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DEHN FILLINGS OF KNOT MANIFOLDS CONTAINING

ESSENTIAL ONCE-PUNCTURED TORI

STEVEN BOYER, CAMERON McA. GORDON, AND XINGRU ZHANG

Abstract. In this paper we study exceptional Dehn fillings on hyperbolic
knot manifolds which contain an essential once-punctured torus. Let M be
such a knot manifold and let β be the boundary slope of such an essential
once-punctured torus. We prove that if Dehn filling M with slope α produces
a Seifert fibred manifold, then Δ(α, β) ≤ 5. Furthermore we classify the
triples (M ;α, β) when Δ(α, β) ≥ 4. More precisely, when Δ(α, β) = 5, then
M is the (unique) manifold Wh(−3/2) obtained by Dehn filling one boundary
component of the Whitehead link exterior with slope −3/2, and (α, β) is the
pair of slopes (−5, 0). Further, Δ(α, β) = 4 if and only if (M ;α, β) is the triple

(Wh(
−2n± 1

n
);−4, 0) for some integer n with |n| > 1. Combining this with

known results, we classify all hyperbolic knot manifolds M and pairs of slopes
(β, γ) on ∂M where β is the boundary slope of an essential once-punctured
torus in M and γ is an exceptional filling slope of distance 4 or more from β.

Refined results in the special case of hyperbolic genus one knot exteriors in S3

are also given.

1. Introduction

This is the second of four papers in which we investigate the following conjecture
of the second-named author (see [Go2, Conjecture 3.4]). Recall that a hyperbolic
knot manifold is a compact, connected, orientable 3-manifold with torus boundary
whose interior admits a complete, finite volume hyperbolic structure.

Conjecture 1.1 (C. McA. Gordon). Suppose that M is a hyperbolic knot manifold
and α, β are slopes on ∂M such that M(α) is Seifert fibred and M(β) is toroidal.
If Δ(α, β) > 5, then M is the figure eight knot exterior.

Our first result reduces the verification of the conjecture to the case where the
Seifert filling is atoroidal.

Theorem 1.2. Suppose that M is a hyperbolic knot manifold and α, β are slopes on
∂M such that M(α) is a toroidal Seifert fibred manifold and M(β) is toroidal. Then
Δ(α, β) ≤ 4. Furthermore, if Δ(α, β) = 4, then (M ;α, β) ∼= (N(− 1

2 ,−
1
2 );−4, 0),

where N is the exterior of the 3-chain link [MP].

We have that N(− 1
2 ,−

1
2 ,−4) is Seifert fibred with base orbifold P 2(2, 3) and

N(− 1
2 ,−

1
2 , 0) contains an incompressible torus separating N(− 1

2 ,−
1
2 , 0) into Seifert

fibred manifolds with base orbifolds D2(2, 2) and D2(2, 3). (See [MP, Table 2].)
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A small Seifert manifold is a 3-manifold which admits a Seifert structure with
base orbifold of the form S2(a, b, c), where a, b, c ≥ 1. For instance, a closed,
atoroidal Seifert manifold is small Seifert.

A small Seifert manifold is a prism manifold if its base orbifold is S2(2, 2, n) for
some n ≥ 2.

Since the distance between a toroidal filling slope and a reducible filling slope
is at most 3 ([Oh], [Wu1]), Theorem 1.2 reduces our analysis of Conjecture 1.1
to understanding the case where the Seifert Dehn filling is irreducible and small
Seifert. In an earlier paper [BGZ2] we verified the conjecture in the case where
M admits no essential punctured torus of boundary slope β which is a fibre or
semi-fibre, or which has fewer than three boundary components; more precisely, we
showed that in this case Δ(α, β) ≤ 5. Here we focus on the case where M admits
an essential punctured torus with one boundary component.

Let Wh denote the left-handed Whitehead link exterior (see Figure 33). We pa-
rameterise the slopes on a boundary component ofWh using the standard meridian-
longitude coordinates.

Theorem 1.3. Let M be a hyperbolic knot manifold and α a slope on ∂M such
that M(α) is small Seifert. If M admits an essential, once-punctured torus F of
boundary slope β, then Δ(α, β) ≤ 5. Further, if Δ(α, β) > 3, then F is not a fibre
and π1(M(α)) is finite. More precisely,

(1) if Δ(α, β) = 4, then (M ;α, β) ∼= (Wh(−2n±1
n );−4, 0) for some integer n

with |n| > 1 and M(α) has base orbifold S2(2, 2, | ∓ 2n − 1|), so M(α) is a prism
manifold;

(2) if Δ(α, β) = 5, then (M ;α, β) ∼= (Wh(−3/2);−5, 0), and M(α) has base
orbifold S2(2, 3, 3).

Baker [Ba] has proven Theorem 1.3 in the case where M(α) is a lens space. We
provide an alternate proof of his result.

Theorem 1.3 is sharp; see the infinite family of examples in §11 for (1) and [MP,
Table A.3] for (2). Another family of examples is provided by hyperbolic twist
knots. These are genus one knots in the 3-sphere whose exteriors admit small Seifert
filling slopes of distance 1, 2, and 3 from the longitudinal slope. Finally, Baker [Ba,
Theorem 1.1(IV)] has constructed an infinite family of non-fibred hyperbolic knot
manifolds which admit a once-punctured essential torus whose boundary slope is
of distance 3 to a lens space filling slope.

Here is an outline of the proof of Theorem 1.3. We begin by showing that the
result holds unless, perhaps, M admits an orientation-preserving involution τ with
non-empty branch set L contained in the interior of the quotient M/τ , which is a
solid torus. The results of [BGZ2] reduce us to the case that L has a very particular
form (see Figure 3). On the other hand, τ extends to an involution τα of M(α)
with branch set Lα contained in the lens space M(α)/τα. The fundamental group
of M(α)/τα is non-trivial if the distance between α and β is at least 3. Since the
involutions on small Seifert manifolds with such quotients are well understood, we
can explicitly describe the branch set Lα of τα. Comparing this description with
the constraints we have already deduced on L leads to the proof of the theorem.

Recall that an exceptional filling slope on the boundary of a hyperbolic 3-manifold
is a slope γ such that M(γ) is not hyperbolic. Geometrisation of 3-manifolds im-
plies that a slope γ is exceptional if and only if M(γ) is either reducible, toroidal,
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or Seifert fibred. Theorem 1.3 combines with [Oh], [Wu1], [Go1], [GW], and Propo-
sition 3.1 to yield the next result.

Theorem 1.4. Let M be a hyperbolic knot manifold which admits an essential,
once-punctured torus F of boundary slope β and let γ be an exceptional filling slope
on ∂M .

(1) Δ(γ, β) ≤ 7.
(2) If Δ(γ, β) > 3, then M(γ) is either toroidal or has a finite fundamental

group.
(3) If Δ(γ, β) > 3 and M(γ) is toroidal, then either

(a) Δ(γ, β) = 4 and (M ; γ, β) ∼= (Wh(δ);−4, 0) for some slope δ, or
(b) Δ(γ, β)=5 and (M ; γ, β)∼=(Wh(−4/3);−5, 0) or (Wh(−7/2);−5/2, 0),

or
(c) Δ(γ, β) = 7 and (M ; γ, β) ∼= (Wh(−5/2);−7/2, 0).

(4) If Δ(γ, β) > 3 and π1(M(γ)) is finite, then either
(a) Δ(γ, β) = 4, (M ; γ, β) ∼= (Wh(−2n±1

n );−4, 0) for some integer n with

|n| > 1, and M(γ) has base orbifold S2(2, 2, | ∓ 2n− 1|), or
(b) Δ(γ, β) = 5, (M ; γ, β) ∼= (Wh(−3/2);−5, 0), and M(γ) has base orb-

ifold S2(2, 3, 3).

Next we specialize to the case where M is the exterior of a hyperbolic knot in
the 3-sphere.

Theorem 1.5. Let K ⊂ S3 be a hyperbolic knot of genus one with exterior MK

and suppose p/q is an exceptional filling slope on ∂MK .
(1) MK(0) is toroidal but not Seifert.
(2) MK(p/q) is either toroidal or small Seifert with hyperbolic base orbifold.
(3) If MK(p/q) is small Seifert with hyperbolic base orbifold, then 0 < |p| ≤ 3.
(4) If MK(p/q) is toroidal, then |q| = 1 and |p| ≤ 4 with equality implying K is

a twist knot.

Here is how the paper is organised. We prove Theorem 1.2 in §2. In §3 we
show that there are strong topological constraints on M which must be satisfied
if Theorem 1.3 doesn’t hold. These constraints will be applied later in the pa-
per to construct an involution on M . In §4 we describe the branching set of an
orientation-preserving involution on a small Seifert manifold with quotient space
a lens space with non-trivial fundamental group. Using this, in §5 we reduce the
proof of Theorem 1.3 to five problems involving links in lens spaces and a problem
in which Δ(α, β) = 4 and M(α) is a prism manifold. These problems are resolved
in §6, §7, §8, §9, §10 and §12, respectively. The infinite family of examples realising
distance 4 in Theorem 1.3 is constructed in §11. Theorems 1.4 and 1.5 are dealt
with in §13.

2. The case where M(α) is toroidal

In this section we prove Theorem 1.2. Recall from the introduction that N
denotes the exterior of the 3-chain link of [MP]. Note that N(− 1

2 ,−
1
2 ) is obtained

by Dehn filling on N(− 1
2 ), which is the exterior of the rational link associated with

the rational number 10/3.
To prove Theorem 1.2 we consider all (M ;α, β) where M is hyperbolic, M(α)

and M(β) are toroidal and Δ(α, β) ≥ 4. For Δ(α, β) ≥ 6 there are only four such
(M ;α, β) [Go1], and in all four cases neither M(α) nor M(β) is Seifert fibred.
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For Δ(α, β) = 4 or 5, the triples (M ;α, β) are determined in [GW]: there are
14 hyperbolic manifolds Mi, 1 ≤ i ≤ 14, each with a pair of toroidal filling slopes
αi, βi at distance 4 or 5, where M1,M2,M3 and M14 have two (torus) boundary
components, and the others, one. It is shown in [GW] that a hyperbolic manifold
M has two toroidal filling slopes α and β at distance 4 or 5 if and only if (M ;α, β) ∼=
(Mi;αi, βi) for some 1 ≤ i ≤ 14, or (M ;α, β) ∼= (Mi(γ);αi, βi) for i = 1, 2, 3 or
14 and some slope γ on the second boundary component of Mi. (We adopt the
convention that in the above homeomorphisms either α �→ αi, β �→ βi or α �→ βi,
β �→ αi.) We prove Theorem 1.2 by showing first, for i 	= 1, 2, 3 or 14, neither
of the toroidal manifolds Mi(αi) or Mi(βi) is Seifert fibred, second, for i = 1, 3
or 14, there is no hyperbolic manifold of the form Mi(γ) with either Mi(γ)(αi) or
Mi(γ)(βi) toroidal Seifert fibred and third, there is a unique example (M2(γ);α2, β2)
(up to homeomorphism) where M2(γ) is hyperbolic, M2(γ)(α2) and M2(γ)(β2) are
toroidal, and one is Seifert fibred; this is the example described in Theorem 1.2.

We first consider the manifolds Mi, 6 ≤ i ≤ 13. The toroidal fillings on Mi,
Mi(0) and Mi(βi), are described in Lemma 22.2 of [GW]. We adopt the notation
introduced in [GW, page 116].

Lemma 2.1. For 6 ≤ i ≤ 13, Mi(0) is not Seifert fibred.

Proof. Mi(0) is of the form X(p1, q1; p2, q2); it is the double branched cover of
the tangle Qi(0), which is of the form T (p1, q1; p2, q2), the union of two Montesinos
tangles. Assume the numbering is chosen so that p1, q1 are not both 2 (actually this
is only an issue when i = 8). Then the Seifert fibre ϕ1 of X(p1, q1) is unique. Since
X(p1, q1) and X(p2, q2) are not both twisted I-bundles, to show that Mi(0) is not
Seifert fibred it suffices to show that, in the gluing of X(p1, q1) and X(p2, q2), ϕ1 is
not identified with the Seifert fibre ϕ2 of X(p2, q2). (When i = 8, p2 = q2 = 2 and
there are two possible choices for ϕ2.) We do this by identifying the image of ϕ1 in
the boundary of the tangle T (p1, q1) and then capping off the tangle T (p2, q2) with
the corresponding rational tangle. In the double branched cover this corresponds
to doing Dehn filling on X(p2, q2) along the slope ϕ1. If Mi(0) were Seifert fibred,
then this Dehn filling would be reducible, and so the corresponding rational tangle
filling on T (p2, q2) would give a link that is either composite or split. One checks
that this is not the case. �

Lemma 2.2. For 6 ≤ i ≤ 13, Mi(βi) is not Seifert fibred.

Proof. First note that M7(β7) is of the form X(2, 3; 2, 2). We check that this is not
Seifert fibred in the same way as we did for M8(0) in Lemma 2.1.

When i 	= 7, Mi(βi) is the double branched cover of a 2-component link Li; see
[GW, Lemma 22.2]. More specifically, for i = 6, 8, 9 or 12, Li is a cabled Hopf link
C(p1, q1; p2, q2) with p1, p2 > 1, for i = 10 or 11, Li is the link C(C; 2, 1) (see [GW,
page 116]), and for i = 13, Li is the 2-string cable of the trefoil shown in [GW,
Figure 22.13(d)]. In all cases, Li is toroidal, i.e. its exterior contains an essential
torus. Moreover, the exterior of Li is not Seifert fibred. Therefore if Mi(βi) were
Seifert fibred, then Li would be a Montesinos link. But the only toroidal Montesinos
links are (see [Oe, Corollary 5])K( 12 ,

1
2 ,−

1
2 ,−

1
2 ), K( 23 ,−

1
3 ,−

1
3 ), K( 12 ,−

1
4 ,−

1
4 ), and

K( 12 ,−
1
3 ,−

1
6 ). One easily checks that no Li is of this form. �

Lemma 2.3. M4(α4) and M4(β4) are not Seifert fibred.
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Proof. M4(α4) and M4(β4) contain incompressible tori F̂a and F̂b; the correspond-
ing punctured tori Fa and Fb in M4 have four and two boundary components,
respectively. The intersection of Fa and Fb is described by the intersection graphs

Γa ⊂ F̂a and Γb ⊂ F̂b depicted in Figures 11.9(a) and (b) of [GW], respectively.

Note that F̂a separates M4(α4), into MB and MW , say, while F̂b is non-separating
in M4(β4). The faces of the graph Γb lie alternately in MB and MW ; we choose the
notation so that all the faces of Γb that lie in MB are bigons.

Let f1, f2, f3, and g1, g2, g3 be the faces of Γb with edges G,H; J,K;A,B; and
D,E;K,P,R;A,G,L; respectively. Let h1, h2, h3 be the faces of Γa with edges
E,N ;H,E; and B,G,N,R; respectively. (The notation refers to the edges illus-
trated in Figure 11.9 of [GW].)

For computations in π1(MB) and π1(MW ) we take as “base-point” the rectangle

in F̂a shown in Figure 11.9(a) of [GW]. Let s, t be the pair of generators of π1(F̂a)
determined by the downward vertical and rightward horizontal edges of that rec-
tangle, respectively. Let x1 and x3 be the elements of π1(MB) corresponding to
the 1-handles H(12) and H(34) in the usual way. The faces f1, f2 and f3 give the
relations in π1(MB):

x2
1t = 1,

x2
3t

−1 = 1,

s−1x3x1 = 1.

It follows that MB is Seifert fibred with base orbifold D2(2, 2) and that the classes

in π1(F̂a) of the Seifert fibres in the two Seifert fibrings of MB are t and s.
Let x2 and x4 be the elements of π1(MW ) corresponding to H(23) and H(41).

Then the faces g1, g2 and g3 give the relations in π1(MW ):

tx4x2 = 1,

x2x4t
−1x2st = 1,

x2x
2
4t

−1 = 1.

These show that MW is Seifert fibred with base orbifold D2(2, 3), the class of

the Seifert fibre in π1(F̂a) being st2. Since this is distinct from either of the Seifert
fibres of MB, M4(α4) is not Seifert fibred.

