy classes of perfect subsurfaces of
S.

The following lemma will be needed in Subsection 7.2.

Lemma 7.1.3. Let P be a perfect subsurface of S and suppose that τ is a free
involution of P . Suppose that A ⊂ P is a large outer subsurface of S which is
invariant under τ . Then A has a perfection which is contained in P and invariant
under τ .

Proof. By replacing A with a slightly smaller τ -invariant surface we may assume
that A is contained in int S. Let A′ be the union of A with all of the annuli in S
which have one boundary component in ∂A and one boundary component in ∂S.
Since P is perfect, A is contained in P and invariant under τ . Thus ∂S − ∂A′ is
also invariant under τ . We define the required perfection of A to be the union of
A′ with a suitably small τ -invariant regular neighborhood of ∂S − ∂A′. �
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7.1.4. If A and B are two perfect subsurfaces of S, then we define the perfect
intersection of A and B, denoted A ∧P B, to be P(L(A)∧̇LL(B)). Observe that
a perfect subsurface of S is homotopic into A ∧P B if and only if it is homotopic
into both A and B. It follows from this together with Lemma 4.1, that A ∧P B is
isotopic to B ∧P A and that (A ∧P B) ∧P C is isotopic to A ∧P (B ∧P C).

Now let A and B be large outer subsurfaces of S. It follows from the definition of
perfect intersection and the bijective correspondence described in Definition 7.1.1
that

P(A) ∧P P(B) = P(A∧̇LB).

Proposition 7.1.5. Let P and Q be perfect surfaces of S. Then there exist (perfect)
surfaces P1 and Q1 which are ambiently isotopic to P and Q respectively, such that
the frontiers of P1 and Q1 meet transversely and P ∧P Q is ambiently isotopic to
the union of all components of P1 ∩Q1 which meet ∂S.

Proof. Set A = L(P ) and B = L(Q). According to Proposition 4.2, A and B are
non-ambiently isotopic to surfaces A0 ⊂ int S and B0 ⊂ int S such that ∂A0 and
∂B0 meet transversely and L(A0 ∩B0) is isotopic to A ∧L B. Let A1 be the union
of A0 with all of the annular components of S −A0 which meet ∂S. It is clear that
A1 is ambiently isotopic to A. In the same way, using B0, we define a subsurface B1

which is ambiently isotopic to B. We claim that L(A1 ∩B1) is isotopic to A∧L B.
According to Proposition 4.2 and Definition 4.3 it suffices to show that property
(∗) of Proposition 4.2 holds with C replaced by L(A1 ∩B1). The “only if” part of
(∗) is clear because A1 is isotopic to A and B1 is isotopic to B. Since the “if” part
of Proposition 4.2 holds with C replaced by L(A0 ∩B0), the claim will follow once
we show that L(A0 ∩ B0) ⊂ L(A1 ∩ B1). Since A0 ∩ B0 ⊂ A1 ∩ B1, it suffices to
show that A1 ∩ B1 is π1-injective. But since χ(S) < 0, any homotopically trivial
simple closed curve γ ⊂ A1 ∩ B1 bounds a unique disk D in S; since A1 and B1

are π1-injective we must have D ⊂ A1 and D ⊂ B1 and hence D ⊂ A1 ∩ B1. This
proves the claim.

Thus we may take A ∧L B to be equal to L(A1 ∩B1). Let W denote the union
of the large components of A1 ∩ B1 that meet ∂S. We next assert that W is
A∧̇LB. To prove this it suffices to show that every large outer component X of
A1 ∩B1 contains a component of ∂S. By the definition of an outer component (see
Subsection 4.6), X contains a closed curve γ ⊂ int S which is the frontier of an
annulus α ⊂ S. Since γ ⊂ A1 and γ ⊂ B1, it follows from the construction of A1

and B1 that α is contained in both A1 and B1, and hence in X . In particular, X
contains a component of ∂S as required.

Now let N be regular neighborhood of ∂S. We may assume N to be chosen
so that each component of N is disjoint from the frontiers of A1 and B1. We
set P1 = A1 ∪ N and Q1 = B1 ∪ N . It is clear that P1 and Q1 are isotopic to
P and Q, respectively. It is also clear that the union Z of the components of
P1 ∩ Q1 which meet ∂S is equal to W ∪ N . Since W is A∧̇LB, we have that
Z = P(W ) = P(A∧̇LB). But by definition we have that P ∧P Q = P(A∧̇LB).
This completes the proof. �

7.1.6. Suppose that P and Q are perfect subsurfaces of S. Let C be a component
of the perfect intersection P ∧P Q. Since C is isotopic to a subsurface of P , there
must be a component P0 of P such that C is isotopic to a subsurface of P0. We will
say in this situation that C is isotopically contained in P0. Let c be a component of
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∂S which is contained in C. Then, since there is a unique component of P which
contains a curve isotopic to c, it follows that P0 is the unique component of P which
contains a surface isotopic to C. Thus each component of P ∧P Q is isotopically
contained in a unique component of P .

Definition 7.1.7. Let A ⊂ S be a perfect surface. A component A0 of A said to
be tight if A0 is planar and the frontier of A0 in S is a simple closed curve. We
define the size of a tight component A0 of A to be the number of components of
∂S which are contained in A0. We will denote the size of A0 by s(A0).

Proposition 7.1.8. Let P and Q be perfect subsurfaces of S and let P0 be a tight
component of P . Assume that every tight component of Q has size at least s(P0).
Then every component of P ∧P Q which is isotopically contained in P0 is tight and
has size at most s(P0). Furthermore if P0 contains only one component of P ∧P Q
then this component is isotopic to P0.

Proof. By Proposition 7.1.5 we may assume that P and Q have been chosen within
their isotopy classes so that the frontiers of P and Q meet transversely and Z =
P ∧P Q is the union of all components of P ∩Q which meet ∂S.

Consider first the case in which P0 contains at least one component of FrQ.
Note that since Q is perfect, the components of FrQ are homotopically non-trivial
simple closed curves in S. Since P0 is planar and has connected frontier, every
homotopically non-trivial simple closed curve γ in intP0 is the frontier in S of a
unique subsurface Wγ of P0; the non-triviality of γ implies that Wγ is not a disk
and hence that Wγ ∩ ∂S �= ∅. Among all components of FrQ contained in P0 we
choose one, γ0, such that Wγ0 is minimal with respect to inclusion. The minimality
implies that Wγ0 is either a component of Q or of S −Q. But since Q is perfect, we
have ∂S ⊂ Q and hence Wγ0 ∩Q ⊃Wγ0 ∩∂S �= ∅. Hence Wγ0 must be a component
of Q. Since Wγ0 is contained in the planar surface P0 and has connected frontier,
it is in fact a tight component of Q with s(Wγ0) ≤ s(P0). On the other hand the
hypothesis of the proposition implies that s(Wγ0) ≥ s(P0). It now follows that P0

is a regular neighborhood of Wγ0 . Clearly Wγ0 is a component of P ∩Q and hence
of Z. Since the annulus P0 −Wγ0 is disjoint from ∂S, it follows that Wγ0 is the
only component of P0 ∩ Q which meets ∂S. Hence Wγ0 is the only component of
Z which is contained in P0. Since Wγ0 is isotopic to its regular neighborhood P0,
both conclusions of the proposition are established in this case.

There remains the case in which each component of P0 ∩ FrQ is a properly
embedded arc in P0 having both endpoints on Fr P0. It follows that any component
of P0 ∩ Q is a planar surface whose frontier in S is a simple closed curve. In
particular, if C is a component of P0 ∩Q which contains a component of ∂S, then
C is a tight component of Z. It is also clear that s(C) ≤ s(P0). To prove the last
assertion of the proposition in this case, assume that C is the only tight component
of Z which is contained in P0. Then the frontier in P0 of C is a collection of
properly embedded arcs which are parallel to subarcs of Fr P0. It then follows that
C is isotopic to P0. �

Proposition 7.1.9. Suppose that S is planar and let P �= S be a perfect subsurface
of S. Then P has a tight component.

Proof. Since P �= S we have Fr P �= ∅. Since P is perfect, each component of Fr P
is a homotopically non-trivial curve in S and hence is the frontier of two planar
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subsurfaces of S, neither of which is a disk. Among all subsurfaces A of S such
that Fr A consists of a single component of Fr S we choose one, say A0, which is
minimal with respect to inclusion. Since A0 is not a disk, we have A0 ∩ ∂S �= ∅.
The minimality implies that either A0 is a component of P or of S − P . But since
P is perfect, we have ∂S ⊂ P and hence A0 ∩ P ⊃ A0 ∩ ∂S �= ∅. Thus A0 is a
component of P and by definition is tight. �

We record here a simple lemma that will be needed in the next subsection.

Lemma 7.1.10. Let A be an oriented annulus, and let α be a component of ∂A.
Let f and g be two embeddings of A into an orientable surface F . Suppose that
f(α) = g(α) = c, where c is a component of ∂F , and that f and g carry the
orientation of A to the same orientation of F . Then f and g are homotopic.

�

7.2. Reduced homotopies and perfect subsurfaces.

7.2.1. Throughout Subsection 7.2 we will assume that M is a simple knot manifold
and that F̃ is a splitting surface in M which admits a long rectangle. Since this is
the same assumption that was made in Proposition 6.1.1, the results of Subsection
6.1 may be applied in this subsection.

We will fix Φ̇±1
k , ḣ±1

k and τ̇±1 as in Subsection 6.1.5. Recall that the surfaces Φ̇ε
k

are only defined up to non-ambient isotopy. Here we suppose each surface Φ̇ε
k to

have been normalized within its non-ambient isotopy class so that if C is a boundary
component of Φ̇ε

k, then either C ⊂ ∂F̃ , or C ⊂ int F̃ and C is not parallel to any
component of ∂F̃ . (It is clear that the surfaces Φ̇ε

k can be chosen to have this
property in addition to having the nestedness property stated in Subsection 6.1.5.)

By definition Φ̇ε
k is a large outer subsurface for each ε ∈ {±1} and k ≥ 0. Using

the notation of Definition 7.1.1 we set

Φ̆ε
k = P(Φ̇ε

k).

Because of the way that the surfaces Φ̇ε
k have been normalized, P(Φ̇ε

k) is the
disjoint union of Φ̇ε

k with Aε
k, where Aε

k is a regular neighborhood of the union of
all components of ∂F̃ which are not contained in Φ̇±1

k .
We may assume that the regular neighborhoods Aε

k have been chosen so that
Φ̆ε

k ⊃ Aε
k+1. This means that for each ε ∈ {±1} we have

F̃ = Φ̆ε
0 ⊃ Φ̆ε

1 ⊃ Φ̆ε
2 ⊃ · · · .

Note also that by Subsection 7.1.2 we have L(Φ̆ε
k) = Φ̇ε

k for each ε ∈ {±1} and each
k ≥ 0.

We denote by m the number of boundary components of F̃ . Since F̃ is a splitting
surface the integer m is even. We index the components of ∂F̃ as ct, where t ranges
over Z/mZ. If q is an integer we will denote the image of q in Z/mZ by q̄.

We assume that the indexing of components of ∂F̃ has been done in such a way
that for each t ∈ Z/mZ the curves ct and ct+1 cobound an annulus Rt ⊂ ∂M whose
interior is disjoint from ∂F̃ . We may assume further that the indexing is done in
such a way that Rq̄ ⊂ M+

F̃
for every even integer q and Rq̄ ⊂ M−

F̃
for every odd

integer q.
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7.2.2. For every integer k ≥ 0 and ε ∈ {±1} we define a permutation σε
k of Z/mZ

by
σε

k(q̄) = q + (−1)qεk.

(Since m is even, the coefficient (−1)q is determined by the congruence class q̄.)
We observe that if i and j are non-negative integers with i+ j = k, then for each

ε ∈ {±1} we have

(7.2.2.1) σε
k = σ

(−1)iε
j ◦ σε

i .

We also observe that for each k ≥ 0 and each ε ∈ {±1} we have

(7.2.2.2) (σε
k)−1 = σ

(−1)kε
k .

From (1) and (2) it follows that for each k ≥ 0 and each ε ∈ {±1} we have

(7.2.2.3) σε
2k+1 = (σε

k)−1 ◦ σ(−1)kε
1 ◦ σε

k.

It is clear from (7.2.2.3) that σε
k is a free involution if k is odd.

Lemma 7.2.3. Let k be a positive integer and fix ε ∈ {±1}. If a component ct of
∂F̃ is contained in Φ̇ε

k for some t ∈ Z/mZ, then ḣε
k(ct) = cσε

k(t).

Proof. The lemma is trivial in the case k = 0.
Consider the case k = 1. By Lemma 6.1.2, together with our normalization of

Φ̇ε
1, we know that every component of ∂F̃ is contained in Φ̇ε

1 and that hε
1 = τε

interchanges two components c and c′ of ∂F̃ if and only if c and c′ cobound an
annulus component of M ε

F̃
∩M . The definition of σε

1 thus implies that for every
t ∈ Z/mZ we have hε

1(ct) = τε(ct) = cσε
1(t)

.
Now, arguing inductively, we assume that k > 1, that ct is a component of

∂F̃ contained in Φ̇ε
k ⊂ Φ̇ε

k−1 and that ḣε
k−1(ct) = cσε

k−1(t). Applying Proposition
6.1.6 with i = k − 1 and j = 1 we see ḣε

k−1|Φ̇ε
k is homotopic in F̃ to an em-

bedding ġε
k−1 : Φ̇ε

k → Φ̇(−1)k−1ε
1 such that ḣε

k is homotopic to ḣ
(−1)k−1ε
1 ◦ ġε

k−1.

Since ḣε
k−1(ct) = cσε

k−1(t), the curve ġε
k−1(ct) ⊂ Φ̇(−1)k−1ε

1 is homotopic in F̃ to
the boundary component cσε

k−1(t) of F̃ . It follows from the normalization of Φ−ε
1

in Subsection 7.2.1 that cσε
k−1(t) is a boundary component of Φ(−1)k−1ε

1 , and that

ġε
k−1(ct) is homotopic in Φ(−1)k−1ε

1 to cσε
k−1(t). Hence ḣε

k(ct) is homotopic in F̃ to

ḣ
(−1)k−1ε
1 (cσε

k−1(t)) which by the case k = 1 of the lemma is equal to

c
σ

(−1)k−1ε
1 ◦σε

k−1(t)
= cσε

k(t).