We now consider M4(β4). Let u, v be the pair of generators for π1(F̂b) given
by the downward vertical and leftward horizontal edges of the rectangle in Fig-
ure 11.9(b) of [GW]. (We take this rectangle as “base-point” for computations in
π1(M4(β4)).) Let x, y be the elements of π1(M4(β4)) given by the 1-handles H(12)

and H(21). The faces h1, h2, h3 give the relations in π1(M4(β4)):

x(uv)y−1v−1 = 1,

yvx−1 = 1,

x−1u−1xux−1(vu)−1y = 1.

The second relation gives x = yv, and the first then gives

y−1vy = uv2.

The third relation gives

(y−1u−1y)u(y−1u−1y)u−1v−3 = 1.
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Now if M4(β4) were Seifert fibred, the non-separating torus F̂b would be hori-

zontal, and so M4(β4) would be a torus bundle over the circle with fibre F̂b. Hence

y−1u−1y would belong to π1(F̂b). But the last relation above shows that if this is
the case, then

(y−1u−1y)2 = v3.

Since v3 is not a square in π1(F̂b), this is a contradiction. �

Lemma 2.4. M5(α5) and M5(β5) are not Seifert fibred.

Proof. This can be proved in a similar fashion to Lemma 2.3, using [GW, Fig-
ure 11.10]. Another way to establish the result is to note that, according to [L2,
§6], M5

∼= N(1,− 1
3 ), the toroidal filling slopes α5, β5 being −4 and 1. We see that

N(1,− 1
3 ,−4) and N(1,− 1

3 , 1) are not Seifert fibred from Tables 4 and 3 of [MP],
respectively. �

We next consider the manifolds M1,M2 and M3, namely the exteriors of the
Whitehead link, the 10/3-rational link, and the Whitehead sister (or (−2, 3, 8)-
pretzel) link, respectively. These are all obtained by Dehn filling on the 3-chain
link: M1

∼= N(1), M2
∼= N(− 1

2 ), M3
∼= N(−4). Furthermore, their exceptional

slopes and toroidal slopes are as follows (see [MP, Table A.1]):

exceptional slopes toroidal slopes
N(1) ∞,−3,−2,−1, 0, 1 −3, 1
N(− 1

2 ) ∞,−4,−3,−2,−1, 0 −4, 0
N(−4) ∞,−3,−2,−1,− 1

2 , 0 − 1
2 , 0

Lemma 2.5. In each of the following cases, the manifold N(α, β, γ) is a toroidal
Seifert fibre space if and only if γ is one of the values listed:

(a) N(1,−3, γ) : γ = −3, 1,
N(1, 1, γ) : γ = −3,−2,−1, 0.

(b) N(− 1
2 ,−4, γ) : γ = − 1

2 ,
N(− 1

2 , 0, γ) : γ = − 7
2 .

(c) N(−4,− 1
2 , γ) : γ = − 1

2 ,
N(−4, 0, γ) : no γ.

Proof. This follows by inspecting Tables 2, 3 and 4 of [MP]. We see from these
that the only toroidal Seifert fibre spaces N(α, β, γ) are

(1)N(−3, 1, 1), N(−3,− 5
3 ,−

5
3 ), N(−3,−3, t/u) where t/u 	=−1,−1+ 1

m or ∞,
and

(2) N(0, 1
2 + n,− 9

2 − n), N(1, 1, n) where |n + 1| ≤ 1, N(− 3
2 ,−

5
2 , 0), and

N(−4,− 1
2 ,−

1
2 ). �

Note that the values of γ listed in parts (a) and (c) of Lemma 2.5 all belong to
the set of exceptional slopes of N(1) and N(−4), respectively. It follows that for
i = 1 and 3, there is no γ such that Mi(γ) is hyperbolic and one of Mi(γ)(αi),
Mi(γ)(βi) is toroidal Seifert fibred.
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DEHN FILLINGS OF KNOT MANIFOLDS 347

In the case i = 2, note that by [MP, Proposition 1.5 part (1.4)], there is an
automorphism of N(− 1

2 ) inducing homeomorphisms

N(− 1
2 ,−4,− 1

2 )
∼= N(− 1

2 , 0,−
7
2 ),

N(− 1
2 , 0,−

1
2 )

∼= N(− 1
2 ,−4,− 7

2 ).

Also, we see from [MP, Table 2] that N(− 1
2 , 0,−

1
2 ) is toroidal. Thus part (b) of

Lemma 2.5 gives rise to the single example described in Theorem 1.2.
Finally, we take care of M14:

Lemma 2.6. For no slope γ on the second boundary component of M14 is
M14(γ)(α14) or M14(γ)(β14) toroidal Seifert fibred.

Proof. In [L1] Lee describes a hyperbolic 3-manifold Y with two torus boundary
components having (homeomorphic) Dehn fillings Y (0) and Y (4) that contain Klein
bottles. In fact Y (0) ∼= Y (4) ∼= Q(2, 2)∪Wh, where Q(2, 2) is the Seifert fibre space
with base orbifold D2(2, 2) and Wh is the exterior of the Whitehead link. Hence
Y (0) ∼= Y (4) is toroidal. It follows from the classification in [GW] of the hyperbolic
3-manifolds with toroidal fillings at distance 4 that Y ∼= M14. (The only other
manifolds with two boundary components having toroidal fillings at distance 4 are
M1 and M2, and there the toroidal fillings are graph manifolds; see e.g. [MP,
Table A.1].) It therefore suffices to show that M14(γ)(α14) is not toroidal Seifert
fibred for any slope γ.

The manifold M = M14(α14) ∼= Q(2, 2)∪Wh is the double branched cover of the
tangle shown in [GW, Figure 22.14(b)]. Thus M(γ) ∼= Q(2, 2) ∪Wh(γ). Hence if
M(γ) is toroidal Seifert fibred then γ must be an exceptional slope for Wh. These
slopes (with respect to the parametrization in [MP, Table A.1]) are∞,−3,−2,−1, 0
and 1. Now Wh(−3) and Wh(1) are toroidal non-Seifert, Wh(∞) ∼= D2 × S1, and
Wh(−2),Wh(−1) andWh(0) are Seifert fibred with base orbifoldD2(3, 3),D2(2, 4)
and D2(2, 3), respectively. So we need only consider M(γ) for γ = ∞,−2,−1
and 0; we do this by examining the corresponding rational tangle filling on the
tangle shown in [GW, Figure 22.14(b)]. For γ = ∞, this yields the pretzel knot
K(− 1

2 ,−
1
2 ,

1
2 ), so M(∞) is atoroidal. For γ = −2,−1 and 0 we show that the

Seifert fibre of Wh(γ) does not match the Seifert fibre in either of the two Seifert
fibrings of Q(2, 2). This is straightforward to check, for example by using the same
approach as in the proof of Lemma 2.1. �

3. Background results for the proof of Theorem 1.3

We collect various results in this section and the next which will be used through-
out this paper and its sequel [BGZ3]. In what follows, M will be a hyperbolic knot
manifold and b1(M) will denote its first Betti number. In this section we assume
that F is an essential, punctured torus of slope β which is properly embedded in
M .

For a closed, essential surface S in M we define C(S) to be the set of slopes δ on
∂M such that S compresses in M(δ). A slope η on ∂M is called a singular slope
for S if η ∈ C(S) and Δ(δ, η) ≤ 1 for each δ ∈ C(S). A result of Wu [Wu2] states
that if C(S) 	= ∅, then there is at least one singular slope for S.

Proposition 3.1. Suppose that M admits a non-separating, essential, genus 1
surface of boundary slope β which caps-off to a compressible torus in M(β). If γ is
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a slope on ∂M such that M(γ) is not hyperbolic, then Δ(γ, β) ≤ 3. If M(γ) is an
irreducible, atoroidal, small Seifert manifold, then Δ(γ, β) ≤ 1.

Proof. By hypothesis M(β) admits a non-separating 2-sphere and so is reducible
with first Betti number at least 1. In the case that b1(M) ≥ 2, there is a closed
essential surface S ⊂ int(M) which is Thurston norm minimizing in H2(M). By
[Ga, Corollary], S is essential and Thurston norm minimizing in H2(M(δ)) for all
slopes δ 	= β. By [BGZ1, Proposition 5.1], Δ(γ, β) ≤ 1 for any slope γ such that
M(γ) is not hyperbolic. Suppose then that b1(M) = 1, and note that by hypothesis
β is a strict boundary slope. In this case [BCSZ2, Theorem 3.2] implies that β is
a singular slope, and so the conclusions of the lemma follow from [BGZ1, Theorem
1.5]. �

Corollary 3.2. Theorem 1.3 holds if M admits a non-separating, essential, genus
1 surface of boundary slope β which caps-off to a compressible torus in M(β). �

The torus in M(β) obtained by capping-off F with a meridional disk will be

denoted F̂ . We use MF to denote the compact manifold obtained by cutting M

open along F and M(β)F̂ the manifold obtained by cutting M(β) open along F̂ .

Proposition 3.3. Suppose that M(α) is a Seifert fibred manifold and M(β) is
toroidal. Then Δ(α, β) ≤ 3 as long as one of the following conditions is satisfied:

(a) α or β is a singular slope of a closed essential surface in M .
(b) M(α) or M(β) is reducible.
(c) (i) |∂F | = 1 and MF is not a genus 2 handlebody.

(ii) |∂F | = 2 and MF is neither connected nor a union of two genus 2
handlebodies.

Proof. If α or β is a singular slope of a closed essential surface in M , then [BGZ1,
Corollary 1.6] shows that Δ(α, β) ≤ 3, so we are done in case (a).

Assume next that M(γ) is reducible, where γ is one of α or β. If γ = α, then
Δ(α, β) ≤ 3 by [Oh] and [Wu1]. Assume then that γ = β. If b1(M) ≥ 2, then
Δ(γ, β) ≤ 1 for any exceptional slope γ as in the proof of Proposition 3.1. Assume
then that b1(M) = 1. Since M(β) is toroidal, it is neither S1 × S2 nor a connected
sum of lens spaces. Hence [BGZ1, Proposition 6.2] implies that β is a singular slope
of a closed essential surface in M . Thus we are done by part (a).

Finally consider part (c) of the proposition. If |∂F | = 1, any compression of
∂MF in MF yields one or two tori, so as M is hyperbolic it is not hard to see that
MF is a handlebody, contrary to hypothesis. Thus ∂MF is incompressible in MF ,
and hence in M . Let S ⊂ int(M) be the inner boundary component of a collar
of ∂MF in MF . Then S is incompressible in M , and by construction there is an
annulus A in M with boundary components ∂1A and ∂2A, say, where A∩S = ∂1A
and A∩∂M = ∂2A has slope β on ∂M . It follows from [Sh] that S is incompressible
in M(γ) whenever Δ(γ, β) > 1. Thus β is a singular slope for S, and so part (a) of
this proposition shows Δ(α, β) ≤ 3. Thus (i) holds.

If |∂F | = 2 and MF is not connected, then M = X1∪F X2 where ∂Xj is a genus
2 surface for j = 1, 2. If ∂Xj compresses in Xj for both j, then X1 and X2 are
genus 2 handlebodies as M is hyperbolic. Since this possibility is excluded by our
hypotheses, ∂Xj is incompressible in Xj for some j. Then it is essential in M but
compresses in M(β), so as in the previous paragraph, β is a singular slope for ∂Xj .
Thus Δ(α, β) ≤ 3. This completes the proof. �
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Theorem 1.2 and Propositions 3.1 and 3.3 yield the following corollary.

Corollary 3.4. Conjecture 1.1 holds as long as it holds when M(α) is an irre-
ducible, atoroidal, small Seifert manifold. �

Here is a result from [BGZ2]. Recall from §6 of that paper that t+j is the number

of tight components of Φ̆+
j .

A 3-manifold is very small if its fundamental group does not contain a non-
abelian free group.

Proposition 3.5. Suppose that F is a once-punctured essential genus 1 surface of
boundary slope β in a hyperbolic knot manifold M which completes to an essential
torus in M(β) but is not a fibre in M . If M(α) is a small Seifert manifold, then

Δ(α, β) ≤
{

6 if M(α) is very small,
8 otherwise.

Moreover if t+1 > 0, then

Δ(α, β) ≤
{

3 if M(α) is very small,
4 otherwise.

Remark 3.6. When t+1 = 0, M(β)F̂ is Seifert with base orbifold an annulus with
one cone point [BGZ2, Lemma 7.9].

Proof of Proposition 3.5. The first inequality is the conclusion of [BGZ2, Proposi-
tion 13.2]. To deduce the second we use the notation and results of [BGZ2].

Suppose next that t+1 > 0. Since t+1 is even and the number of boundary compo-
nents of F is bounded below by 1

2 t
+
1 , we have t+1 = 2. Proposition 13.1 of [BGZ2]

then shows that Δ(α, β) ≤ 4. Suppose that M(α) is very small. The first para-
graph of the proof of [BGZ2, Proposition 13.1] shows that Δ(α, β) ≤ 3 if ΓS has a
vertex of valency 3 or less, while the second shows that the same inequality holds
if it doesn’t. This completes the proposition’s proof. �

4. Involutions on small Seifert manifolds

We collect several results about involutions on small Seifert manifolds in this
section.

Lemma 4.1. Let W be a small Seifert manifold and τ an orientation-preserving
involution on W with non-empty fixed point set. Then there is a τ -invariant Seifert
structure on W with base orbifold of the form S2(a, b, c), where 1 ≤ a ≤ b ≤ c.

Proof. If W is a lens space, the result follows from [HR]. Assume then that this
isn’t the case and fix a Seifert structure on W with base orbifold S2(a, b, c), where
a ≤ b ≤ c. The assumption that π1(W ) is not cyclic implies that a ≥ 2 and a, b, c
are determined by W .

Let L ⊂ W/τ be the branch set of τ . The orbifold theorem implies that the
orbifold W/τ is geometric, and since L is a link, W/τ admits a Seifert structure
with a 2-dimensional base orbifold [Du]. Thus W admits a τ -invariant Seifert
structure. We claim that we can assume this structure has base orbifold S2(a, b, c).
If b 	= 2, all Seifert structures on W have this form, so assume a = b = 2 ≤ c. If
the base orbifold of the τ -invariant structure is not S2(a, b, c), it must be P 2(d)
for some integer d ≥ 1. When d > 1, there is a unique singular fibre φ in this
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structure, and it must be invariant under τ . Then τ leaves the exterior E of this
fibre invariant, which is a twisted I-bundle over the Klein bottle. By assumption, τ
leaves the Seifert structure on E with base orbifold a Möbius band invariant. There
is exactly one other Seifert structure on E, up to isotopy, and its base orbifold is
D2(2, 2). Moreover, there is at least one such structure which is τ |E-invariant.
This structure can be extended across a fibred neighbourhood of φ in a τ -invariant
fashion, yielding the desired τ -invariant structure on W .

The argument is similar if d = 1, for τ induces an involution of the base orbifold
P 2 of W , and since any self-map of P 2 has a fixed point, there is a τ -invariant fibre
φ in W . Now proceed as in the case d > 1. �

For our next three results we let W denote a small Seifert manifold and τ an
orientation-preserving involution on W with non-empty fixed point set such that
the quotient W/τ is a lens space L(p̄, q̄) 	∼= S3. We use Lτ to denote the branch set
of τ in L(p̄, q̄).

Fix a τ -invariant Seifert structure on W with base orbifold of the form S2(a, b, c)
where 1 ≤ a ≤ b ≤ c (Lemma 4.1) and let τ̄ be the involution of S2(a, b, c) (possibly
the identity) induced by τ .

Since the τ -invariant Seifert structure on W has an orientable base orbifold, its
fibres can be coherently oriented.

Hodgson and Rubinstein have classified orientation-preserving involutions on
lens spaces with non-empty fixed point sets. In particular, their work yields the
following result.

Lemma 4.2 ([HR, §4.7]). Suppose that W is the lens space L(p, q) and W/τ =
L(p̄, q̄) 	∼= S3.

(1) If p is odd, then Lτ is connected and is either
(a) the core of a solid torus of a genus one Heegaard splitting of L(p̄, q̄),

or
(b) the boundary of a Möbius band spine of a Heegaard solid torus of

L(p̄, q̄).
(2) If p is even, then Lτ has two components and is either

(a) the union of the cores of the two solid tori of a genus one Heegaard
splitting of L(p̄, q̄), or

(b) the boundary of an annular spine of a Heegaard solid torus of L(p̄, q̄).
�

Next we suppose that W is not a lens space. In this case 2 ≤ a ≤ b ≤ c.