Since the boundary component ḣε
k(ct) of ḣε

k(Φ̇ε
k) = Φ̇(−1)k+1ε

k is homotopic to

the component cσε
k(t) of ∂F̃ , it follows from the normalization of Φ̇(−1)k+1ε

k that
ḣε

k(ct) = cσε
k(t). �

Lemma 7.2.4. For each ε ∈ {±1} and each k ≥ 0, there exists a homeomorphism
h̆ε

k : Φ̆ε
k → Φ̆(−1)k+1ε

k such that
(1) the restriction of h̆ε

k to L(Φ̆ε
k) = Φ̇ε

k is ḣε
k;

(2) if F̃ is given a consistent orientation, h̆ε
k : Φ̆ε

k → F̃ reverses orientation if k
is odd and preserves orientation if k is even; and
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(3) for each t ∈ Z/mZ we have h̆ε
k(ct) = cσε

k(t).
The homeomorphism h̆ε

k is determined up to isotopy by the properties (1)-(3).
Furthermore we may choose h̆ε

1 within its isotopy class so that it is a free involution.

Proof. Fix an orientation of Φ̆ε
k which is induced from a consistent orientation of

F̃ . By Lemma 7.2.3 we know that if ct ⊂ Φ̇ε
k, then ḣε

k(ct) = cσε
k(t). In particular,

the correspondence ct → cσε
k(t) restricts to a bijection between the components

of ∂F̃ ∩ Φ̇ε
k and those of ∂F̃ ∩ Φ̇(−1)k+1ε

k . It therefore also restricts to a bijection
between the components of ∂F̃ − ∂Φ̇ε

k and those of ∂F̃ − ∂Φ̇k(−1)k+1ε. Now Φ̆ε
k is

the union of Φ̇ε
k with the regular neighborhood Aε

k of ∂F̃ − ∂Φ̇ε
k, and Φ̆(−1)k+1ε

k is

the union of Φ̇(−1)k+1ε
k with the regular neighborhood A(−1)k+1ε

k+1 of ∂F̃ −∂Φ̇(−1)k+1ε
k .

Let f ε
k be a homeomorphism from Aε

k to A(−1)k+1ε
k+1 which maps each component ct

of ∂F̃ ∩ Aε
k to the component cσε

k(t) of ∂F̃ ∩ A(−1)k+1ε
k+1 . Since each component of

Aε
k is an annulus we may choose f ε

k to be an orientation-reversing embedding of
Aε

k into F̃ if k is odd, and an orientation-preserving embedding if k is even. These
conditions determine fk up to isotopy. We define h̆ε

k to be the homeomorphism
whose restriction to Φ̇ε

k is ḣε
k and whose restriction to Aε

k is fk. Conditions (1)
and (3) hold by construction. To see that condition (2) holds it suffices to observe
that by Subsection 6.1.5 the embedding ḣε

k : Φ̇ε
k → F̃ reverses orientation if k is

odd and preserves orientation if k is even, and that f ε
k has the same property by

construction.
Since we have observed that f ε

k is determined up to isotopy by its stated prop-
erties, it follows that h̆ε

k is determined up to isotopy by conditions (1)-(3). Finally,
since σε

1 is a free involution it is clear that we may choose f ε
1 within its isotopy class

so that it is a free involution. Since ḣε
1 is a free involution by Subsection 6.1.5 it

follows that h̆ε
1 is a free involution. �

7.2.5. For the rest of Subsection 7.2 we will fix homeomorphisms h̆ε
k satisfying the

conclusions of Lemma 7.2.4. The free involution h̆ε
1 will sometimes be denoted τ̆ε.

Note that τ̆ε is an extension of the free involution τ̇ε defined in Subsection 6.1.5.

Lemma 7.2.6. Let k and i be integers with k ≥ i ≥ 0. Then h̆ε
i(Φ̆

ε
k) is ambiently

isotopic to P(ḣε
i(Φ̇

ε
k)).

Proof. Since Φ̆ε
k and Φ̆ε

i are perfect surfaces, and since h̆ε
i : Φ̆ε

i → F̃ is an embedding
which maps ∂F̃ onto ∂F̃ (see Lemma 7.2.3), it follows that h̆ε

i(Φ̆
ε
k) is a perfect

subsurface of F̃ . On the other hand, by Subsections 7.1.2 and 7.2.1 we have Φ̇ε
k =

L(Φ̆ε
k). Since h̆ε

i is a homeomorphism, ḣε
i(Φ̇

ε
k) = h̆ε

i(Φ̇
ε
k) = L(h̆ε

i(Φ̆
ε
k)). Since h̆ε

i(Φ̆
ε
k)

is perfect, it follows from Subsection 7.1.2 that h̆ε
i(Φ̆

ε
k) is ambiently isotopic to

P(ḣε
i(Φ̇

ε
k)). �

The next four results, Propositions 7.2.7 – 7.2.10, are analogues for the surfaces
Φ̆ε

k of Propositions 6.1.6, 6.1.7, 6.1.9 and 6.1.11.

Proposition 7.2.7. Let i and j be non-negative integers, and set k = i+ j. Then
for each ε ∈ {±1}, the map h̆ε

i |Φ̆ε
k is homotopic in F̃ , rel ∂F̃ , to an embedding

ğε
i : Φ̆ε

k → Φ̆(−1)iε
j such that h̆(−1)iε

j ◦ ğε
i is homotopic in F̃ to h̆ε

k.
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Proof. Let ġε
i : Φ̇ε

k → Φ̇(−1)iε
j be given by Proposition 6.1.6. Let ct be a boundary

component of F̃ that is contained in Φ̇ε
k. We have ḣε

i(ct) = cσε
i (t). Since ġε

i is

homotopic to ḣε
i , the map ġε

i |ct : ct → Φ̇(−1)iε
j is homotopic in F̃ to ḣε

i |ct. Because

of the way that the surface Φ̇(−1)iε
j has been normalized, this means that cσε

i (t) is a

boundary curve of Φ̇(−1)iε
j and that ġε

i |ct is isotopic to hε
i |ct in Φ̇(−1)iε

j . Therefore,
after modifying ġε

i by a non-ambient isotopy, we may assume that, for each ct
contained in ∂Φ̇ε

k, we have ġε
i (ct) = cσε

i (t) and ġε
i |ct = ḣε

i |ct. Since the maps ġε
i and

ḣε
i are homotopic and agree on ∂F̃ ∩ Φ̇ε

k, they are homotopic rel ∂F̃ .
The homeomorphism h̆ε

i maps Aε
k to a regular neighborhood of a collection of

boundary curves of F̃ . Since ġε
i agrees with h̆ε

i on Φ̇ε
k ∩ ∂F̃ , each boundary compo-

nent of h̆ε
i(Aε

k)∩ ∂F̃ is disjoint from the image of ġε
i . Thus h̆ε

i |Aε
k is isotopic rel ∂F̃

to an embedding f : Aε
k → Φ̇(−1)iε

j whose image is disjoint from the image of ġε
i .

We define ğε
i so that ğε

i |Aε
k = f and ğε

i |Φ̇ε
k = ġε

i . Then ğε
i is homotopic rel ∂F̃ to

h̆ε
i |Φ̆ε

k. Moreover we have ğε
i (ct) = cσε

i (t) for every t ∈ Z/mZ. Since σε
k = σ

(−1)iε
j ◦σε

i

by (7.2.2.1), we have h̆(−1)iε
j ◦ ğε

i (ct) = h̆ε
k(ct) for every t ∈ Z/mZ.

Let F̃ be given a consistent orientation. Since the embeddings ğε
i and h̆ε

i |Φ̆ε
k

of Φ̆ε
k into F̃ are homotopic rel ∂F̃ , they both reverse orientation if i is odd and

preserve orientation if i is even. In particular, since i + j = k, the embeddings
h̆

(−1)iε
j ◦ ğε

i |Ak and h̆ε
k|Ak are either both orientation preserving or both orientation

reversing. Applying Lemma 7.1.10 to the restrictions of h̆(−1)iε
j ◦ ğε

i and hε
k to each

component of Aε
k we conclude that h̆(−1)iε

j ◦ ğε
i |Aε

k is homotopic to h̆ε
k|Aε

k. On the

other hand, according to Proposition 6.1.6, ḣ(−1)iε
j ◦ ġε

i is homotopic to ḣε
k. Hence

h̆
(−1)iε
j ◦ ğε

i is homotopic to hε
k. �

Proposition 7.2.8. Let i and j be non-negative integers, and set k = i+ j. Then
for each ε ∈ {±1} the subsurface h̆ε

i(Φ̆
ε
k) is ambiently isotopic in F̃ to the perfect

intersection Φ̆(−1)i+1ε
i ∧P Φ̆(−1)iε

j .

Proof. By definition we have

Φ̆(−1)i+1ε
i ∧P Φ̆(−1)iε

j = P
(
L(Φ̆(−1)i+1ε

i )∧̇LL(Φ̆(−1)iε
j )

)
= P(Φ̇(−1)i+1ε

i ∧̇LΦ̇(−1)iε
j ).

Combining this with Proposition 6.1.7 we conclude that Φ̆(−1)i+1ε
i ∧P Φ̆(−1)iε

j is equal
to P(ḣε

i(Φ̇
ε
k)) which, according to Lemma 7.2.6, is ambiently isotopic to h̆ε

i(Φ̆
ε
k). �

Proposition 7.2.9. For any non-negative integer k and for each ε ∈ {±1} the

surface h̆ε
k(Φ̆ε

2k+1) is ambiently isotopic in F̃ to a subsurface of Φ̆(−1)kε
1 which is

invariant under the free involution τ̆(−1)kε. In particular, Φ̆ε
2k+1 admits a free in-

volution which maps ct to cσε
2k+1(t) for each t ∈ Z/mZ, and is orientation-reversing

as an embedding of Φ̆ε
2k+1 into F̃ , if F̃ is given a consistent orientation.

Proof. According to Proposition 6.1.9 there is a subsurface A of Φ̇(−1)kε
1 ⊂ Φ̆(−1)kε

1

which is invariant under τ̇(−1)kε = τ̆(−1)kε|Φ̇
(−1)kε
1 and isotopic to ḣε

k(Φ̇ε
2k+1). We
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apply Lemma 7.1.3, taking S = F̃ , P = Φ̆(−1)kε
1 , and τ = τ̆(−1)kε. We conclude

that A has a perfection Q ⊂ Φ̆(−1)kε
1 which is invariant under τ̆(−1)kε. Since Q is a

perfection of ḣε
k(Φ̇ε

2k+1), it follows from Lemma 7.2.6 that Q is ambiently isotopic
to h̆ε

k(Φ̆ε
2k+1). This completes the proof of the first assertion.

Let h : Φ̆ε
2k+1 → F̃ be an embedding which is ambiently isotopic to h̆ε

k|Φ̆ε
2k+1 and

maps Φ̆ε
2k+1 onto Q. We define a free involution τ of Φ̆ε

2k+1 by τ = h−1 ◦ τ̆(−1)kε ◦h.

Thus τ(ct) = cs where s = (σε
k)−1 ◦ σ(−1)kε

1 ◦ σε
k(t). It follows from (7.2.2.1) that

s = σε
2k+1(t).

Let F̃ be given a consistent orientation. Lemma 7.2.4 implies that h preserves
orientation if k is odd, that h reverses orientation if k is even, and that τ̆(−1)kε

reverses orientation. It follows that τ is orientation-reversing as an embedding of
Φ̆ε

2k+1 into F̃ . �

Proposition 7.2.10. Let k be a non-negative integer and let ε ∈ {±1} be given. If
Φ̆ε

k and Φ̆ε
k+2 are isotopic in F̃ , then either Φ̆ε

k is a regular neighborhood of ∂F̃ or
F̃ is a semi-fiber.

Proof. By definition we have that Φ̆ε
k = P(Φ̇ε

k) and Φ̆ε
k+2 = P(Φ̇ε

k+2). Thus it
follows from Subsection 7.1.2 that Φ̆ε

k is isotopic to Φ̆ε
k+2 if and only if Φ̇ε

k is isotopic
to Φ̇ε

k+2, and that Φ̆ε
k is a regular neighborhood of ∂F̃ if and only if Φ̇ε

k is empty.
The result therefore follows from Proposition 6.1.11. �

7.3. Very tight surfaces. In this subsection we assume that M is a simple knot
manifold, and that F̃ is a splitting surface for M which admits a long rectangle.

For each integer k ≥ 0 and each ε ∈ {±1} we will define the perfect subsurfaces
Φ̆ε

k = Aε
k ∪ Φ̇ε

k, with F̃ = Φ̆ε
0 ⊃ Φ̆ε

1 ⊃ Φ̆ε
2 ⊃ · · · , as in Subsection 7.2.

We set m = |∂F̃ | and we assume that the components of ∂F̃ have been indexed
by elements of Z/mZ as described in Subsection 7.2. We also define the permuta-
tions σε

k as in Subsection 7.2, and for each integer k ≥ 0 and ε ∈ {±1} we fix a
homeomorphism h̆ε

k satisfying the conclusions of Lemma 7.2.4.
For ε ∈ {±1} we denote by T ε the set of tight components of Φ̆ε

1. We define s0
to be the infimum of s(C) as C ranges over T + ∪ T −. Thus, if T + = T − = ∅,
then s0 = +∞ and otherwise s0 is a strictly positive integer. We will say that a
component of a perfect subsurface of F̃ is very tight if it is tight and has size at
most s0. (In particular, if T + = T − = ∅, then any tight component of a perfect
subsurface is very tight.)

If A is a perfect subsurface of F̃ , then we define V T (A) to be the union of the
very tight components of A.

Lemma 7.3.1. If ε ∈ {±1} and k > 0 is odd, then |V T (Φ̆ε
k)| is even.

Proof. We give Φ̆ε
k the orientation inherited from a consistent orientation of F̃ .

Since k is odd, Proposition 7.2.9 implies that the surface Φ̆ε
k admits an orientation-

reversing free involution τ which permutes the components of ∂F̃ . It follows that if
T is a very tight component of Φ̆ε

k, then τ(T ) is also a very tight component of Φ̆ε
k,

and that τ maps the (connected) frontier of T to the frontier of τ(T ). Since a free
orientation-reversing involution of an oriented surface cannot leave any boundary
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component invariant, we conclude that no tight component of Φ̆ε
k can be invariant

under τ . Thus the number of tight components must be even. �

Lemma 7.3.2. Let ε ∈ {±1} and let k be a non-negative integer. Let T be a very
tight component of Φ̆ε

k. Then every component of Φ̆ε
k+1 which is contained in T is

very tight. Moreover if T contains exactly one component X of Φ̆ε
k+1, then T ′ is

ambiently isotopic to T .

Proof. Since ∂F̃ ⊂ Φ̆ε
k is invariant under the homeomorphism h̆ε

k, the component

h̆ε
k(T ) of Φ̆(−1)k+1ε

k is very tight. According to Proposition 7.2.8, h̆ε
k(Φ̆ε

k+1) is am-

biently isotopic to the perfect intersection Φ̆(−1)k+1ε
k ∧P Φ̆−ε

1 .
Thus if X is a component of Φ̆ε

k+1 which is contained in T , then h̆ε
k(X) is

ambiently isotopic to a component Y of Φ̆(−1)k+1ε
k ∧PΦ̆−ε

1 . Note that Y is isotopically
contained in h̆ε

k(T ). According to the definition of s0, every tight component of
Φ̆−ε

1 has size at least s0, and s(T ) ≤ s0 by the definition of a very tight subsurface.