Lemma 4.3. Suppose that W is not a lens space and that τ preserves the orien-
tations of the Seifert fibres of W . Then there is an induced Seifert structure on
W/τ such that Lτ is a union of at most three Seifert fibres where at least one of
the fibres is regular. Further, τ̄ is either the identity or has two fixed points and

(1) if τ̄ is the identity then a = 2, |Lτ | is the number of cone points of S2(a, b, c)
of even order, and the components of Lτ which are regular fibres correspond to the
cone points of order 2;

(2) if τ̄ is not the identity then Lτ has at most two components, and exactly one
of its components is a regular fibre.
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Proof. The hypotheses imply that there is an induced Seifert structure on L(p̄, q̄)
whose fibres are the images of the fibres of W . Since W has three exceptional fibres,
τ̄ fixes precisely one or three cone points. In the latter case, τ̄ is the identity.

Suppose first that τ̄ is the identity on S2(a, b, c). Since τ has 1-dimensional fixed
point set, τ rotates the regular fibres of W by π. Its fixed point set is the union
of the fibres of even multiplicity, and therefore Lτ is a union of Seifert fibres. The
reader will verify that if a fibre of W has multiplicity k, then its image in L(p̄, q̄)
has multiplicity k̄ = k

gcd(k,2) . Hence as L(p̄, q̄) has at most two exceptional fibres,

a = 2.
Suppose next that τ̄ fixes precisely one cone point of S2(a, b, c). In this case its

fixed point set consists of this cone point and a regular point. Thus the fixed point
set of τ is contained in a union of two fibres, so Lτ has at most two components.
The reader will verify that each exceptional fibre of W is sent to an exceptional
fibre of L(p̄, q̄), two of them to the same fibre. Thus the τ -invariant regular fibre
of W is sent to a regular fibre of L(p̄, q̄). It follows that this fibre lies in the fixed
point set of τ , and therefore Lτ contains a regular fibre of L(p̄, q̄). �
Lemma 4.4. Suppose that W is not a lens space and that τ reverses the orienta-
tions of the Seifert fibres of W . If W/τ = L(p̄, q̄) 	∼= S3, then

(1) W has base orbifold S2(p̄, p̄,m), where m ≥ 2 and the Seifert invariants of
the exceptional fibres of order p̄ are the same. Hence if W is not a prism manifold,
p̄ 	= 2.

(2) There is an integer n coprime with m such that Lτ is isotopic to the closure
K(m/n) of an m/n rational tangle in a Heegaard solid torus of W/τ as depicted in
Figure 1. In particular,

|Lτ | =
{

1 if n is odd,
2 if n is even.

m__n

Figure 1

Proof. The fixed point set of τ̄ is non-empty, so as it reverses orientation, it is a
reflection in an equator of S2(a, b, c). This equator cannot contain all three cone
points, as otherwise τ would be the Montesinos involution on W and therefore
L(p̄, q̄) would be S3. Thus it contains exactly one cone point and τ̄ permutes the
other two. It follows that up to relabeling, (a, b, c) = (r, r,m) for some integers
r,m ≥ 2. Further, S2(r, r,m)/τ̄ = D2(r;m), where D2(r;m) is the 2-orbifold with
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underlying space a 2-disk and singular set consisting of a cone point of order r,
a corner-reflector point x of order m, and a reflection line ∂D2 \ {x}. Therefore
L(p̄, q̄) = W/τ ∼= L(r, t) for some integer t. Thus r = p̄, which proves part (1).

A Montesinos-type analysis of the quotient of the τ -invariant solid torus given by
the inverse image in W of a small annular neighbourhood of Fix(τ̄) in S2(p̄, p̄,m)
shows that the branch set of this quotient is of the form described in part (2). It is
well known that this branch set has one component if n is odd and two otherwise,
so part (2) holds. �

5. Beginning of the proof of Theorem 1.3

5.1. Assumptions. We assume throughout the rest of the paper that M is a hy-
perbolic knot manifold containing an essential once-punctured torus F of boundary
slope β which caps off to an essential torus in M(β) (cf. Corollary 3.2) and that
M(α) is an atoroidal, irreducible, small Seifert manifold (cf. Corollary 3.4). We
assume as well that Δ(α, β) > 3, and (therefore) MF is a genus 2 handlebody by
Proposition 3.3.

We will show that under these assumptions, Δ(α, β) ≤ 5, F is not a fibre,
π1(M(α)) is finite non-cyclic, and

(a) if Δ(α, β) = 4, (M ;α, β) ∼= (Wh(−2n±1
n );−4, 0) for some integer n with

|n| > 1 and M(α) has base orbifold S2(2, 2, | ∓ 2n− 1|);
(b) if Δ(α, β) = 5, then (M ;α, β) ∼= (Wh(−3/2);−5, 0) and M(α) has base

orbifold S2(2, 3, 3).

F

Fτ

Figure 2

5.2. An involution on M . There is an involution τF on F with exactly three
fixed points whose action on ∂F is rotation by π. See Figure 2. Thus F/τF is the
2-orbifold D2(2, 2, 2). Let N ∼= F × I be a small neighbourhood of F in M and
extend τF to an involution τN in the obvious way. Then τN |F × ∂I extends to
a hyperelliptic involution of ∂MF . Since MF is a genus 2 handlebody, the latter
extends to an involution τMF

of MF . Piecing together τN and τMF
we obtain an

orientation-preserving involution τ : M → M with non-empty 1-dimensional fixed

point set L̃ ⊂ int(M). Further, V := M/τ is a solid torus containing the branch set
L of τ . By construction, this is a hyperbolic link which intersects some meridional
disk of V transversely and in three points. When F is a fibre in M , L is braided in
V .

Note that L cannot intersect any meridional disk in one point, as M is ∂-
irreducible.

The slopes on ∂M can be identified with ±-classes of primitive elements of
H1(∂M). In particular we assume α, β ∈ H1(∂M). Let μ be any dual slope to β.
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This means that 1 = Δ(μ, β) = |μ · β|. Hence {μ, β} form a basis for H1(∂M).
Write

(5.2.1) α = pμ+ qβ,

where p, q are coprime. After possibly changing the signs of μ and β we may assume
that

(5.2.2) p = Δ(α, β).

Without loss of generality we may suppose that p ≥ 1. The map M → V is a
double cover when restricted to ∂M . It sends β to a slope β̄, a meridian of V , and
sends μ to μ̄, a longitude of V .

For each slope γ on ∂M , τ extends to an involution τγ : M(γ) → M(γ). More-

over, if Ũγ denotes the filling torus in M(γ) and K̃γ its core, then

(5.2.3) Fix(τγ) =

{
L̃ if Δ(γ, β) is odd,

L̃ ∪ K̃γ if Δ(γ, β) is even.

It is clear that Ũγ/τγ is a solid torus Uγ . Denote its core K̃γ/τγ by Kγ . Thus
M(γ)/τγ = V ∪γ̄ Uγ is a lens space. Indeed, if γ = rμ+ sβ, then under the double
cover ∂M → ∂V we have γ �→ rμ̄ + 2sβ̄. Let γ̄ = 1

gcd(2,r)(rμ̄ + 2sβ̄) denote the

associated slope and Lγ the branch set in M(γ)/τγ . Then

(M(γ)/τγ , Lγ) = (V (γ̄), Lγ) ∼=
{

(L(r, 2s), L) if r is odd,
(L( r2 , s), L ∪Kγ) if r is even.

We are interested in the case γ = α. Set

(5.2.4) p̄ = p/ gcd(p, 2) and q̄ = 2q/ gcd(p, 2)

so that ᾱ = p̄μ̄+ q̄β̄ and

M(α)/τα ∼= L(p̄, q̄).

From 5.2.3 we see that

(5.2.5) |Lα| =
{
|L| if p is odd,

|L|+ 1 if p is even.

Fix a τα-invariant Seifert structure on M(α) with base orbifold S2(a, b, c) where
1 ≤ a ≤ b ≤ c (Lemma 4.1).

Let τ̄α be the involution of S2(a, b, c) (possibly the identity) induced by τα.

Lemma 5.1. Suppose that Assumptions 5.1 hold. Suppose as well that M(α) is
not a lens space and that τα preserves the orientations of the Seifert fibres of M(α).
Then there is a Seifert structure on L(p̄, q̄) in which Lα is a union of at most three
fibres, at least one of which is regular. Further, Lα = L so that p = Δ(α, β) is odd.

Proof. Lemma 4.3 shows that L is a union of fibres in the induced Seifert structure
on L(p̄, q̄) and that at least one of these fibres is regular. This implies thatKα 	⊂ Lα,
as otherwise L = Lα \Kα would not be a hyperbolic link in V . Thus L = Lα, so p
is odd by (5.2.5). �

Lemma 5.2. Suppose that Assumptions 5.1 hold. Suppose as well that M(α) is
not a lens space and that τα reverses the orientations of the Seifert fibres of M(α).
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Then
(1) M(α) has base orbifold S2(p̄, p̄,m), where m ≥ 2 and the Seifert invariants

of the exceptional fibres of order p̄ are the same. Hence if M(α) is not a prism
manifold, Δ(α, β) 	= 4.

(2) There is an integer n coprime with m such that Lα is isotopic to the closure
K(m/n) of an m/n rational tangle in a Heegaard solid torus of M(α)/τα as depicted
in Figure 1. In particular,

|Lα| =
{

1 if n is odd,
2 if n is even.

(3) |L| = 1, m is odd, and n ≡ p (mod 2).

Proof. Parts (1) and (2) follow from Lemma 4.4.
In order to prove part (3), suppose that |L| = 2. Then part (2) shows that

L = Lα. In particular, p is odd (5.2.5). Consideration of the form of Lα (cf.
Figure 1) shows that its two components are isotopic to one another. But since L
is transverse to a meridian disk of V and intersects it in three points, the generator
γ of H1(V (ᾱ)) ∼= Z/p̄ carried by the core of V satisfies γ = ±2γ. Hence p̄ = 3. But
p is odd so Δ(α, β) = p = p̄ = 3, contrary to our hypotheses. Thus |L| = 1.

Next suppose that m is even. Then Lα = K(m/n) is connected, so L = Lα and
p is odd, and L is homotopically trivial in L(p̄, q̄). But L intersects a meridian disk
of the Heegaard torus V ⊂ L(p̄, q̄) transversely and in three points, so the only way
it can be null homotopic is for 3 = p̄. Since p is odd, p = 3, which contradicts our
hypotheses. Thus m is odd.

By (2), |Lα| ≡ n (mod 2). Since |L| = 1 by (3), Identity (5.2.5) shows that
|Lα| ≡ p (mod 2). �

5.3. Constraints on the branch set L. Here we deduce strong constraints on
the form of the branch set L in V .

Lemma 5.3. Suppose that Assumptions 5.1 hold and that τα reverses the orienta-
tion of the Seifert fibres of M(α). Let k ≥ 1 be an integer dividing p̄ and consider
the k-fold cyclic cover S2( p̄k ,

p̄
k ,m,m, . . . ,m) → S2(p̄, p̄,m) obtained by the k-fold

unwrapping of S2(p̄, p̄,m) about the two cone points labeled p̄. Let M̃(α)k → M(α)

be the associated k-fold cyclic cover where M̃(α)k is Seifert with base orbifold

S2( p̄k ,
p̄
k ,m,m, . . . ,m) and the inclusion of a regular fibre of M(α) lifts to M̃(α)k.

Define M̃k → M to be the cover obtained by restricting M̃(α)k → M(α) to M .
Then

(1) ∂M̃k is connected and F lifts to M̃k. In particular, β lifts to a slope β̃ on

∂M̃k.

(2) α lifts to a slope α̃ on ∂M̃k such that M̃(α)k = M̃k(α̃). Further, Δ(α̃, β̃) = p
k .

(3) α̃ is the singular slope of a closed essential surface in M̃k if S2( p̄k ,
p̄
k ,m,m, . . . ,

m) is hyperbolic with at least four cone points. If this is the case, p/k ≤ 3.

Proof. The cover S2( p̄k ,
p̄
k ,m,m, . . . ,m) → S2(p̄, p̄,m) is determined by the homo-

morphism ϕ : H1(S
2(p̄, p̄,m)) = 〈x, y : p̄x = p̄y = m(x + y) = 0〉 → Z/k, where

ϕ(x) ≡ −ϕ(y) ≡ 1 (mod k).
First note that the homomorphism H1(M(α)) → H1(V (ᾱ)) ∼= Z/p̄ kills any

class carried by a regular Seifert fibre of M(α) (i.e. there are regular fibres with
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image an interval). Thus it factors through a homomorphism ψ : H1(S
2(p̄, p̄,m)) →

H1(V (ᾱ)). Since τα preserves the fibre of multiplicity m in M(α) but reverses its
orientation, (τ̄α)∗(x+y) = −(x+y). Thus 2(x+y) is sent to zero inH1(V (ᾱ)), while
x is sent to a generator. Since m is odd and m(x+ y) = 0, x+ y �→ 0 ∈ H1(V (ᾱ)).

It follows that ϕ factors as H1(S
2(p̄, p̄,m))

ψ−→ H1(V (ᾱ))
∼=−→ Z/p̄ → Z/k. Since

H1(F ) lies in the kernel of H1(M) → H1(V ) while μ is sent to a generator of H1(V ),

we conclude that ∂M̃k is connected and F lifts to M̃k. This proves (1).

For (2), note that by construction, there is a basis {μ̃, β̃} of H1(∂M̃k) where μ̃

is sent to kμ and β̃ is sent to β in H1(∂M). Then α = pμ+ qβ lifts to ( pk )μ̃+ qβ̃.

Clearly Δ(α̃, β̃) = p
k .

Part (3) is a consequence of [BGZ1, Theorems 1.5 and 1.7]. �

Lemma 5.4. Suppose that Assumptions 5.1 hold. Then M is not a once-punctured
torus bundle. In particular, Theorem 1.3 holds when F is a fibre.

Proof. We assume that M is a once-punctured torus bundle in order to obtain a
contradiction.

There is a 3-braid σ whose closure in V is L. Altering σ by conjugation in
B3 = 〈σ1, σ2 : σ1σ2σ1 = σ2σ1σ2〉 leaves its closure invariant. (Here σ1, σ2 are the
standard generators of B3.) There is an isomorphism B3

∼= 〈a, b : a3 = b2〉 where
a = σ1σ2 and b = σ1σ2σ1. The center of B3 is generated by a3 with B3/〈a3〉 ∼=
Z/2 ∗ Z/3. We will use σ̄ to denote the image of a braid σ in B3/〈a3〉. Thus ā has
order 3 and b̄ has order 2. In particular,

σ̄1 = ā−1b̄,

σ̄2 = b̄ā2.

The inverse image L̂ of L ⊂ V ⊂ L(p̄, q̄) under the universal cover S3 → L(p̄, q̄)
is the closure of the braid σp̄a−3q̄. �

Claim 5.5. L̂ is not the trivial knot.

Proof of Claim 5.5. If L̂ is trivial then σp̄a−3q̄ is conjugate to σ1σ2, σ
−1
1 σ−1

2 , or
σ1σ

−1
2 ([BiMe, Classification Theorem, page 27]). The first two cases can be ruled

out since they would imply that the exterior of L̂ in the inverse image of V in S3

is not hyperbolic. On the other hand, in the third case we have σ̄p̄ = σ̄1σ̄
−1
2 =

ā2b̄āb̄ ∈ B3/〈a3〉 ∼= Z/2 ∗ Z/3. But this is impossible since ā2b̄āb̄ is not a proper
power. �

Claim 5.6. τα preserves the orientation of the Seifert fibres of M(α). In particular,

L̂ is a union of fibres in some Seifert structure on S3 and p is odd.