Applying Proposition 7.1.8 with P = Φ̆(−1)k+1ε
k , P0 = h̆ε

k(T ), and Q = Φ̆−ε
1 , we

conclude that if a component of Φ̆(−1)k+1ε
k ∧P Φ̆−ε

1 is isotopically contained in h̆ε
k(T ),

then it is tight of size at most s(T ), and therefore is very tight. This shows that Y
is very tight.

Now suppose that T contains exactly one component X of Φ̆ε
k+1. Again h̆ε

k(X)

is ambiently isotopic to a component Y of Φ̆(−1)k+1ε
k ∧P Φ̆−ε

1 . Since X = Φ̆ε
k+1 ∩ T ,

and since ∂F̃ ⊂ Φ̆ε
k+1, we have T ∩ ∂F̃ = X ∩ ∂F̃ . Since ∂F̃ is invariant under

the homeomorphism h̆ε
k, we have h̆ε

k(T ) ∩ ∂F̃ = hε
k(X) ∩ ∂F̃ = Y ∩ ∂F̃ . But

any component of Φ̆(−1)k+1ε
k ∧P Φ̆−ε

1 which is isotopically contained in h̆ε
k(T ) must

contain some component of h̆ε
k(T ) ∩ ∂F̃ ⊂ Y . Thus Y is the only component of

Φ̆(−1)k+1ε
k ∧P Φ̆−ε

1 which is isotopically contained in h̆ε
k(T ). Proposition 7.1.8 now

implies that h̆ε
k(T ) is ambiently isotopic to Y , and hence to h̆ε

k(X). Applying the
inverse of the homeomorphism h̆ε

k, we conclude that X is ambiently isotopic to
T . �

Lemma 7.3.3. Let ε ∈ {±1} be given and let l ≥ k ≥ 0 be integers. Then each
very tight component of Φ̆ε

k contains at least one very tight component of Φ̆ε
l . In

particular |V T (Φ̆ε
l )| ≥ |V T (Φ̆ε

k)|.

Proof. It suffices to consider the case l = k + 1. Since Φ̆ε
k ⊃ Φ̆ε

k+1 ⊃ ∂F̃ , and since
each component of Φ̆ε

k meets ∂F̃ , each component of Φ̆ε
k must contain at least one

component of Φ̆ε
k+1. The assertion therefore follows from Lemma 7.3.2. �

Lemma 7.3.4. Let ε ∈ {±1} be given and let l ≥ k be non-negative integers. If
|V T (Φ̆ε

l )| = |V T (Φ̆ε
k)|, then V T (Φ̆ε

l ) is isotopic to V T (Φ̆ε
k).

Proof. If l > k and |V T (Φ̆ε
l )| = |V T (Φ̆ε

k)|, then by Lemma 7.3.3 we have

|V T (Φ̆ε
k)| = |V T (Φ̆ε

k+1)| = · · · = |V T (Φ̆ε
l )|.

It thus suffices to show that if |V T (Φ̆ε
k+1)| = |V T (Φ̆ε

k)|, then V T (Φ̆ε
k+1) is

isotopic to V T (Φ̆ε
k).
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By Lemma 7.3.3, if |V T (Φ̆ε
k+1)| = |V T (Φ̆ε

k)|, then each very tight component
of Φ̆ε

k contains exactly one very tight component of Φ̆ε
k+1, and each very tight

component of Φ̆ε
k+1 is contained in a very tight component of Φ̆ε

k. Thus Lemma
7.3.2 implies that V T (Φ̆ε

k+1) is isotopic to V T (Φ̆ε
k). �

Lemma 7.3.5. Let ε ∈ {±1} and t ∈ Z/mZ be given, and let k ≥ 0 be an integer.
If cσε

2(t) is contained in V T (Φ̆ε
k), then ct is contained in V T (Φ̆ε

k+2).

Proof. Let C be the component of Φ̆ε
k+2 which contains ct. Then h̆ε

2(C) is the
component of h̆ε

2(Φ
ε
k+2) which contains cσε

2(t)
. Since the embedding h̆ε

2 maps ∂F̃ to
∂F̃ , the subsurface C is very tight if and only if h̆ε

2(C) is very tight. According to
Proposition 7.2.8, h̆ε

2(Φε
k+2) is isotopic to the perfect intersection Φ̆−ε

2 ∧P Φ̆ε
k. By

Subsection 7.1.6 h̆ε
2(C) is isotopically contained in a unique component C′ of Φ̆ε

k,
which must be the component of Φ̆ε

k that contains cσε
2(t). Thus C′ is very tight. By

Proposition 7.1.8, every component of Φ̆−ε
2 ∧P Φ̆ε

k which is contained in C′ is very
tight. This shows that h̆ε

2(C) is very tight, as required. �

Lemma 7.3.6. Let ε ∈ {±1} be given and let k > 0 be an odd integer. If
|V T (Φ̆ε

k+2)| = |V T (Φ̆ε
k)| > 0, then Φ̆ε

k+2 is ambiently isotopic to Φ̆ε
k.

Proof. Assume that |V T (Φ̆ε
k+2)| = |V T (Φ̆ε

k)| > 0.
By Lemma 7.3.4 we have that V T (Φ̆ε

k+2) is isotopic to V T (Φ̆ε
k). By Lemma 7.3.5

this implies that if cσε
2(t) is contained in V T (Φ̆ε

k), then so is ct. Since V T (Φ̆ε
k) �= ∅

it follows that either cq̄ ⊂ V T (Φ̆ε
k) for every even integer q, or else cq̄ ⊂ V T (Φ̆ε

k) for
every odd integer q. But V T (Φ̆ε

k) is invariant under the free involution τ ε
k, which

maps each boundary curve cq̄ to a boundary curve cr̄, where q and r have opposite
parity. Thus every boundary component of F̃ is contained in V T (Φ̆ε

k). Since every
component of Φ̆ε

k contains a component of ∂F̃ , it follows that V T (Φ̆ε
k) = Φ̆ε

k. Since
Φ̆ε

k+2 ⊂ Φ̆ε
k, and since Lemma 7.3.2 implies that every component of Φ̆ε

k+2 which is
contained in a tight component of Φ̆ε

k is tight, we conclude that V T (Φ̆ε
k+2) = Φ̆ε

k+2.
Hence Φ̆ε

k is ambiently isotopic to Φ̆ε
k+2. �

Lemma 7.3.7. Suppose that F̃ is not a semi-fiber. Let ε ∈ {±1} be given and let
k > 0 be an odd integer. If |V T (Φ̆ε

k+2)| = |V T (Φ̆ε
k)| > 0, then Φ̆ε

k is a regular
neighborhood of ∂F̃ .

Proof. This is an immediate consequence of Proposition 7.2.10 and Lemma 7.3.6.
�

Proposition 7.3.8. Suppose that F̃ is not a semi-fiber. Let p > 0 be an odd integer
and suppose that either Φ̆+

p or Φ̆−
p has a tight component. Then either Φ̆+

p+m−2 or
Φ̆−

p+m−2 is a regular neighborhood of ∂F̃ .