Proof of Claim 5.6. Suppose otherwise and consider the p̄-fold cyclic cover M̃p̄ →
M constructed in Lemma 5.3. The base orbifold S2(m,m, . . . ,m) of M̃(α) has p̄
cone points, each of order m ≥ 3 by Lemma 5.2(3). If p̄ ≥ 4, Lemma 5.3(3) implies

that M̃p̄ contains a closed essential surface, contrary to [CJR] or [FH]. Hence p̄ is 2
or 3, and therefore as p > 3, p is 4 or 6. Identity (5.2.5) then combines with parts
(2) and (3) of Lemma 5.2 to show that |Lα| = 2 and m is odd. It follows that each
component of Lα is isotopic to the core of a Heegaard solid torus in L(p̄, q̄) (cf.

Figure 1). In particular this is true of L = Lα \Kα. It follows that L̂ is a trivial
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knot, contrary to the conclusion of Claim 5.5. Thus τα preserves the orientation of
the Seifert fibres of M(α). The remaining conclusions are a consequence of Lemma
5.1. �

Claim 5.6 implies that p̄ = p and q̄ = 2q.

Since L is a hyperbolic link in V , L̂ is a hyperbolic link in the inverse image of
V in S3. Thus the Schreier normal form for σpa−6q is generic (cf. [FKP, Theorem

5.2]). On the other hand, by Claim 5.6, L̂ is not a hyperbolic link in S3, so [FKP,
Theorem 5.5] implies that σpa−6q is conjugate in B3 to a braid of the form σc

1σ
d
2

where c, d ∈ Z \ {0}. We must have min{|c|, |d|} = 1, as otherwise L̂ would be a
connected sum of non-trivial torus links, contrary to the conclusion of Claim 5.6.
Thus σpa−6q is conjugate to σc

1σ
ε
2 for some ε ∈ {±1} and non-zero c. The following

claim completes the proof of Lemma 5.4.

Claim 5.7. If p > 3, σpa−6q is not conjugate to σc
1σ

ε
2 for any ε ∈ {±1}.

Proof of Claim 5.7. Suppose that σpa−6q is conjugate to σc
1σ

ε
2 for some ε ∈ {±1}.

Projecting into B3/〈a3〉 shows that σ̄c
1σ̄

ε
2 is a pth-power in that group. The latter

condition is invariant under conjugation and taking inverse, so without loss of
generality we can suppose that ε = 1. Now

σ̄c
1σ̄2 = (ā−1b̄)c(b̄ā−1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(b̄ā)|c|(b̄ā−1) if c ≤ 0,
ā if c = 1,
ā−1b̄ā if c = 2,
(ā−1b̄)ā−1(ā−1b̄)−1 if c = 3,
(ā−1b̄ā)(āb̄)(ā−1b̄)c−4(ā−1b̄ā)−1 if c > 3.

Consideration of the normal form for elements of Z/2 ∗ Z/3 shows that the only
values of c which give proper powers in B3/〈a3〉 are c = 1, 2, or 3.

Say c = 1 or 3. Then up to conjugation, σ̄p = ā±1, and therefore σ̄ = ā±1. Hence
σ = a3k±1 for some integer k. But then it is easy to see that L is boundary-parallel
in V , contrary to the fact that V \ L is hyperbolic.

Next suppose that c = 2. Then σ̄p = b̄ up to conjugation, and therefore the same
is true of σ̄. As a3 = b2, σ = b2n+1 for some integer n. Then L ⊂ int(V ) has two
components. One is a core curve K0 of V , while the other is isotopic in V \K0 into
∂V . It follows that there is an essential annulus properly embedded in the exterior
of L in int(V ). But this contradicts the fact that L is a hyperbolic link in V .

� (of Lemma 5.4)

Recall that t+1 is the number of tight components of Φ̆+
1 (cf. [BGZ2, §6]).

Lemma 5.8. Suppose that Assumptions 5.1 hold. Then t+1 = 0. In particular,
M(β)F̂ is Seifert with base orbifold of the form A(a), where A is an annulus and
a ≥ 2.

Proof. Lemma 5.4 implies that F is not a fibre, and so Proposition 3.5 and Remark
3.6 show that the lemma holds as long as either M(α) is very small or Δ(α, β) > 4.
Assume then that M(α) is not very small and that Δ(α, β) = 4. The latter equality
combines with Lemma 5.1 to show that τα reverses the orientations of the fibres of
M(α). But then Lemma 5.2(1) implies thatM(α) is a prism manifold, contradicting
our assumption that M(α) is not very small. Thus the lemma holds. �
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Lemma 5.9. Suppose that Assumptions 5.1 hold. Then there are coprime integers
a ≥ 2 and b as well as a 3-braid σ such that L is isotopic to the link depicted in
Figure 3.

σ ab

Figure 3

Proof. By Lemma 5.8, M(β)F̂ is Seifert with base orbifold of the form A(a), where
A is an annulus and a ≥ 2. Consider the involution τ̂ : M(β)F̂ → M(β)F̂ induced

by τβ . Note that M(β)F̂/τ̂ = V (β̄)F̂ /τ̂
∼= (S2 × S1)S2×{x} ∼= S2 × I. Now M(β)F̂

has a unique Seifert structure which we can suppose is τ̂ -invariant. Let τ̂ be the
induced involution on A(a). Note that τ̂ cannot preserve orientation, as otherwise
M(β)F̂/τ̂

∼= S2×I would admit a Seifert structure. Thus it reverses orientation, and
since it fixes the cone point and leaves each boundary component invariant, it must
be reflection along a pair of disjoint properly embedded arcs, each of which runs
from one boundary component to the other. The quotient A(a)/τ̂ is a disk whose
boundary contains two disjoint, compact arcs, each a reflector arc, one of which
contains the Z/a cone point. It follows that the branch set in M(β)F̂/τ̂

∼= S2 × I
consists of a 2-braid and an a

b -rational tangle running from one end to the other
which are separated by a properly embedded vertical annulus. See Figure 4.

a

b
S Ix

2

Figure 4

We claim that Kβ ∩ M(β)F̂ is a component of the 2-braid. To see this, first

note that by Lemma 5.8, Φ̆+
1 has no tight components. Next we refer the reader

to the final paragraph of the proof of [BGZ2, Lemma 7.9]. It is shown there that
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MF = X+ is obtained by attaching a solid torus V to the product of an interval I
and a once-punctured annulus A∗, where V ∩ (A∗×I) is a pair of annuli which have
winding number a in V and components of ∂A∗ × I in A∗ × I. This decomposition
is invariant under the restriction of τ̂ to MF , and it is easy to see that the quotient
of V contains the a

b -rational tangle. Since (∂M)∂F ⊂ A∗ × I is disjoint from V ,
it follows that Kβ ∩M(β)F̂ is a component of the 2-braid. Thus L ∩MF /τ is as
depicted in Figure 5, where δ is a 3-braid. It follows that there is a 3-braid σ such
that L is as depicted in Figure 3. �

a
b

Ix
2

δ

D

Figure 5

5.4. The lens space case. The methods of this paper can be used to give a new
proof of Ken Baker’s theorem: if M contains a once-punctured essential genus 1
surface of boundary slope β and M(α) is a lens space, then Δ(α, β) ≤ 3 [Ba]. We
begin the proof here and complete it in §8.

Lemma 5.10. Suppose that Assumptions 5.1 hold. If π1(M(α)) is cyclic, then
p = 5, F is not a fibre, and Lα is either the core of a solid torus of a genus one
Heegaard splitting of L(5, 2q) or the boundary of a Möbius band spine of a Heegaard
solid torus of L(5, 2q).

Proof. We know that F is not a fibre (Lemma 5.4), so p = Δ(α, β) ≤ 6 by Proposi-
tion 3.5. As Δ(α, β) = p ≥ 4, M(α)/τα ∼= L(p̄, q̄) is not S3. Hence by Lemma 4.2,
Lα is a union of Seifert fibres of some Seifert fibring of L(p̄, q̄). Since L is hyperbolic
in V , Kα cannot be contained in Lα. Thus p is odd by (5.2.3), so p = p̄ = 5, q̄ = 2q,
and L = Lα. Lemma 4.2(1) then shows that Lα is either the core of a solid torus of
a genus one Heegaard splitting of L(5, 2q) or the boundary of a Möbius band spine
of a Heegaard solid torus of L(5, 2q). �

Remark 5.11. We can complete the proof of Baker’s result mentioned above at this
point by invoking a theorem of Sangyop Lee [L3] which states that the distance
between a toroidal filling slope and a lens space filling slope is at most 4. Never-
theless, we give an independent proof that Δ(α, β) 	= 5 (and so Δ(α, β) ≤ 3) in §8
below.
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DEHN FILLINGS OF KNOT MANIFOLDS 359

5.5. Reduction of the proof of Theorem 1.3. In this section we reduce the
proof of Theorem 1.3 to several problems concerning links. These will be solved
in the subsequent sections of the paper. We begin with a slight sharpening of our
upper bound for Δ(α, β).

Lemma 5.12. If Assumptions 5.1 hold, then Δ(α, β) < 8.

Proof. By Lemma 5.4, F is not a fibre in M . Hence Δ(α, β) ≤ 8 by Proposition 3.5
(or [LM]). Suppose that Δ(α, β) = 8. Then M(α) is not very small by Proposition
3.5. Further, Proposition 3.3 implies that MF is a genus two handlebody, so we can
construct an involution τ as above. Then Lemma 5.1 implies that τα reverses the
orientations of the Seifert fibres of M(α). Parts (1) and (3) of Lemma 5.2 imply
that M(α) has a Seifert structure with base orbifold S2(4, 4,m), where m ≥ 3 is

odd. Let M̃2 → M be the 2-fold cover constructed in Lemma 5.3. By part (2) of

that lemma, M̃2(α̃) is Seifert with base orbifold S2(4, 4,m,m). But then Lemma
5.3(3) implies 4 = 8

2 ≤ 3, which is false. Thus Δ(α, β) 	= 8. �

Lemma 5.13. Suppose that Assumptions 5.1 hold and that Δ(α, β) = 4. Then
M(α) is a prism manifold.

Proof. Since Δ(α, β) is even, M(α) is not a lens space (Lemma 5.10), and so Lemma
5.1 implies that τα reverses the orientations of the fibres of M(α). Lemma 5.2(1)
now implies that M(α) is a prism manifold. �

Given the last two lemmas, to complete the proof of Theorem 1.3 under Assump-
tions 5.1, we must consider the possibility that Δ(α, β) ∈ {5, 6, 7} besides the case
when Δ(α, β) = 4 and M(α) is a prism manifold. We do this by comparing the
constraints obtained above on the branch sets L and Lα:

• L lies in V as depicted in Figure 3 (Lemma 5.9);
• whenM(α) is not a lens space and τα preserves the orientation of the Seifert
fibres of M(α), then Δ(α, β) is odd and Lα is the union of at most three
fibres of some Seifert structure on L(p̄, q̄) (Lemma 5.1);

• when M(α) is not a lens space and τα reverses the orientation of the Seifert
fibres of M(α), then Lα lies in some Heegaard solid torus of L(p̄, q̄) as
depicted in Figure 1 (Lemma 4.4);

• when M(α) is a lens space, then Δ(α, β) = 5 and Lα is either the core of
a Heegaard solid torus of L(5, 2q) or the boundary of a Möbius band spine
of a Heegaard solid torus of L(5, 2q) (Lemma 5.10).

The proof of Theorem 1.3 therefore reduces to proving the following claims:

(1) If τα preserves the orientation of the Seifert fibres and M(α) is not a lens
space, then Δ(α, β) = 5 and (M ;α, β) is homeomorphic to (Wh(−3/2);
−5, 0).

(2) The links contained in the universal cover S3 of L(7, q̄) which are depicted
in Figure 17 and Figure 18 are not equivalent when Δ(α, β) = 7, |L| = 1,
m is odd, and n ≡ 1 (mod 2).

(3) The link depicted in Figure 3 considered as lying in a Heegaard solid torus
in L(5, 2q) is not isotopic to either the core of a Heegaard solid torus or the
boundary of a Möbius band spine of a Heegaard solid torus.

(4) The links contained in a Heegaard solid torus in L(3, q̄) depicted in Figure
1 and Figure 3 are not equivalent.
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(5) The links contained in the universal cover S3 of L(5, q̄) which are depicted
in Figure 26 and Figure 27 are not equivalent when Δ(α, β) = 5, |L| = 1,
m is odd, and n ≡ 1 (mod 2).

(6) Δ(α, β) = 4 and M(α) is a prism manifold if and only if (M ;α, β) ∼=
(Wh(−2n±1

n );−4, 0) for some integer n with |n| > 1.

These will be proved in §6, §7, §8, §9, §10 and §12, respectively.

6. The case where τα preserves the orientation of the Seifert fibres,

M(α) is not a lens space, and Δ(α, β) ∈ {5, 7}
In this section we suppose that Assumptions 5.1 hold and show that if τα pre-

serves the orientation of the Seifert fibres, M(α) is not a lens space, and Δ(α, β) ∈
{5, 7}, then Δ(α, β) = 5 and (M ;α, β) is homeomorphic to (Wh(−3/2);−5, 0).

By hypothesis, M(α) is small Seifert with exactly three singular fibres. It is
not a prism manifold by [L2] and so has a unique Seifert structure. Recall that
M(α)/τα = V (ᾱ) is the lens space L(p̄, q̄) = L(p, 2q) and the branch set of τα in
L(p, 2q) is a link denoted by Lα. As p is odd, Lα = L (cf. (5.2.5)).

Suppose that Lα is a Seifert link with respect to the induced Seifert fibration on
L(p, 2q) = M(α)/τα. We need to show that p = 5 and (M ;α, β) is homeomorphic
to (Wh(−3/2);−5, 0).

By Lemma 5.1, at least one component of L is a regular fibre of L(p, 2q). Let K
be such a component and denote by X the exterior of L in L(p, 2q). Then X has
the induced Seifert fibration with |∂X| = |L| boundary components, each a torus.
Let TK be the component of ∂X corresponding to the knot K.

Lemma 6.1. There is an essential separating vertical annulus (A, ∂A) ⊂ (X,TK)
which cuts X into two components X1 and X2 such that each Xi is either a torus
cross interval or a fibred solid torus whose core is a singular fibre of X of order
larger than 2.

Proof. The lemma follows from Lemma 4.3 and its proof. Let τ̄α be the induced
map on the orbifold S2(a, b, c) of M(α) where each of a, b, c is ≥ 2. Then τ̄α is
either the identity or an involution with two fixed points. Let σ1, σ2, σ3 denote the
singular fibres of M(α) and let their orders be a, b, c, respectively.

First assume that τ̄α is the identity map. Then Lemma 4.3(1) implies that at
least one of a, b, c, say a, is 2 and the fixed point set of τα in M(α) is the union of
those σi with even orders. In particular, σ1 belongs to the fixed point set of τα and
its image in L(p, 2q) is a regular fibre. Note that if σ2, respectively σ3, does not
belong to the fixed point set of τα, then b, respectively c, is odd and the image of
σ2, respectively σ3, in L(p, 2q) is a fibre of L(p, 2q) of order b, respectively c. Hence
the sum of |∂X| = |L| and the number of the singular fibres of X equals 3. Since
the surface underlying the base orbifold of X is planar, the lemma follows in this
case.

Next assume that τ̄α is an involution. Then two of the singular fibres of M(α),
say σ1 and σ2, have the same order a = b. Both are mapped to a common singular
fibre in L(p, 2q) of order a. Since M(α) is not a prism manifold, a = b > 2.

By Lemma 4.3(2), the fixed point set of τα in M(α) consists of a regular fibre
and possibly the remaining singular fibre σ3. If σ3 does not belong to Fix(τα), then
its image in L(p, 2q) is a singular fibre of order 2c ≥ 4 and therefore the sum of
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|∂X| = |L| and the number of the singular fibres of X again equals 3. As in the
previous case, the lemma follows from this. �

Recall that Kα is the core circle of the filling solid torus in V (ᾱ) = L(p, 2q).
The exterior Y of Kα in X is also the exterior of L in V and so is hyperbolic. Let
TV = ∂V ⊂ ∂Y .

The solid torus V has a meridian disk D which intersects L in three points such
that P = D ∩ Y is an essential thrice-punctured disk in Y . Let dV = ∂P ∩ TV and
let c1, c2, c3 be the three components of ∂P contained in ∂Y \ TV . Note that dV
has the slope β̄ in TV , and each ci is a meridian curve of some component of L.

Among all annuli satisfying the conditions of Lemma 6.1, we choose one, denoted
A, which intersects TV in the minimal number of components. Since Y is hyperbolic,
A∩TV is non-empty. The surface Q = A∩Y is essential in Y . Since A is separating
in X, ∂Q ∩ TV consists of an even number, say n, of simple essential loops in TV

of slope ᾱ. Let a1, a2 be the two components of ∂Q in TK , and let b1, ..., bn be
the components of ∂Q in TV numbered so that they occur successively around dV .
Each ai is a Seifert fibre of X, and each bj has slope ᾱ on TV . If cj is a meridian
curve of K, then the distance between cj and ai is 1 since K is a regular fibre of
L(p, 2q).

Now define the labeled intersection graphs ΓP and ΓQ as usual. We may consider
dV , c1, c2, c3, a1, a2, b1, ..., bn as the boundaries of the fat vertices of these graphs.
Each bi, i = 1, ..., n, has valency p = Δ(ᾱ, β̄) = Δ(α, β), and the valency of dV is
np. Note that the valency of a1 is equal to the valency of a2 and is equal to the
number of ci’s which are meridians of K. Further, the valency of ci is either 2 or 0
depending on whether or not ci is a meridian curve of K.

We call the edges in ΓQ connecting some bi to some bj B-edges, and call the
edges in ΓP connecting dV to itself D-edges. Similarly we define A-edges, C-edges,
AB-edges, and CD-edges. Note that an arc in P ∩Q is a B-edge in ΓQ if and only
if it is a D-edge in ΓP , is an A-edge in ΓQ if and only if it is a C-edge in ΓP , and
is an AB-edge in ΓQ if and only if it is a CD-edge in ΓP .

Every D-edge is positive, so by the parity rule, every B-edge is negative. By
construction, no D-edge in ΓP is boundary parallel in P . Thus there are at most
three different D-edges in the reduced graph ΓP (cf. Figure 6).

dV

c

1

2

3

c

c

Figure 6. The maximal possible D-edges in ΓP

Lemma 6.2. There can be no S-cycle in ΓP consisting of D-edges.
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Proof. Suppose otherwise that {e1, e2} is an S-cycle in ΓP consisting of D-edges
with label pair {j, j + 1}. We may assume that the bigon face E between e1 and
e2 lies on the X1-side of A.

Let H be the portion of the filling solid torus of L(p, 2q) lying in X1 which

contains b̂j and b̂j+1. In ΓQ, e1∪ bj ∪ e2∪ bj+1 cannot be contained in a disk region
D∗ of A as otherwise a regular neighbourhood of D∗ ∪ E ∪ H in X1 would be a
punctured projective space. Thus e1 ∪ bj ∪ e2 ∪ bj+1 contains a core circle of A (cf.
Figure 7).

b

b

a

a1

2

A

e
e1

2

j

j+1

Figure 7. The corresponding cycle {e1, e2} in ΓQ

Let U be a regular neighbourhood of E∪H∪A in X1. Then U is a solid torus and
the frontier of U in X1 is an annulus (A′, ∂A′) ⊂ (X,TK) for which ∂A′ is parallel
to ∂A in TK and which intersects TV in n− 2 components. By construction, A′ is
inessential in X1 and therefore X1 cannot be a torus cross interval. It follows that
X1 is a fibred solid torus of X. Since A′ has winding number 2 in the solid torus
U , the singular fibre of X1 has order 2, contrary to Lemma 6.1. Thus the lemma
holds. �

Note that ΓP has at most six CD-edges and thus ΓP has at least (np − 6)/2
D-edges, so there is a family of at least (np− 6)/6 mutually parallel D-edges. By
Lemma 6.2 we have (np − 6)/6 ≤ n/2. Hence n ≤ 6/(p − 3), and therefore p = 5
and n = 2. If ΓP has a C-edge, it would have only one family of parallel D-edges,
and this family would have at least three edges, contrary to the fact that no two
D-edges can be parallel in ΓP by Lemma 6.2. Also, ΓP has at least four CD-edges,
as otherwise there would be four D-edges, two of which would form an S-cycle.
Thus ΓP has either six or four CD-edges.

We first consider the case when there are exactly four CD-edges. In this case
we have three D-edges in ΓP , no two of which can be parallel. Hence ΓP may be
assumed to be as illustrated in Figure 8, i.e. c1 and c2 are contained in TK and c3
is contained ∂X \ TK . Thus |L| = |∂X| = 2, and we may assume that X1 is a solid
torus and X2 is a torus cross interval. In particular, c3 is contained in X2.

Consider the face f given in Figure 8. From this figure we see that f and c3
are on the same side of A (since A is separating in X), and thus f is contained in
X2. Let T∗ be the component of ∂X2 containing A, and H that part of the filling
solid torus of L(p, 2q) contained in X2. We use ∂0H to denote ∂H ∩ TV . It is
evident that the boundary ∂f of f is contained in T∗∪∂0H. Also note that ∂f ∩T∗
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Figure 8. ΓP when Δ(α, β) = 5, n = 2 and 4 CD-edges

cannot be contained in a disk in T∗, as otherwise X2 would contain a projective
space as a summand. Thus ∂f ∩ T∗ is contained in an annulus A∗ of T∗. A regular
neighbourhood W of H ∪ f ∪ T∗ in X2 is a Seifert fibred space whose base orbifold
is an annulus with a cone point of order 2. Since X2 is a torus cross interval, the
frontier of W in X2 is an incompressible torus in X2. But this torus cannot be
parallel to T∗ in X2, contradicting the fact that X2 is a torus cross interval. Thus
the case when there are exactly four CD-edges does not arise.

We now know that ΓP must have six CD-edges. Hence there are exactly two
D-edges in ΓP and they are not parallel. It follows that ΓP is as illustrated in
Figure 9 (1) or (2). (Without loss of generality, we may assume that the labels
around dV are as shown in these figures and that the vertices c1, c2 and c3 are
numbered as given there.) Therefore L = K and both X1 and X2 are solid tori.

We are going to show that part (1) of Figure 9 cannot arise and that in the case
of part (2) of Figure 9 the dual graph ΓQ may be assumed to be as shown in part
(6) of Figure 10.
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Figure 9. ΓP when p = 5, n = 2 with 6 CD-edges

Lemma 6.3. The graph ΓP cannot be as shown in part (1) of Figure 9.
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Proof. Suppose otherwise that ΓP is given by part (1) of Figure 9. Since A is a
separating annulus, the faces f1, f2 of ΓP lie on the same side of A, say in X1, and
the faces g1, g2 lie in X2.

Let H be the part of the filling solid torus of L(p, 2q) contained in X1 and set
∂0H = ∂H ∩TV . The boundary edges of f1 consist of two CD-edges e1, e2 and one
D-edge e3. Without loss of generality, we may assume that the label of the edge
e1 at the vertex c1 is 2. In ΓQ, the boundary edges of f1 may be assumed to be as
illustrated in part (1) of Figure 10. Note that the boundary ∂f1 of f1, including the
corners, lies in ∂X1∪∂0H. Further, ∂f1∩∂X1 is contained in an annulus A∗ of ∂X1

whose slope has distance 1 from that of ∂A. Note as well that ∂f1∩ (∂X1 \A) is an
essential arc in the annulus (∂X1 \A). A regular neighbourhood U of H ∪ f1 ∪A∗
in X1 is a solid torus whose frontier in X1 is an annulus A# of winding number 2
in U . Thus A# must be parallel to ∂X1 \ A∗ through X1 \ U . It follows that the
fundamental group of X1 is carried by U and thus has presentation

〈x, t : x2t = 1〉,
where we take a fat base point in A containing b1 ∪ b2 ∪ (∂f1 ∩A)∪ (all AB-edges),
x is a based loop formed by a cocore arc of ∂0H, and t is a based loop formed by
a cocore arc of ∂X1 \A.

Now consider the face f2. We claim that the label of the edge e4 at the vertex
c3 cannot be 2. Otherwise in ΓQ, the boundary edges of f2, e4 and e5 would be as
depicted in part (2) or part (3) of Figure 10. In either case, the face f2 would add
the relation xts = 1 to the presentation for π1(X1) above, where s is the element
represented by a core circle of the annulus A. Thus the fundamental group of the
solid torus X1 would be generated by s = x. But s can be considered as a regular
fibre of X. So the singular fibre of X1 would have order one, which contradicts
Lemma 6.1.

Thus the label of e4 at c3 is 1. It follows that in ΓQ, the edges e4 and e5 are as
shown in part (4) of Figure 10, and the face f2 adds the relation xt−1s = 1 to the
presentation for π1(X1), where s is the element represented by a core circle of the
annulus A. Therefore s = x−3. Since s can be considered as a regular fibre of X
and x can be considered as a core circle of the solid torus X1, the singular fibre in
X1 has order 3.

By the same argument, we see that the existence of the faces g1 and g2 in part
(1) of Figure 9 implies that the singular fibre in X2 has order 3. Hence the two
singular fibres of X both have order 3, which implies that the order of the lens
space L(p, 2q) is divisible by 3. But the lens space has order p = Δ(α, β) = 5,
yielding a contradiction. So part (1) of Figure 9 cannot arise. �

So ΓP must be as shown in part (2) of Figure 9. Note that the faces f1, f2, f3 lie
on the same side of A, say in X1, and the faces g1, g2, g3 in X2. Arguing similarly as
in the proof of Lemma 6.3, we see that in the dual graph ΓQ the edges e1, e2, e3, e4
and e5 may be assumed to be as shown in part (4) of Figure 10.

We now consider the face g3. Note that ∂g3 must be contained in an annulus
A′ of ∂X2 whose slope has distance 1 from that of ∂A and that ∂g3 ∩ (∂X2 \ A)
is an essential arc in the annulus (∂X2 \ A). Thus e8 is parallel to e3 in ΓQ. By
combining this with the argument given in Lemma 6.3, we see that the graph ΓQ

must be as depicted in part (5) or part (6) of Figure 10.

Lemma 6.4. Figure 10(5) is impossible.
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Figure 10. About the graph ΓQ

Proof. In Figure 9(2), let p0, p1, p2, p3, p4 be the points labeled 1 on dV , in cyclic or-
der around dV . These are points of intersection of b1 with dV on the torus TV . It fol-
lows that the corresponding points appear around b1 in the order p0, pd, p2d, p3d, p4d,
for some d coprime to Δ = Δ(α, β) = 5. The point pi is the endpoint of an edge
ej(i). Then, denoting pi by the label j(i) of the corresponding edge, the cyclic order
of the pi’s around dV in Figure 9(2) is 28753. In the graph ΓQ in Figure 10(5),
the order of the corresponding points is 82753. Since these cyclic orderings are
not related in the manner described above, ΓQ cannot be as illustrated in Figure
10(5). �

Remark 6.5. In Figure 10(6) the order is 27385, which is of the required form, with
d = 2.

So far we have shown that p = Δ(α, β) = 5 and the graphs ΓP and ΓQ must be as
shown in part (2) of Figure 9 and part (6) of Figure 10, respectively. In the rest of
this section we are going to show that these conditions determine the triple (M,α, β)
uniquely up to homomorphism, and thus it must be the triple (Wh(−3/2);−5, 0).
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The surface Q separates Y into Y1 and Y2, say, where Yi ⊂ Xi, i = 1, 2. Let N
be a regular neighbourhood of TV ∪TK∪P ∪Q in Y , and let ∂0N = ∂N \(TV ∪TK).
Then ∂0N = ∂1N ∪ ∂2N2, where ∂iN ⊂ Yi, i = 1, 2.

Lemma 6.6. For i = 1 and 2, ∂iN has two components, each a 2-sphere.

Proof. By Remark 6.5, the curves dV , b1, b2 on the torus TV are as shown in Figure
11. They decompose TV into rectangles R1, . . . , R5, S1, . . . , S5, where the Ri’s lie
in Y1 and the Si’s in Y2. In Figure 11 a point of intersection of b1 ∪ b2 with dV is
labeled with the edge of which it is an endpoint. Similarly, the curves a1, a2, c1, c2, c3
decompose the torus TK into rectangles T1, T2, T3, U1, U2, U3, where the Tj ’s lie in
Y1 and the Uj ’s in Y2. See Figure 12.
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The faces of the graph ΓP are f1, f2, f3, g1, g2, g3, where the fi’s lie in Y1 and
the gi’s lie in Y2; see Figure 9(2). Let the faces of ΓQ be h1, . . . , h6, as shown in
Figure 10(6).

The regular neighbourhood N is the union of product neighbourhoods TV ×
[0, 1], TK × [0, 1], P × [−1, 1] and Q × [−1, 1], in the obvious way, where TV =
TV ×{0}, TK = TK ×{0}, P = P ×{0}, and Q = Q×{0}. Corresponding to Ri is a
2-cell contained in (TV ×{1})∩ ∂0N , which we continue to denote by Ri; similarly
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for Si, Tj and Uj . A face fi of ΓP gives rise to two 2-cells f+
i ⊂ (P × {1}) ∩ ∂0N

and f−
i ⊂ (P × {−1}) ∩ ∂0N , and similarly for the gi’s and the faces hk of ΓQ.

Since h+
k (say) ⊂ ∂1N and h−

k ⊂ ∂2N , there will be no confusion in denoting h±
k

by hk.
By carefully examining the identifications between these various 2-cells one sees

that ∂1N has two components Σ1 and Σ′
1, and ∂2N has two components Σ2 and

Σ′
2, composed of the following 2-cells:

Σ1: f+
1 , f−

3 , h1, h2, h3, R2, R5, T1,
Σ′

1: f−
1 , f+

2 , f−
2 , f+

3 , h4, h5, h6, R1, R3, R4, T2, T3,
Σ2: g+1 , g

−
2 , h1, h3, S1, U1,

Σ′
2: g−1 , g

+
2 , g

+
3 , g

−
3 , h2, h4, h5, h6, S5, S2, S3, S4, U2, U3.

The precise patterns of identification are shown in Figures 13, 14, 15 and 16,
respectively. In particular, Σ1,Σ

′
1,Σ2,Σ

′
2 are 2-spheres. �

Remark 6.7. One can see that Σ1,Σ
′
1,Σ2,Σ

′
2 are 2-spheres without completely

determining the identification patterns of their constituent 2-cells, by means of
the following Euler characteristic computation.

First note that

χ(P ∪Q) = χ(P ) + χ(Q)− χ(P ∩Q) = (−2) + (−2)− 8 = −12.

Also, (P ∪Q)∩TV consists of three circles, meeting in a total number of 10 points.
So χ((P ∪Q) ∩ TV ) = −10. Similarly, χ((P ∪Q) ∩ TK) = −6. Therefore

χ(N) = χ((P ∪Q) ∪ (TV ∪ TK)) = (−12) + 0− ((−10) + (−6)) = 4.

Hence χ(∂N) = 8.
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Now one can easily check that each of ∂1N and ∂2N has at most two components.
Hence each must have exactly two components, both 2-spheres.

Proof that (M ;α, β) is homeomorphic to (Wh(−3/2);−5, 0). Since Y is irreducible
the components of ∂0N bound 3-balls in Y . Hence the triple (Y ;P,Q) is uniquely
determined up to homeomorphism, by Figures 9(2) and 10(6). Since the curves cj
are meridians of L, the pair (V, L), together with the slopes ᾱ, β̄, is uniquely deter-
mined. Passing to the double branched cover, we have that (M ;α, β) is uniquely
determined.

In [MP, Table A3] it is shown that −5-filling on the hyperbolic manifold
Wh(−3/2) is Seifert fibred with base orbifold S2(2, 3, 3), while 0-filling gives a man-
ifold containing a non-separating torus. In fact, it is easy to see thatWh(−3/2) con-
tains an essential once-punctured torus with boundary slope 0. Hence (M ;α, β) ∼=
(Wh(−3/2);−5, 0). �

7. The case Δ(α, β) = 7 and the involution τα reverses

the orientations of the Seifert fibres of M(α)

In this section we suppose that Assumptions 5.1 hold and show that it is impos-
sible for Δ(α, β) to be 7 and for τα to reverse the orientations of the Seifert fibres
of M(α). We assume otherwise in order to obtain a contradiction.