Proof. We can assume without loss of generality that p is the smallest odd integer
such that either Φ̆+

p or Φ̆−
p has a tight component. We claim that either Φ̆+

p or Φ̆−
p

has a very tight component. If p = 1, then, by the definition of s0, either Φ̆+
1 or

Φ̆−
1 has a component of size s0, which is very tight by the definition of a very tight
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component. If p > 1, then s0 = ∞ and any tight component is very tight, so the
claim is true in this case as well.

Now fix ε ∈ {±1} such that Φ̆ε
p has a very tight component. It follows from

Lemma 7.3.1 that |V T (Φ̆ε
p)| ≥ 2. We will show that Φ̆ε

p+m−2 is a regular neighbor-
hood of ∂F̃ . If there is an even integer k with 0 < k < m−2 such that Φ̆ε

p+k is a reg-
ular neighborhood of ∂F̃ , then the conclusion holds because ∂F̃ ⊂ Φ̆ε

p+m−2 ⊂ Φ̆ε
p+k.

Now suppose that there is no even integer k with 0 < k < m− 2 such that Φ̆ε
p+k

is a regular neighborhood of ∂F̃ . Since F̃ is not a semi-fiber, for all even k with
0 < k < m − 2 we have that |V T (Φ̆ε

p+k+2)| > |V T (Φ̆ε
p+k)| by Lemma 7.3.3 and

Lemma 7.3.7, and hence, by Lemma 7.3.1, that |V T (Φ̆ε
p+k+2)| ≥ |V T (Φ̆ε

p+k)| + 2.
Since |V T (Φ̆ε

p)| ≥ 2 it follows that |V T (Φ̆ε
p+m−2)| ≥ m.

In particular Φ̆p+m−2 has at least m tight components. Each tight component
has size at least 1, and the sum of the sizes is at most m = |∂F̃ |. Thus Φ̆p+m−2 has
m tight components of size exactly 1, which are therefore regular neighborhoods of
components of ∂F̃ . Since Φ̆ε

p+m−2 is perfect it must be a regular neighborhood of
∂F̃ . �

Corollary 7.3.9. Suppose that F̃ is not a semi-fiber. Let p > 0 be an odd integer
and suppose that either Φ̆+

p or Φ̆−
p has a tight component. Then both Φ̆+

p+m−1 and
Φ̆−

p+m−1 are regular neighborhoods of ∂F̃ .

Proof. By Proposition 7.3.8 we know that, for some ε ∈ {±1}, Φ̆ε
p+m−2 is a reg-

ular neighborhood of ∂F̃ . Since the Φ̆ε
k are nested perfect surfaces, Φ̆ε

p+m−1 is
also a regular neighborhood of ∂F̃ . By Proposition 7.2.8 the subsurface Φ̆−ε

p+m−1

is mapped homeomorphically by h̆−ε
1 to Φ̆−ε

1 ∧P Φ̆ε
p+m−2, which is isotopically con-

tained in Φ̆ε
p+m−2. Since ∂F̃ is invariant under h̆−ε

1 it follows that Φ̆−ε
p+m−1 is a

regular neighborhood of ∂F̃ . �

7.4. Planar essential surfaces and their boundary slopes.

Theorem 7.4.1. Let F be an essential planar surface in a simple knot manifold M .
Suppose that F is not a semi-fiber. Set m = |∂F | and let H be any reduced homotopy
in the pair (M,F ) such that H0 is an essential path in F and Ht(∂I) ⊂ ∂M for
each t ∈ I. Then the length of H is at most m− 1.

Proof. We shall assume that the length ofH is at leastm and derive a contradiction.
Let F̃ be the splitting surface associated to F (see Subsection 5.4.2). Set m̃ =

|∂F̃ |, so m̃ = m if F is separating and m̃ = 2m if F is non-separating. The
homotopy H determines a reduced homotopy H̃ in the pair (M, F̃ ) of length at
least m̃ such that H̃0 is an essential path in F̃ and H̃t(∂I) ⊂ ∂M for each t ∈ I.
In particular, F̃ admits a long rectangle. Thus the assumptions of Subsections 6.1
and 7.2 hold in our situation and we may use the notation and apply the results
from those subsections.

Since the surface F is not a semi-fiber, it follows that F̃ is also not a semi-fiber
and hence, by Proposition 5.3.9, that there exists ε ∈ {±1} such that F̃ is not
a regular neighborhood of Φε

1. This implies that Φ̆ε
1 is a proper subsurface of F̃ .

Thus Proposition 7.1.9 implies that Φ̆ε
1 has a tight component. We conclude from
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Proposition 7.3.8 that Φ̆+
m̃ and Φ̆−

m̃ are regular neighborhoods of ∂F̃ . Hence Φ̇+
m̃

and Φ̇−
m̃ are empty.

On the other hand, since the reduced homotopy H̃ has length at least m̃, it
follows from Subsection 3.4 and Proposition 5.2.8 that there is an admissible pair
of glasses γ : Γ → F̃ which is homotopic in F̃ to a map from Γ to Φε

m̃. In particular
there is a map α : S1 → ∂F̃ which is homotopic in F̃ to a map from S1 to a
component A of Φε

m̃. It follows that A must be an outer component of Φε
m̃, and

hence that Φ̇ε
m̃ �= ∅. This contradiction completes the proof. �

Theorem 7.4.2. Let M be a simple knot manifold and let F ⊂M be an essential
planar surface with boundary slope β which is not a semi-fiber. Let (S,X, h) be a
singular surface which is well positioned with respect to F and has boundary slope
α. Set s = genusS, n = |∂S −X |, v = |X |. Then

∆(α, β) ≤ N(s, n, v).

Proof. Set m = |∂F |. According to Proposition 3.9, there exists an essential homo-
topy H : I × I →M having length

(1) l ≥ m∆(α, β)
N(s, n, v)

− 1,

such that H0 is an essential path in F and Ht(∂I) ⊂ ∂M for all t ∈ I. By Theorem
7.4.1 we have that

(2) l ≤ m− 1.

The conclusion follows from inequalities (1) and (2). �

Corollary 7.4.3. Let M be a simple knot manifold, and let F ⊂M be an essential
planar surface with boundary slope β which is not a semi-fiber. Let α be a slope in
∂M . If M(α) is very small, or more generally if F ⊂M ⊂M(α) is not π1-injective
in M(α), then

∆(α, β) ≤ 5.

Proof. We invoke Corollary 2.3 to obtain a singular surface (S,X, h), well positioned
with respect to F , such that genusS = 0 and |X | = 1. The conclusion now follows
from Theorem 7.4.2 because for any v ≥ 1 we have N(0, 1, v) ≤ 5. �

Corollary 7.4.4. Let M be a simple knot manifold. Suppose that M(β) is a
reducible manifold which is not homeomorphic to S1 × S2 or P 3#P 3 and that
M(α) is very small. Then

∆(α, β) ≤ 5.

Proof. Since M(β) is reducible, M contains an essential planar surface F with
boundary slope β. If F is a semi-fiber, then M(β) is homeomorphic to either
S1 × S2 or P 3#P 3. Thus the corollary follows from Corollary 7.4.3. �

Corollary 7.4.5. Let M be a simple knot manifold, and let F ⊂M be an essential
planar surface with boundary slope β which is not a semi-fiber. Let α be a slope in
∂M . If M(α) is a Seifert fibered space or if there exists a π1-injective map from
S1 × S1 to M(α), then

∆(α, β) ≤ 6.
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Proof. We invoke Corollary 2.6 to obtain a singular surface (S,X, h), well positioned
with respect to F , such that either genusS = 0 and |X | = 1, or genusS = 1 and
|X | = 0. The conclusion now follows from Theorem 7.4.2 because for any v ≥ 1 we
have N(0, 1, v) ≤ 5 and N(1, 0, v) = 6. �

Corollary 7.4.6. Let M be a simple knot manifold. Suppose that M(β) is a
reducible manifold which is not homeomorphic to S1 × S2 or P 3#P 3 and that
M(α) is Seifert fibered. Then

∆(α, β) ≤ 6.