A tangle will be a pair T = (R, t), where R is S3 minus the interiors of a disjoint

union of 3-balls and t is a properly embedded 1-manifold. Let T̃ = (X, t̃ ) be the
double branched cover of T . In our examples each boundary component S of R will
meet t in either 4 or 6 points, and hence the corresponding boundary component

S̃ of X is either a torus or a surface of genus 2, respectively.
An essential disk in T is a properly embedded disk D in R such that either

(i) D ∩ t = ∅ and ∂D does not bound a disk in ∂R \ t, or
(ii) D meets t transversely in a single point and ∂D does not bound a disk in

∂R containing a single point of t.

It follows from the Z/2-equivariant Disk Theorem ([GLi], [KT], [YM]) that X

contains an essential disk D̃, i.e., a properly embedded disk such that ∂D̃ is essential
in ∂X, if and only if T contains an essential disk D.

If S is a boundary component of R such that |S ∩ t| = 4, a marking of S is
a specific identification of (S, S ∩ t) with (S2, {NE,NW,SW,SE}). We can then
attach a rational tangle R(γ) to T along S with respect to this marking, where
γ ∈ Q ∪ {1/0}.

By Lemma 4.4(1), M(α) = M(7/q) has base orbifold S2(7, 7,m) for some odd

integer m ≥ 3. As in Lemma 5.3, let M̃7 be the 7-fold cyclic cover of M . Then ∂M̃7

is a single torus, and both α and β lift to slopes α̃ and β̃ in ∂M̃7, i.e. M̃7(α̃) is a

7-fold cyclic cover of M(α) and M̃7(β̃) is a 7-fold cyclic cover of M(β). Furthermore

the involution τ on M lifts to an involution τ̃ on M̃7 and Ṽ = M̃7/τ̃ is a 7-fold

cyclic cover of M/τ = V . So Ṽ is a solid torus. The involution τ̃ extends to an

involution τ̃α̃ on M̃7(α̃) such that M̃7(α̃)/τ̃α̃ = S3 is the 7-fold cyclic cover of the
lens space M(α)/τα = L(7, 2q). Let L7 be the inverse image of L in S3. Then
by Lemma 5.9, L7 is as shown in Figure 17, where the box with an integer r in
it stands for r full horizontal twists, and by Lemma 4.4(2), L7 is also as shown in
Figure 18, where the box with an integer r′ in it stands for r′ full horizontal twists.
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Since p = 7, n is odd by Lemma 5.2(3). Hence from Figure 18 we see that L7 is a
single knot. So to get a contradiction, we just need to show that the two knots K
and K ′ shown in Figures 17 and 18, respectively, are inequivalent.

ab ab ab ab ab ab abσσσσσσσ

r

Figure 17

m____n m__n m__n m__n m__n m____nm____n m____n m____n m____n m____n

r'

Figure 18

Theorem 7.1. The knots K and K ′ are inequivalent.

Let W,W ′ be the double cover of S3 branched over K,K ′, respectively. We
shall show that W and W ′ are not homeomorphic. Note that W ′ is a Seifert fibred
manifold with base orbifold S2(m,m,m,m,m,m,m). We will examineW and show
that it cannot be such a Seifert manifold.

Let T = (R, t) be the tangle shown in Figure 19. Let the boundary components
of R be S, S1, S2, S3 as shown. Note that |t ∩ S| = 6 and |t ∩ Si| = 4, i = 1, 2, 3.

Let X be the double branched cover of T . Then ∂X = G
∐ ∐3

i=1 Ti, where G
is the double branched cover of (S, S ∩ t) and Ti is the double branched cover of
(Si, Si ∩ t), i = 1, 2, 3; thus G has genus 2 and the Ti are tori.

Remark 7.2. The permutation induced by σ takes 1 to 2 or 3, since K is connected.

Proposition 7.3. X(a/b, a/b, a/b) is either
(1) boundary-irreducible, or
(2) the boundary connected sum of two copies of a Seifert fibred manifold with

base orbifold D2(a, d), d > 1, or
(3) a handlebody of genus 2.

We prove Proposition 7.3 by successively filling along T1, T3 and T2.

Lemma 7.4. G is incompressible in X.

Proof. Because of Remark 7.2 above, the arrangement of the components of t with
respect to the boundary components of R is as illustrated schematically in Figure
20. It follows easily that T = (R, t) cannot contain any essential disk D with
∂D ⊂ S. �
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In the sequel, a “∗” will indicate that the corresponding boundary component is
left unfilled.

Lemma 7.5. G is incompressible in X(a/b, ∗, ∗).

Proof. There is an essential annulus A1 ⊂ R, disjoint from t, with one boundary
component in S and the other having slope 0/1 on S1; see Figure 21. A component
of the inverse image of A1 inX is an essential annulus with one boundary component
on G and the other having slope 0/1 on T1. Since Δ(a/b, 0/1) = a > 1, it follows
from [Sh] and Lemma 7.4 that G is incompressible in X(a/b, ∗, ∗). �

Lemma 7.6. G is incompressible in X(a/b, ∗, a/b).
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Proof. There is an essential annulus A3 ⊂ R(a/b, ∗, ∗) with one boundary compo-
nent on S and the other having slope 0/1 on S3. The result now follows as in the
proof of the previous lemma. �

Proof of Proposition 7.3. There is an essential disk in T (a/b , 0/1 , a/b), meeting
t(a/b, 0/1, a/b) in a single point; see Figure 22. Therefore G is compressible in
X(a/b, 0/1, a/b). Since Δ(a/b, 0/1) = a > 1, it follows from Lemma 7.6 and [Wu2]
that either G is incompressible in X(a/b, a/b, a/b) or there is an essential annulus
A ⊂ X(a/b, ∗, a/b) with one boundary component on G and the other having slope
r/s on T2, where Δ(r/s, 0/1) = Δ(r/s, a/b) = 1. We may assume the latter, in which
case, by Dehn twisting X(a/b, ∗, a/b) along A, we have that X(a/b, a/b, a/b) ∼=
X(a/b, 0/1, a/b). From Figure 22 we see that X(a/b, 0/1, a/b) is the boundary
connected sum of two copies of Y , the double branched cover of the tangle shown
in Figure 23.

The disk D shown in Figure 23 separates the tangle into two rational tangles
R,R′ and lifts to an annulus A ⊂ Y which separates Y into two solid tori U and
U ′, the double branched covers of R,R′, respectively. Note that A has a winding
number a in U . Also, it is easy to see (by Remark 7.2) that A is not meridional
on U ′. Hence Y is either a Seifert fibre space with base orbifold D2(a, d), for some
d > 1, or a solid torus, giving conclusions (2) and (3), respectively. �

Let Z be the double branched cover of the tangle (Q, s) shown in Figure 24.
Then ∂Z has one torus component and two genus two components.

Lemma 7.7. Z(a/b) has incompressible boundary.

Proof. For i = 0, 1, there is an annulus Ai ⊂ Q, disjoint from s, with one boundary
component on Si and the other having slope 0/1 on S, as shown in Figure 24. Since
Δ(a/b, 0/1) = a > 1, the result follows as in the proof of Lemma 7.5. �
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Note that filling (Q, s) along S with the rational tangle R(1/0) gives a product
tangle. Hence Z ∼= G× I − int N(C), where G is a surface of genus two and C is a
simple closed curve ⊂ G× {1/2}.

Proposition 7.8. The double branched cover W of (S3,K) either
(1) contains a separating incompressible surface of genus 2, or
(2) contains four disjoint tori, each cutting off a manifold which is Seifert fibred

over D2(a, d), d > 1, or
(3) has Heegaard genus at most 3.

Proof. From Figure 25 we see that W ∼= P ∪G Z(a/b) ∪G′ P ′, where P and P ′ are
copies of X(a/b, a/b, a/b).

Case (1) of Proposition 7.3, together with Lemma 7.7, gives conclusion (1).
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Figure 25

In Case (2) of Proposition 7.3, each of P , P ′ contains two disjoint tori, each
cutting off a manifold which is Seifert fibred over D2(a, d), and we have conclusion
(2).

In Case (3) of Proposition 7.3, P and P ′ are handlebodies of genus 2. Also, by
the remark after the proof of Lemma 7.7, Z(a/b) is obtained from G× I by Dehn
surgery on a curve in G × {1/2}. Hence W is obtained from a closed manifold
with a Heegaard splitting of genus 2 by a Dehn surgery on a curve in the Heegaard
surface. Since such a curve has tunnel number at most 2, W has Heegaard genus
at most 3. �

Proof of Theorem 7.1. To get a contradiction, suppose W ∼= W ′.
Recall that W ′ is the double branched cover of (S3,K ′) and is a Seifert fibred

space with base orbifold S2(m,m,m,m,m,m,m).
In Case (1) of Proposition 7.8, W ′ would contain a separating incompressible

surface of genus 2. This surface would have to be horizontal, and would then
separate W ′ into two twisted I-bundles. Thus W ′ would contain a non-orientable
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surface. But since W ′ is the double branched cover of a knot in S3, H1(W
′;Z/2) =

0, a contradiction.
In Case (2) of Proposition 7.8, the tori in question are incompressible (otherwise

W ′ would have base orbifold S2(a, d, r) for some r ≥ 1). Hence they are vertical in
W ′. But since W ′ has only 7 exceptional fibres, this is clearly impossible.

Finally, since W ′ has base orbifold S2(m,m,m,m,m,m,m), every irreducible
Heegaard splitting of W ′ is either horizontal or vertical by [MSch]. It also follows
from [MSch] that when W ′ has an irreducible horizontal Heegaard splitting, its
genus is larger than 6, and that any irreducible vertical Heegaard splitting of W ′

has genus 6. Hence Case (3) of Proposition 7.8 is impossible. �

8. The case Δ(α, β) = 5 and M(α) is a lens space

In this section we suppose that Assumptions 5.1 hold and show thatM(α) cannot
be a lens space, thus completing our proof of Baker’s theorem [Ba]. As we noted
at the end of §5, it suffices to show that the link depicted in Figure 3, considered
as lying in a Heegaard solid torus in L(5, 2q), is not isotopic to either the core of a
Heegaard solid torus or the boundary of a Möbius band spine of a Heegaard solid
torus.

The proof of the following lemma is straightforward.

Lemma 8.1. Let V1 be a Heegaard solid torus in a lens space L(p, q) and let K be
either a core of V1 or a (2, k)-cable of a core of V1. In the first case assume that p
is odd. Then the double branched cover of (L(p, q),K) is a lens space. �

Remark 8.2. The condition that p be odd in the first case is needed to guarantee the
existence of a double branched cover. Furthermore, in that case we have L(p, q) ∼=
L(p, 2r) ∼= L(p, 2r′), where 4rr′ ≡ 1 (mod p), and then the double branched cover
is homeomorphic to either L(p, r) or L(p, r′).

Lemma 8.3. Let Q be a once-punctured torus bundle over S1, with β the boundary
slope of the fibre, and let γ be a slope on ∂Q such that Q(γ) is reducible. Then
Δ(β, γ) = 1, 2, 3, 4 or 6.

Proof. We consider separately three possibilities for Q.
(1) Q is hyperbolic. Here Δ(β, γ) = 1 by [BZ1, Lemma 4.1].
(2) Q is Seifert fibred. In this case the monodromy of the bundle has finite order,

d, say, where d = 1, 2, 3, 4 or 6. If Q(γ) is reducible, then γ is the Seifert fibre slope,
and hence Δ(β, γ) = d.

(3) Q is toroidal and not Seifert fibred. Let T0 be the once-punctured torus fibre
of Q. Here the monodromy of the bundle is ± the rth power of a Dehn twist along
an essential loop x in T0, where r 	= 0 and +/− denotes composition with the
identity and the elliptic involution, respectively. The free group π1(T0) has basis
{x, y} with [∂T0] = [x, y] = xyx−1y−1. Then π1(Q) has presentation

(i) 〈x, y, t : t−1xt = x, t−1yt = yxr〉
or

(ii) 〈x, y, t : t−1xt = (xy)x−1(xy)−1, t−1yt = x(x−ry−1)x−1〉
in the +/− cases mentioned above. In both cases π1(∂Q) = 〈t, [x, y]〉.

For the proof in this case we will use the following lemma.
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DEHN FILLINGS OF KNOT MANIFOLDS 377

Lemma 8.4. If A ∗ B is a non-trivial free product quotient of π1(Q), then 4t =
0 ∈ H1(A ∗B).

Proof. Let A∗B be a quotient of π1(Q) with A 	= 1 	= B. We adopt the convention
that a word in x, y and t denotes the image in A ∗B of the corresponding element
of π1(Q).

Case (i). Here x and t commute. Hence either

(a) x and t are powers of some element z, or
(b) x and t lie in a conjugate of a factor.

In subcase (a) we have x = zm, t = zn, say. The second relation in the presen-
tation (i) gives z−nyzn = yzrm, and therefore y−1zny = zn−rm. By applying an
inner automorphism of A ∗ B we may assume that z is represented by a cyclically
reduced word in the factors. It follows that |n| = |n− rm|, otherwise we have two
cyclically reduced words, zn and zn−rm, of different lengths in the same conjugacy
class. Hence either m = 0 or y−1zny = z−n. If m = 0 then x = 1, and so A ∗ B
is a quotient of 〈y, t : t−1yt = y〉 ∼= Z × Z, a contradiction. If y−1zny = z−n then
y−1ty = t−1, and so 2t = 0 ∈ H1(A ∗B).

In subcase (b) we may assume, by applying an inner automorphism of A∗B, that
x, t ∈ A. Then y−1t−1y = xrt−1 ∈ A. But t−1 ∈ A, and hence y ∈ A. Therefore
B = 1, a contradiction.

Case (ii). Let s = txy. Then π1(Q) has the presentation

〈x, y, s : s−1xs = x−1, s−1ys = y−1x−r〉.
Since x and s2 commute, either

(a) x and s2 are powers of some element z, or
(b) x and s2 lie in a conjugate of a factor.

In subcase (a), suppose x = zm, s2 = zn. The second relation in the presentation
of π1(Q) implies s−2ys2 = xryxr, i.e. z−nyzn = zrmyzrm, giving y−1z(n+rm)y =
zn−rm. As in Case (i) we may assume that z is cyclically reduced, and hence
|n+ rm| = |n− rm|, i.e. either m = 0 or n = 0. If m = 0 then x = 1, and so A ∗B
is a quotient of the Klein bottle group 〈y, s : s−1ys = y−1〉, which is easily seen to
imply A ∗ B ∼= Z2 ∗ Z2. If n = 0 then s2 = 1. Hence 2s = 0 ∈ H1(A ∗ B). But in
H1(Q), s = t+ x+ y, 2x = 0, and 4y = 0. Therefore 4t = 0 ∈ H1(A ∗B).

In subcase (b) we may assume that x, s2 ∈ A. Hence s ∈ A. From the second
relation in the above presentation of π1(Q) we get (ys−1)2 = x−rs−2 ∈ A. Therefore
ys−1 ∈ A, and hence y ∈ A. This implies that B = 1, a contradiction. �

We now complete the proof of Lemma 8.3.
Let Δ = Δ(β, γ). Then π1(Q(γ)) is obtained from π1(Q) by adding the relation

tΔ[x, y]q = 1, for some integer q coprime to Δ. It is easy to see from the presen-
tations (i) and (ii) that H1(Q(γ)) 	∼= Z. Therefore Q(γ) is a non-trivial connected
sum and hence π1(Q(γ)) is a non-trivial free product. The relation tΔ[x, y]q = 1
shows that t has order Δ in H1(Q(γ)). Hence by Lemma 8.4, Δ divides 4. �

Now we complete the proof that M(α) cannot be a lens space under the as-
sumption that the conditions 5.1 hold. Suppose otherwise. By Lemma 5.10,
M(α)/τα ∼= L(5, 2q), L is either the core of a Heegaard solid torus in L(5, 2q)
or a (2, k)-cable of such a core, and furthermore L(5, 2q) has a genus 1 Heegaard
splitting V ∪V0 such that L is isotopic to a curve in V of the form shown in Figure
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3, where a and b are coprime integers with a ≥ 2 and σ is a 3-braid. We will show
that these conditions on L lead to a contradiction.

Remove from the solid torus V in Figure 3 the interior of the 3-ball B containing
the a/b-rational tangle. We then get a tangle T in Y = (V − int B) ∪ V0 =
L(5, 2q) \ int B. Let X be the double branched cover of (Y, T ).