Proof. As in the proof of Corollary 7.4.4 we apply Corollary 7.4.5 to the planar
surface obtained by intersecting a reducing sphere for M(β) with M . �

The following corollary to Theorem 7.4.2 is a special case of a result of Gordon
and Litherland [GLi, Proposition 6.1], which has the same upper bound, but with
a strict inequality and without the assumption that the essential planar surface is
not a semi-fiber.

Corollary 7.4.7. Let M be a simple knot manifold, and let F ⊂M be an essential
planar surface with boundary slope β which is not a semi-fiber. Suppose that S ⊂M
is an essential bounded surface of genus g with boundary slope α. Set m = |∂S|.
Then we have

∆(α, β) ≤
[
12g − 12

m

]
+ 6.

Proof. We apply Proposition 2.1 to obtain a singular surface (S′, ∂S′, h) which is
well positioned with respect to F . Theorem 7.4.2 then implies that

∆(α, β) ≤ N(g, 0,m).

Note that since M is a simple knot manifold, the surface S′ cannot be a disk or an
annulus. It then follows from Subsection 3.7 that

N(s, n, v) =
[
12g − 12

m

]
+ 6.

�

8. Seifert fibered surgeries

According to Corollary 7.4.6, if M is a simple knot manifold and if α and β are
slopes such thatM(α) is Seifert fibered whileM(β) is reducible but is not S1×S2 or
P 3#P 3, then ∆(α, β) ≤ 6. In fact we know of no examples where ∆(α, β) > 3. In
this section, building on Corollary 7.4.6, we prove a result, Proposition 8.4, which
gives restrictions on the possible Seifert fibrations of M(α) in the cases where
∆(α, β) > 3, which shows that this situation is not generic. The proof uses the
character variety of M and some observations from algebraic number theory. We
will see that in the generic situation, 3 is an upper bound for the distance between
α and β. A similar result, Proposition 8.7 applies to the case where M(α) is a
Seifert fibered space that contains an incompressible torus, M(α) is Seifert fibered
and ∆(α, β) > 5. Here, in place of Corollary 7.4.6 we use a theorem of Agol [A]
and Lackenby [La] which implies that ∆(α, β) ≤ 10 in this situation.
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For any integer n ≥ 1, we set ζn = e
2πi
n .

Lemma 8.1. Let m,n ≥ 1 be integers. If ζn+ζ̄n ∈ Q(ζm), then one of the following
three conditions holds:

(i) n ∈ {1, 2, 3, 4, 6}.
(ii) n divides m.
(iii) n

2 is an odd integer dividing m.

Proof. Without loss of generality we take n �∈ {1, 2, 3, 4, 6}, so ζn + ζ̄n �∈ Q. Let
d = gcd(n,m). By hypothesis

ζn + ζ̄n ∈ Q(ζm) ∩ Q(ζn) = Q(ζd)

([FT, VI.2.8]) so that ζn + ζ̄n ∈ Q(ζd)R. Thus

Q(ζn)R = Q(ζn + ζ̄n) ⊂ Q(ζd)R.

But clearly Q(ζd)R ⊂ Q(ζn)R and therefore Q(ζd)R = Q(ζn)R. Since ζn + ζ̄n �∈ Q,
we have d, n > 2. Moreover, since [Q(ζk + ζ̄k) : Q] = φ(k)

2 if k > 2 (cf. [FT, Theorem
44]), we have φ(n) = φ(d). Finally since d|n, either d = n or d is odd and 2d = n.
In other words either n divides m or n is even, n

2 is odd and n divides 2m. �

In what follows we let

∆(a, b, c) = 〈x, y | xa, yb, (xy)c〉

denote the (a, b, c) triangle group.

Lemma 8.2. Let ρ : ∆(a, b, c) → PSL2(C) be a homomorphism and suppose that
the image of ρ contains an element of order n <∞. Then either n ∈ {1, 2, 3} or n
divides the least common multiple of a, b, c.

Proof. There are matrices A,B,C ∈ SL2(C) whose orders divide 2a, 2b, 2c, re-
spectively, so that ρ(x) = ±A, ρ(y) = ±B, ρ(xy) = ±C. Then trace(A) = ζj

2a +
ζ̄j
2a, trace(B) = ζk

2b + ζ̄k
2b and trace(C) = ζl

2c + ζ̄l
2c for some integers j, k, l. Since

the trace of any word in A,B is an integral polynomial in the traces of A,B and C
[CS, proof of proposition 1.4.1], such a trace lies in the field Q(ζ2a, ζ2b, ζ2c) = Q(ζh)
where h = 2lcm(a, b, c) [FT, VI.2.8].

Let W ∈ SL2(C) be a matrix of order 2n whose image [W ] in PSL(2,C) is
an element of order n in the image of ρ. Then trace(W ) = ζm

2n + ζ̄m
2n for some

m relatively prime to 2n. Fix a word w so that the element w(x, y) ∈ ∆(a, b, c)
satisfies [W ] = ρ(w(x, y)) = [w(A,B)]. Then by the previous paragraph we have

ζm
2n + ζ̄m

2n = trace(W ) ∈ {±trace(w(A,B))} ⊂ Q(ζh).

As m is relatively prime to 2n we have

ζ2n + ζ̄2n ∈ Q(ζm
2n)R = Q(ζm

2n + ζ̄m
2n) ⊂ Q(ζh).

Lemma 8.1 now yields the desired conclusion. �

Lemma 8.3. Let M be a simple knot manifold. Fix slopes α and β on ∂M . Suppose
that M(β) is a connected sum of two lens spaces whose fundamental groups have
orders p, q ≥ 2, and that M(α) is a Seifert fibered space whose base orbifold has the
form S2(a, b, c) where a, b, c ≥ 2. If ∆(α, β) > 3, then ∆(α, β) divides lcm(a, b, c).
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Proof. Fix a point on ∂M so that we have homomorphisms H1(∂M) ∼= π1(∂M) →
π1(M). In this way each slope r on ∂M determines an element γ(r) of π1(M) well
defined up to taking an inverse.

There is a curve X0 contained in the PSL2(C)-character variety of π1(M) con-
taining the character of an irreducible representation and consisting of characters
χρ of representations ρ : π1(M) → PSL2(C) which factor through π1(M(β)) ∼=
Z/p ∗ Z/q [BZ, Example 3.2]. For each slope r let fr : X0 → C be the regular
function fr(χρ) = trace(ρ(γ(r)))2 − 4. Evidently fβ is identically zero. We claim
that for each r �= β and ideal point x of X0, fr has a pole at x. If this were not
the case, there would be a closed essential surface S ⊂ M which remains essential
in either M(β) or M(α) [BZ, Proposition 4.10]. But S compresses in both M(β)
and M(α). This is obvious for M(β), while if S is essential in M(α), then S is a
fiber in some realization of M(α) as a surface bundle over the circle (see eg. [Ja,
VI.34]) and so it is non-separating in M . But then b1(M) ≥ 2, contrary to the fact
that b1(M(β)) = 0. Thus S compresses in M(α) and therefore fr has a pole at x.