Since T (a/b) = L, by Lemma 8.1 we have

• X(a/b) is a lens space.

Also, clearly T (0/1) = (core of V )# (knot in S3), so

• X(0/1) ∼= L(5, r)#N for some closed 3-manifold N .

Lemma 8.5. X(1/k) is irreducible for all k ∈ Z.

Proof. T (1/k) is (the 3-braid σk
1σ in V ) ∪V0. Hence X(1/k) = Qk ∪ Ṽ0, where

Qk is the double branched cover of (V, σk
1σ) and Ṽ0 is a solid torus. Now Qk is

a T0-bundle over S1, where T0 is the double branched cover of (D2, 3 points),
i.e. a once-punctured torus. Let β be the boundary slope of the fibre of Qk; note

that β projects to the meridian μ of V . Let μ0, μ̃0 be the meridians of V0, Ṽ0,
respectively. Since Δ(μ, μ0) = 5, we have Δ(β, μ̃0) = 5. Hence by Lemma 8.3,
X(1/k) is irreducible. �

There is a Z/2-action on X with quotient Y = L(5, 2q) \ int B. It follows easily
that X is not a solid torus. We consider the following three possibilities for X.

(1) X is reducible. Here we must have X ∼= X ′ #X(a/b), where X ′(a/b) ∼= S3.
By Lemma 8.5, X ′(1/k) ∼= S3 for infinitely many k, and hence X ′ is a solid torus
with meridian 0/1. Since Δ(a/b, 0/1) = a > 1, this contradicts the fact that
X ′(a/b) ∼= S3.

(2) X is irreducible and not Seifert fibred. Since Δ(a/b, 0/1) = a > 1, the
forms of X(a/b) and X(0/1) stated above contradict [CGLS] if N ∼= S3 and [BZ2,
Corollary 1.4] otherwise.

(3) X is Seifert fibred with incompressible boundary.
If X is not the twisted I-bundle over the Klein bottle, let ϕ be the slope on ∂X

of the Seifert fibre in the unique Seifert fibring of X. If X is the twisted I-bundle
over the Klein bottle, let ϕ be the slope of the Seifert fibre in the Seifert structure
on X with orbifold D2(2, 2). In both cases, ϕ is the only slope on ∂X such that
X(ϕ) is a non-trivial connected sum. Therefore, if N 	∼= S3, then ϕ = 0/1. But
X(a/b) is a lens space, and so Δ(a/b, 0/1) = 1, contradicting our assumption that
a > 1. Hence N ∼= S3, and so Δ(a/b, ϕ) = Δ(0/1, ϕ) = 1. In particular ϕ = 1/s
for some integer s. Therefore X(1/s) is reducible. But this contradicts Lemma
8.5. �

9. The case Δ(α, β) = 6 and the involution τα reverses the

orientations of the Seifert fibres of M(α)

In this section we suppose that Assumptions 5.1 hold and show that it is im-
possible for Δ(α, β) to be 6 and for τα to reverse the orientations of the Seifert
fibres of M(α). We assume otherwise in order to obtain a contradiction. Here
M(α)/τα = L(3, q) ∼= L(3, 1). By Lemma 5.9, L is as shown in Figure 3. By
Lemma 5.2 parts (2) and (3), n is even, m is odd, |L| = 1, and Lα = L ∪Kα is as
shown in Figure 1. Since L is a component of Lα, we see that L is a core of some
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DEHN FILLINGS OF KNOT MANIFOLDS 379

Heegaard solid torus of L(3, 1). Hence the double branched cover of (L(3, 1), L) is
homeomorphic to L(3, 1).

Let Y, T , X be as in the previous section, with L(5, 2q) replaced by L(3, 1). Again
as in that proof, here we have X(a/b) ∼= L(3, 1) and X(0/1) ∼= L(3, 1)#N for some
closed 3-manifold N . In the current situation we only have the following weaker
version of Lemma 8.5.

Lemma 9.1. X(1/k) is irreducible for infinitely many k ∈ Z.

Proof. As in the proof of Lemma 8.5, T (1/k) is (the 3-braid σk
1σ in V ) ∪V0, and

X(1/k) = Qk ∪ Ṽ0, where Qk is the double branched cover of (V, σk
1σ) and Ṽ0 is a

solid torus. Now Qk is a T0-bundle over S1, where T0 is a once-punctured torus.
If ρ ∈ B3, let ρ̃ denote the corresponding homeomorphism T0 → T0. Then σ̃1

and σ̃2 are Dehn twists about a pair of curves in T0 with intersection number 1.
With respect to this basis, ρ̃ defines an element of SL2(Z). Note that since L is
connected, σ is not a power of σ1. The elements of SL2(Z) corresponding to σ̃k

1 and
σ̃ are therefore [ 1 k

0 1 ] and
[
a b
c d

]
, say, where c 	= 0. Then the matrix corresponding

to σ̃k
1 σ̃ has trace a+ d+ kc, which has absolute value greater than 2 for all but at

most five values of k. For such k the manifold Qk is therefore hyperbolic.
Let β be the boundary slope of the fibre of Qk; note that β projects to the merid-

ian μ of V . Let μ0, μ̃0 be the meridians of V0, Ṽ0, respectively. Since Δ(μ, μ0) = 3,
we have Δ(β, μ̃0) = 3. If Qk is hyperbolic, then by [BZ1, Lemma 4.1] Qk(γ) re-
ducible implies Δ(β, γ) = 1. Therefore X(1/k) = Qk(μ̃0) is irreducible for infinitely
many k. �

As in the previous section, we have possibilities (1), (2) and (3) for X. Cases (1)
and (2) are ruled out exactly as before (applying Lemma 9.1 instead of Lemma 8.5).
In case (3) we may conclude that both X(a/b) and X(0/1) are L(3, 1), X(1/s) is
reducible for some integer s and Δ(β, μ̃0) = 3. The proof of Lemma 8.3 shows that
the monodromy of the once-punctured torus bundle Qs has order 3. Therefore Qs

has base orbifold D2(3, 3), and so X(1/s) ∼= Qs(μ̃0) ∼= L(3, q1)#L(3, q2). This
implies that X has base orbifold D2(3, 3). But then no two distinct fillings on X
can give the lens space L(3, 1), yielding a contradiction.

10. The case Δ(α, β) = 5 and the involution τα reverses the

orientations of the Seifert fibres of M(α)

In this section we suppose that Assumptions 5.1 hold and show that it is impos-
sible for Δ(α, β) to be 5 and for τα to reverse the orientations of the Seifert fibres
of M(α). We assume otherwise in order to obtain a contradiction.

As in §7, we just need to show that the two knots, K,K ′, shown in Figures 26
and 27, respectively, are inequivalent in S3.

Theorem 10.1. The knots K and K ′ are inequivalent.

As in §7, we will show that the double branched covers W,W ′ of (S3,K), (S3,K ′)
are not homeomorphic.

Here we consider the tangle T = (R, t) shown in Figure 28, with double branched
cover X. Let the boundary components of R be S, S1, S2 (see Figure 28) and the
corresponding boundary components of X be G, T1, T2, so that T1 and T2 are tori
and G has genus two.
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Figure 26
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S

1

2

Figure 28

Lemma 10.2. If G is compressible in X then T is isotopic to the tangle shown in
Figure 29.

Proof. Since t∪S1 ∪ S2 is connected, any essential disk D in T with ∂D ⊂ S must
meet t in a single point. Hence D meets the unique strand of t connecting S1 and
S2, decomposing T into two tangles T1 and T2. We claim that each of T1 and T2 is
a product tangle. To see this, note that deleting the strand of t that joins S2 to S
and runs through the braid σ gives the tangle shown in Figure 30. It follows that
T1 is as stated. Similarly, T2 is also a product tangle. �
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Corollary 10.3. If G is compressible in X then X(a/b, a/b) is a genus 2 handle-
body.

Lemma 10.4. If G is incompressible in X then G is incompressible in X(a/b, a/b).

Proof. This is exactly like the proof of Lemma 7.6 in §7, using the annuli A1 and
A2 shown in Figure 31. �

σ

A1

2A

Figure 31
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Proposition 10.5. W either
(1) contains a separating incompressible surface of genus 2, or
(2) has Heegaard genus at most 3.

Proof. From Figure 32 we see that W ∼= U ∪G Z(a/b) ∪G′ U ′, where U and U ′ are
copies of X(a/b, a/b).

σ σ σσσab ab ab ab ab

r

Figure 32

If G is incompressible in X, then we get conclusion (1) by Lemmas 10.4 and 7.7.
If G is compressible in X, then we get conclusion (2) by Corollary 10.3 and the

proof of part (3) of Proposition 7.8. �

Proof of Theorem 10.1. Assume W ∼= W ′. Since W ′ is a Seifert fibre space over S2

with 5 exceptional fibres, we get a contradiction to Proposition 10.5 as in the proof
of Theorem 7.1 in cases (1) and (3) of Proposition 7.8. �

11. A family of examples realizing Δ(α, β) = 4

In this section we show that distance 4 between a prism manifold filling slope
and a once-punctured torus slope can be realized on infinitely many hyperbolic knot
manifolds.

Let Wh be the exterior of the Whitehead link with standard meridian-longitude
coordinates on ∂Wh. We use Wh(γ) to denote the manifold of Dehn filling one
boundary component ofWh with slope γ, and Wh(γ, δ) the manifold of Dehn filling
one boundary component with slope γ and the other with slope δ.

Theorem 11.1. For each integer n with |n| > 1, Wh(−2n±1
n ) is a hyperbolic knot

manifold whose 0-slope is the boundary slope of an essential once-punctured torus
and whose −4-slope yields a prism manifold whose base orbifold is S2(2, 2, | ∓ 2n−
1|).

Proof. It is well known that Wh(γ) is hyperbolic for each γ /∈ {−1,−2,−3,−4, 0,
1/0}. That Wh(γ), γ 	= 1/0, contains an essential once-punctured torus with
boundary slope 0 is obvious from the Whitehead link diagram.

The Whitehead link admits an involution τ as shown in Figure 33. This in-
volution restricts to an involution, still denoted τ , on Wh and then extends to
an involution τγ on Wh(γ) and to an involution τγ,δ on Wh(γ, δ) for all slopes γ
and δ. The quotient space under τ is shown in Figure 34. Note that the branch
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τ

τA longitude and its image under 

τA longitude and its image under 

Figure 33

set of Wh(γ)/τγ is obtained by removing the two 1/0-tangles in Figure 34 and
then filling one γ-tangle. Figure 35 shows the branch set in Wh(−4)/τ−4 and
Figure 36 shows the branch set in Wh(−2n±1

n ,−4)/τ−2n±1
n ,−4. As the branch set

in Wh(−2n±1
n ,−4)/τ−2n±1

n ,−4 = S3 is a Montesinos link of type (2, 2, ∓2n−1
2 ), the

double branched cover Wh(−2n±1
n ,−4) is a prism manifold whose base orbifold is

S2(2, 2, | ∓ 2n− 1|). �

Figure 34

12. The case when Δ(α, β) = 4 and M(α) is a prism manifold

In this section we show

Theorem 12.1. Let M be a hyperbolic knot exterior containing an essential once-
punctured torus with slope β. If M(α) is a prism manifold with Δ(α, β) = 4, then

M is one of the examples given in §11, that is, (M ;α, β) ∼= (Wh(
−2n± 1

n
);−4, 0)

for some integer n with |n| > 1.
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isotopy

Figure 35

Figure 36

Let F be an essential once-punctured torus in M with slope β. Choose a Klein
bottle P̂ in M(α) which has the minimal number of intersection components with

∂M and let P = M ∩ P̂ . Then p = |∂P | > 0 since M is hyperbolic. The punc-
tured Klein bottle P is essential in M , i.e. it is incompressible and boundary-
incompressible in M . The proof of this statement is essentially contained in [Te2,
Proofs of Lemmas 2.1 and 2.2], and we only need to add the condition that M(α) is
a prism manifold which is thus irreducible and does not contain a projective plane.

As usual, the two surfaces F and P define two labeled intersection graphs which
we denote by ΓF and ΓP . Then neither ΓF nor ΓP contain trivial loops ([Te2,
Lemma 3.1] with the same proof). The graph ΓF has a unique vertex whose valency
is 4p, and the graph ΓP has p vertices each having valency 4. Note that every edge
of ΓF is positive since F is orientable and has only one boundary component.

Lemma 12.2. (1) When p ≥ 2, ΓF has no S-cycle.
(2) When p ≥ 3, ΓF has no generalized S-cycle (see [Te2] for its definition).

(3) ΓF cannot have more than
p

2
+ 1 mutually parallel edges.

Proof. Part (1) is [Te2, Lemma 3.2] with the same proof, part (2) is [Te2, Lemma
3.3] with a similar argument plus the fact that M(α) does not contain a projective
plane, and part (3) is [LT, Lemma 6.2 (4)] with the same proof. �

Lemma 12.3. p = 1.

Proof. The lemma was proved in [Te2, Lemma 5.2] when M was a genus one non-
cabled knot exterior in S3, in which case p was an odd integer. In our situation,
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DEHN FILLINGS OF KNOT MANIFOLDS 385

we need to extend the argument of [Te2, Lemma 5.2] slightly, using Lemma 12.2
(3) instead of [Te2, Lemma 3.4].

Figure 37

Suppose otherwise that p ≥ 2. The reduced graph ΓF is a subgraph of the
graph shown in Figure 37 ([Go1, Lemma 5.1]). In particular ΓF has at most three
edges. Suppose these edges of ΓF have weights wk, k = 1, 2, 3, some of which may
possibly be zero. Then 2(w1 +w2 +w3) = 4p. Let e1, ..., ewk

be a parallel family of
consecutive edges in ΓF . Reading the labels around the vertex of ΓF , we see that
the labels of the edges e1, e2, ..., ewk

are as illustrated in Figure 38.
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Figure 38

By Lemma 12.2, wk = 0 or 1, 1 ≤ k ≤ 3. (More precisely, this follows from
Lemma 12.2 (1) if wk is even, Lemma 12.2 (2) if wk is odd and p ≥ 3, and Lemma
12.2 (3) if wk is odd and p = 2.) This is a contradiction. �

So ΓF has exactly two edges and both are level edges (i.e. having the same label
at the two endpoints of the edge). Let e1, e2 be the two edges of ΓF and of ΓP .
Note that each ei is an orientation-reversing loop in P by the parity rule.

Since Δ(α, β) = 4, if the endpoints of the two edges around the vertex ∂F are
labeled consecutively by 1, 2, 3, 4, the labels around ∂P are also consecutive. It
follows from this fact that if the two edges in ΓF are not parallel, then the two
edges in ΓP must be parallel. Also, combining this fact with the proof of [Te2,
Lemma 4.1], we have that the two edges e1 and e2 cannot be parallel in both ΓP

Licensed to Univ at Buffalo-SUNY. Prepared on Tue Aug 30 12:13:26 EDT 2016 for download from IP 128.205.113.195.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



386 STEVEN BOYER, CAMERON McA. GORDON, AND XINGRU ZHANG

e e1 2
e

e
1

2

ee 12e

e

1

2

e
e

1

2

e

e

1

2

e1

e1

e22

'

e' '
'

e1

e1

e2

e2

e2e1

'

' '

'

Γ

ΓΓ

ΓF P

SF'

Figure 39

e
e1

2
e

e

1

2 e e
1 2e

e

1

2

e1

e2

2' e'

Γ

ΓΓ

ΓF P

S
F

e

e

1

2
e

e

1

2e1' '

e2ee 12

e1'

e1'

e2'

e
2
'

'

Figure 40

and ΓF . So there are only two possible configurations for the pair of graphs ΓF

and ΓP , which we illustrate in Figure 39 and Figure 40, respectively.
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Let S be the frontier of a thin regular neighbourhood of P in M . Then S is a
separating twice-punctured torus in M . The surfaces F and S define two labeled
intersection graphs Γ′

F and ΓS . Note that Γ′
F is obtained by doubling the edges of

ΓF and ΓS double covers ΓP . See Figures 39 and 40 for illustrations of the graphs
ΓF ,ΓP ,Γ

′
F and ΓS .