Let r be a slope so that ∆(r, β) = 1. From the previous paragraph there is a char-
acter χρ ∈ X0 at which fr takes the value (eπi/∆(α,β)+e−πi/∆(α,β))2. The represen-
tation ρ may be taken to factor through π1(M(β)) and to have a non-diagonalisable
image (cf. the method of proof of [CGLS, Lemma 1.5.10]). Since ∆(α, β) > 1,
ρ(γ(r)) has order ∆(α, β), while by construction ρ(γ(β)) = ±I. It follows that
ρ(γ(α)) = ±I and therefore ρ factors through a representation ρ1 : π1(M(α)) →
PSL2(C). In fact, ρ further factors through πorb

1 (S2(a, b, c)) ∼= ∆(a, b, c). To see
this, first observe that since b1(M) = 1, χρ is a non-trivial character [B, Proposition
2.8] and therefore [BB, Lemma 3.1] implies that ρ factors as claimed. In conclu-
sion we have produced a homomorphism ∆(a, b, c) → PSL2(C) which contains an
element of order ∆(α, β) > 3 in its image. Apply Lemma 8.2 to see that ∆(α, β)
divides lcm(a, b, c). �
Proposition 8.4. Let M be a simple knot manifold and fix slopes α and β on ∂M .
Suppose that M(β) is reducible, but not homeomorphic to S1 × S2 or P 3#P 3, and
that M(α) is a Seifert fibered manifold. If ∆(α, β) > 3, then

(i) M(β) is a connected sum of two lens spaces.
(ii) M(α) admits a Seifert structure whose base orbifold is the 2-sphere with

exactly three exceptional fibers whose orders a, b, c are either a Platonic or hyperbolic
triple.

(iii) ∆(α, β) is equal to 4, 5 or 6 and divides lcm(a, b, c).

Proof. We first show that ∆(α, β) ≤ 1 when b1(M) ≥ 2. In this case, according
to [Ga], the slope β is the unique degenerating slope for a closed non-separating
essential surface S∗ (which is Thurston norm minimizing in the homology class it
represents) of genus larger than 1 in M , i.e. S∗ will remain incompressible in M(δ)
for any slope δ except for δ = β. Hence the irreducible manifold M(α) cannot be
very small. If it is Seifert fibered we have ∆(α, β) ≤ 1 by [BGZ, Proposition 5.1].

We may therefore assume that b1(M) = 1. If M(α) contains an embedded
incompressible torus, then ∆(α, β) ≤ 3 by [O], [Wu]. If M(α) is geometrically
atoroidal, then it admits a Seifert structure with three or fewer exceptional fibers
and whose base orbifold has the 2-sphere for underlying space. When there are
no more than two exceptional fibers it is known that ∆(α, β) ≤ 1 [BZ, Theorem
1.2(1)], while if the base orbifold of M(α) has the form S2(a, b, c) where a, b, c ≥ 2
it is known that ∆(α, β) ≤ 3 if (a, b, c) is a Euclidean triple [B, Theorem C]. Thus
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(ii) holds. By [CGLS, Theorem 2.0.3] M(β) is a connected sum of two lens spaces,
so (i) holds. Finally (iii) is a consequence of Corollary 7.4.6 and Lemma 8.3. �

Corollary 8.5. Let M be a simple knot manifold and fix slopes α and β on ∂M .
If M(β) is reducible, though not S1 × S2 or P 3#P 3, and M(α) is a Seifert fibered
space, then ∆(α, β) ≤ 5 unless perhaps M(β) ∼= P 3#L(p, q) and M(α) is a small
Seifert manifold with base orbifold S2(a, b, c) where (a, b, c) is a hyperbolic triple
and 6 divides lcm(a, b, c).

Proof. The corollary follows from Theorem 7.4.6, the previous proposition and the
fact that ∆(α, β) ≤ 5 if (a, b, c) is a Platonic triple [BZ, Theorem 1.2(2)]. �

There is another situation where we can use the same method to sharpen the
known distance bounds.

Lemma 8.6. Let M be a simple knot manifold and fix slopes α and β on ∂M .
Suppose that M(β) is a Seifert fibered manifold which contains an embedded in-
compressible torus and that M(α) admits a Seifert fibration whose base orbifold
has the form S2(a, b, c), where a, b, c ≥ 2. If ∆(α, β) > 5, then ∆(α, β) divides
lcm(a, b, c).

Proof. By [BGZ, Theorems 1.1 and 1.7] we may assume that b1(M) = 1 and that
M(β) has base orbifold a Klein bottle, S2(2, 2, 2, 2), or P 2(p, q) for some integers
p, q ≥ 2. In each case there is a curve X0 ⊂ X(π1(M)) containing the charac-
ter of an irreducible representation and consisting of characters of representations
ρ : π1(M) → PSL2(C) which factor through π1(M(β)) [BZ, Lemma 8.7]. If for
some slope r �= β on ∂M and ideal point x of X0, fr is finite at x, then there is
a closed, essential surface S ⊂ M which is incompressible in at least one of M(β)
and M(α) [BZ, Proposition 4.10]. It was shown in [BZ, Claim, page 786] that S
compresses in M(β), so it must be essential in M(α). But this would imply that
b1(M) ≥ 2, contrary to our assumptions (cf. the proof of Lemma 8.3). Thus for
each slope r �= β on ∂M , the function fr has a pole at each ideal point x of X0. We
now proceed as in the last paragraph of the proof of Lemma 8.3 to see that ∆(α, β)
divides lcm(a, b, c). �

Proposition 8.7. Let M be a simple knot manifold and fix slopes α and β on
∂M . Suppose that M(β) is a Seifert fibered manifold that contains an embedded
incompressible torus, but is not homeomorphic to the union of two twisted I-bundles
over Klein bottles, and that M(α) is a Seifert fibered manifold. If ∆(α, β) > 5, then

(i) M(β) admits a Seifert fibration over P 2 with exactly two exceptional fibers
whose orders are p and q for some integers p > q ≥ 2.

(ii) M(α) admits a Seifert fibration over the 2-sphere with exactly three excep-
tional fibers whose orders a, b, c form either a hyperbolic triple or the Euclidean
triple 2, 3, 6.

(iii) ∆(α, β) ∈ {6, 7, 8, 9, 10} and ∆(α, β) divides lcm(a, b, c).

Proof. By [BGZ, Theorems 1.1 and 1.7] we may assume that b1(M) = 1 and that
M(β) has base orbifold of the form K, the Klein bottle, S2(2, 2, 2, 2), or P 2(p, q) for
some integers p, q ≥ 2. Since M(β) is not the union of two twisted I-bundles over
the Klein bottle, its base orbifold must be of the form P 2(p, q) for some integers
p > q ≥ 2. Thus (i) holds.
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Next observe that if M(α) contains an incompressible torus, then it is shown
in [Go2] that ∆(α, β) ≤ 5. Thus M(α) admits a Seifert structure whose base
orbifold B is a 2-sphere with three or fewer cone points. Theorem 1.5 of [BZ] shows
that B = S2(a, b, c), where (a, b, c) is a Euclidean or hyperbolic triple. The former
possibility is ruled out as in the proof of Theorem C of [B] unless a, b, c is the
Euclidean triple 2, 3, 6. Finally by [A] or [La], ∆(α, β) ∈ {6, 7, 8, 9, 10} and the
previous lemma shows that it divides lcm(a, b, c). �
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