The surface S separates M into two components which we denote by X+ and

X−, where X− is a twisted I-bundle over P . Note that X̂− is a twisted I-bundle

over the Klein bottle P̂ and X̂+ is a solid torus since M(α) = X̂− ∪ X̂+ is a prism
manifold. Let Hε denote the part of the filling solid torus of M(α) contained in

X̂ε, ε ∈ {±}, and let ∂0H
ε = ∂Hε ∩ ∂M .

We first show

Lemma 12.4. The case given by Figure 39 cannot occur.

Proof. The 4-gon face of Γ′
F , which we denote by f , is contained in X+ and its

boundary edges form a Scharlemann cycle of order 4. From Figure 39 we see that
∂f is a non-separating curve in the genus two surface S ∪ ∂0H

+ and ∂f ∩ S is

contained in an essential annulus A in Ŝ. Let U be a regular neighbourhood of

A ∪ H+ ∪ f in X̂+. Then U is a compact 3-manifold with ∂U a torus, and the
fundamental group of U has the presentation

〈x, t : x3txt = 1〉,
where we take a fat base point in Ŝ containing ∂S∪e1∪e2, x is a based loop formed
by a cocore arc of ∂0H

+ and t is represented by a core circle of A. Let y = xt; then

π1(U) = 〈x, y : x2y2 = 1〉.
So U is Seifert fibred with base orbifold D(2, 2). Thus U contains a Klein bottle.

But U is contained in the solid torus X̂+. This gives a contradiction. �
So the case of Figure 40 must occur. In this case we are going to show that M is

obtained by Dehn filling one boundary component of the Whitehead link exterior.
In this case, the bigon faces of Γ′

F between e1 and e′1 and between e2 and e′2 lie in
X−, and the bigon face between e′1 and e2, which we denote by B, is contained in

X+. Let Q be a regular neighbourhood of S ∪ ∂0H
+ ∪B in X+, and Q̂ = Q∪H+.

Then it’s easy to see that Q̂ is a Seifert fibred manifold whose base orbifold is an

annulus with a single cone point of order 2. The boundary of Q̂ consists of two

tori, one of which is the torus Ŝ. Let T0 be the other component. Note that T0 is

contained in the interior of X+. Since X̂+ is a solid torus, T0 must bound a solid

torus in X̂+ \ Q̂, which we denote by N .

Lemma 12.5. The Seifert structure of Q̂ does not match with the Seifert structure

of X̂− whose base orbifold is D(2, 2).

Proof. The S-cycle {e1, e′1} in Γ′
F implies that as a cycle in ΓS , e1 ∪ e′1 is a fibre

of the Seifert structure of X̂− whose base orbifold is D(2, 2). Similarly the S-cycle
{e′1, e2} in Γ′

F implies that as a cycle in ΓS , e
′
1∪ e2 is a fibre of the Seifert structure

of Q̂. Obviously from Figure 40 these two cycles have different slopes in Ŝ. �
Let W = X− ∪S Q. Note that M = W ∪T0

N . So we just need to show that W
is the Whitehead link exterior. We use the notation W (∂M, γ) to denote the Dehn
filling of W along a slope γ in ∂M ⊂ ∂W .
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Lemma 12.6. (1) W is irreducible.
(2) The twice-punctured torus S is incompressible in W .
(3) F ∩W has a component which is an essential once-punctured annulus in W

with the puncture lying in ∂M of slope β and with the boundary of the annulus lying
in T0.

(4) W (∂M,α) contains an essential torus which is Ŝ.

Proof. By the construction of Q, one can easily see that Q is irreducible and S is
incompressible in Q. Obviously X− is irreducible and S is incompressible in X−.
Thus S is incompressible in W = X−∪S Q and W is irreducible. So we get (1) and
(2).

Part (3) follows from the graph Γ′
F shown in Figure 40 and the construction

of Q. In fact, the exterior in F of the annulus which is the annulus face of Γ′
F

shrunk slightly into the interior of the face is the required punctured annulus. It
is incompressible in W because it is an essential subsurface of F . It is boundary
incompressible in W because it has only one intersection component with ∂M and
M does not contain an essential disk with slope β.

For (4), we just need to note that W (∂M,α) = X̂− ∪Ŝ Q̂. �
Lemma 12.7. W is hyperbolic.

Proof. We already know that W is irreducible (Lemma 12.6(1)). Obviously W
cannot be Seifert fibred since M = W ∪N is hyperbolic. So we just need to show
that W is atoroidal. Suppose otherwise that W contains an essential torus T . Note
that T is separating since M is hyperbolic.

Note that Q (a compression body) is of the form T0 × [0, 1] union a 1-handle
attached to T0×1. It is now easy to see that any incompressible torus inQ is isotopic
into T0× [0, 1], and therefore boundary parallel. Hence T cannot be contained in Q.
Obviously X− is atoroidal because it is a twisted I-bundle over a punctured Klein
bottle. So T cannot be contained in X− either. Therefore T must intersect S. As
S is incompressible in W (Lemma 12.6(2)), we may assume that every component
of S ∩ T is a circle which is essential in both T and S. As S is separating, T ∩ S
has an even number of components. We may further assume that each component
of T \ (S ∩ T ) is an essential annulus in (X−, S) or in (Q,S) (using isotopy of T to
eliminate inessential ones), and thus can be further assumed to be a vertical annulus
in the characteristic I-bundle of (X−, S) or (Q,S). Note that the characteristic I-
bundle for the pair (Q,S) is isotopic to a regular neighbourhood of B ∪ ∂0H

+ in Q
such that the horizontal boundary of the I-bundle is a twice-punctured annulus φ

contained in S such that φ̂ is an essential annulus in Ŝ, and the vertical boundary
of the I-bundle has two components: one is ∂0H

+ and the other is the frontier of
the I-bundle in Q. So we may assume that S ∩ T is contained in φ.

Let A be a component of T \ (T ∩ S). It’s easy to see that ∂A is Ŝ-essential,
for otherwise A would be isotopic to ∂0H

ε and T would be parallel to ∂M . Now if
A is contained in Q, its two boundary components are either isotopic in φ to the
two inner boundary components of φ respectively or bound an annulus in φ which
separates φ into two once-punctured annuli. Moreover, A is a vertical annulus in

the Seifert fibred structure of Q̂. If A is contained in X−, it is a vertical annulus

in one of the two Seifert fibred structures of X̂−. So the Seifert structure of Q̂

matches a Seifert structure of X̂−. By Lemma 12.5, the Seifert structure of X̂−

must be the one whose base orbifold is a Möbius band. Thus if a component A of
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T \ (S ∩T ) is contained in X−, it is a non-separating annulus in X−. In particular,
if A is contained in X−, ∂A cannot be parallel in S. For otherwise the union of A
with the annulus in S bounded by ∂A would be a Klein bottle in W ⊂ M , giving
a contradiction.

With the above information we have obtained on the components of T \ (S ∩ T )
we see that the following case must occur: T \ (S∩T ) has exactly four components,
two in Q which we denote by A+

1 and A+
2 , and two in X− which we denote by

A−
1 and A−

2 , and they are connected as shown in Figure 41. More specifically, the
annuli A+

1 and A+
2 separate Q into three components R+

1 , R
+
2 , R

+
3 such that R+

1 is a
solid torus in which A+

1 has winding number 2, R+
2 contains ∂0H

+ and is a product
I-bundle over a once-punctured annulus, and R3 is a regular neighbourhood of T0.
The annuli A−

1 and A−
2 separate X− into two components R−

1 , R
−
2 such that R−

1

contains ∂0H
− and is a product I-bundle over a once-punctured annulus, and R−

2

is a solid torus (cf. Figure 41). Moreover, R+
2 ∪ R−

2 is a once-punctured annulus
bundle over S1 with finite order monodromy and thus is Seifert fibred. In fact, one
can see that the monodromy has order two. On the other hand, R+

1 ∪ R−
1 ∪ R+

3

is Seifert fibred over an annulus with one cone point of order two. Hence W is a
graph manifold. But M = W ∪N is hyperbolic. We get a contradiction. �

Lemma 12.8. W (∂M, β) contains an essential annulus which is the cap-off of the
once-punctured annulus given in part (3) of Lemma 12.6.

Proof. Note that the punctured annulus given in part (3) of Lemma 12.6 is non-
separating in W . So it caps off to a non-separating annulus in W (∂M, β). If this
annulus is inessential in W (∂M, β), then it must be compressible, from which we
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may get a compressing disk for T0 in W (∂M, β). That is, β becomes a boundary-
reducing Dehn filling slope on ∂M for W . On the other hand, α is a toroidal filling
slope on ∂M for W by Lemma 12.6(4). Hence by [GL], we have Δ(α, β) ≤ 2.
But this contradicts the assumption that Δ(α, β) = 4. Thus the above annulus is
essential in W (∂M, β). �

Now we have shown that W is hyperbolic, and for (W,∂M), α is a toroidal filling
slope and β an annular filling slope. Furthermore W (∂M, β) contains an essential
annulus whose intersection with ∂M has only one component. Applying [GW2,
Theorem 1.1], we see that W is the Whitehead link exterior.

So W ∼= Wh. By tubing off the once-punctured annulus in W (given by Lemma
12.6(3)) with an annulus in T0, we get a once-punctured torus in (W,∂M) with slope
β. So β corresponds to the zero slope with respect to the standard coordinates on

∂Wh. Similarly we see that α is the slope −4. As Q̂ is Seifert fibred over an annulus

with a single cone point, X̂+ = Q̂ ∪T0
N is a solid torus if and only if the filling

slope on T0 is distance one from the Seifert slope of Q̂ on T0. This Seifert slope is

unique. From the examples given in §11, we see that the Seifert slope of Q̂ on T0

is −2 and those examples are the only examples realizing Theorem 1.3(1). That is,

we have (M ;α, β) ∼= (Wh(
−2n± 1

n
);−4, 0) for some integer n with |n| > 1.

13. Proof of Theorems 1.4 and 1.5

Proof of Theorem 1.4. LetM be a hyperbolic knot manifold containing an essential
once-punctured torus Fβ with boundary slope β. Let γ be an exceptional slope on
∂M .

We may suppose that the capped-off torus F̂β is incompressible in M(β) by
Proposition 3.1. Now M(γ) is either reducible, small Seifert, or toroidal. In the first
case Δ(β, γ) = 1 by [BZ1, Lemma 4.1], while in the second case Theorem 1.3 implies
that Δ(β, γ) ≤ 5 with equality only if (M ; γ, β) ∼= (Wh(−3/2);−5, 0) and M(γ) has
base orbifold S2(2, 3, 3), and Δ(β, γ) = 4 only if (M ; γ, β) ∼= (Wh(−2n±1

n );−4, 0)

for some integer n with |n| > 1 and M(γ) has base orbifold S2(2, 2, | ∓ 2n− 1|).
So suppose that M(γ) is toroidal. We then have a punctured torus Fγ in M

with boundary slope γ such that the capped-off torus F̂γ in M(γ) is incompressible.
Assume that nγ , the number of boundary components of Fγ , is minimal over all
such punctured tori. Similarly, assuming for the moment only thatM(β) is toroidal,
we have a punctured torus Fβ in M with boundary slope β and nβ boundary
components. Triples (M ;Fβ, Fγ) of this kind with Δ(β, γ) ≥ 4 are classified in [Go1]
(in the case Δ(β, γ) ≥ 6) and [GW] (in the case Δ(β, γ) = 4 or 5). In particular, it is
shown in [GW] that if M is a hyperbolic knot manifold with a once-punctured torus
slope β and a toroidal slope γ with Δ(β, γ) = 4, then (M ; γ, β) ∼= (Wh(δ);−4, 0)
for some slope δ on the other boundary component of Wh. This proves part (3)(a)
of the theorem.

The only examples with nβ = 1 and Δ(β, γ) ≥ 5 are M = Wh(−5/2), with
Δ(β, γ) = 7 [Go1], and M = M5 or M10 in [GW], with Δ(β, γ) = 5. In fact the
only examples with Δ(β, γ) = 5 where M(β) (say) contains a non-separating torus
are M5,M10 and M11 (see [GW, Lemma 23.1]). Now in [MP] three examples of
hyperbolic knot manifolds are given, each with a pair of toroidal fillings at distance
5, one of which contains a non-separating torus: these are Wh(−7/2),Wh(−4/3)
and N(−5, 5), described in Tables A.3, A.4 and A.9, respectively. By comparing
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the description in these tables of the second toroidal filling at distance 5 with that
given in [GW, Lemma 22.2], we see that Wh(−7/2) = M10, N(−5, 5) = M11, and
(hence) Wh(−4/3) = M5. It is well known that Wh(δ) contains a once-punctured
essential torus of slope 0. The determination of the slopes γ, β as listed in parts
(3)(b) and (3)(c) has been done by Martelli and Petronio. See [MP, Tables A.2 and
A.3]. �

Proof of Theorem 1.5. Let K ⊂ S3 be a hyperbolic knot of genus one with exterior
MK and suppose p/q is an exceptional filling slope on ∂MK where q ≥ 1.

Hyperbolic genus one knots in the 3-sphere do not admit reducible surgery slopes
[BZ1], so an exceptional surgery slope is either toroidal or irreducible, atoroidal,
small Seifert. If K is fibred, it is necessarily the figure eight knot, and the theorem
holds in this case. Assume that K is not a fibred knot. Then

(a) MK(0) is not fibred [Ga],
(b) K admits no L-space surgery [Ni],
(c) K is not a Eudave-Muñoz knot [E-M].

A genus one Seifert surface for K completes to an essential torus in MK(0) [Ga].
Suppose that MK(0) is Seifert fibred. As its first homology group is infinite cyclic,
its base orbifold must have underlying space S2 and MK(0) must have a non-zero
Euler number. Thus it admits a non-separating, horizontal surface, which implies
MK(0) fibres over the circle, contrary to (a). Thus MK(0) is not Seifert fibred, so
assertion (1) of the theorem holds.

By (b), K has no finite surgery slopes. Thus if MK(p/q) is small Seifert with
base orbifold S2(a, b, c), then p 	= 0 and (a, b, c) is either a Euclidean or hyperbolic
triple, so |p| ≤ 3 by Theorem 1.3. Consideration of H1(S

2(a, b, c)) shows that
(a, b, c) is a hyperbolic triple. Hence assertion (2) of the theorem holds.

Theorem 1.3 combines with (b) and assertion (2) to show that if MK(p/q) is
small Seifert then 0 < |p| ≤ 3. Thus assertion (3) of the theorem holds.

Since K is not a Eudave-Muñoz knot, each toroidal slope of K is integral. It
follows from [Go1] and [Te1] that no genus one knot in the 3-sphere admits a
toroidal filling slope of distance 5 or more from the longitude. Such knots with
toroidal slopes of distance 4 are determined in [GW, Theorem 24.4]. In particular,
all such knots are twist knots and the non-longitudinal slope is ±4. This proves
assertion (4). �

References

[Ba] K. Baker, Once-punctured tori and knots in lens spaces, Comm. Anal. Geom. 19 (2011),
347–399. MR2835883

[BiMe] J. Birman and Wm. Menasco, Studying links via closed braids III, Pacific J. Math. 161
(1993), 25-113. MR1237139 (94i:57005)

[BCSZ1] S. Boyer, M. Culler, P. Shalen, and X. Zhang, Characteristic submanifold theory
and Dehn filling, Trans. Amer. Math. Soc. 357 (2005), 2389–2444. MR2140444
(2006a:57018)

[BCSZ2] , Characteristic subvarieties, character varieties, and Dehn fillings, Geometry
& Topology 12 (2008) 233-297. MR2390346 (2009a:57003)

[BGZ1] S. Boyer, C. McA. Gordon and X. Zhang, Dehn fillings of large hyperbolic 3-manifolds,
J. Diff. Geom. 58 (2001), 263–308. MR1913944 (2003j:57025)

[BGZ2] , Characteristic submanifold theory and toroidal Dehn filling, Adv. Math. 230
(2012), 1673–1737.

[BGZ3] , Dehn fillings of knot manifolds containing essential twice-punctured tori, in
preparation.

Licensed to Univ at Buffalo-SUNY. Prepared on Tue Aug 30 12:13:26 EDT 2016 for download from IP 128.205.113.195.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=2835883
http://www.ams.org/mathscinet-getitem?mr=1237139
http://www.ams.org/mathscinet-getitem?mr=1237139
http://www.ams.org/mathscinet-getitem?mr=2140444
http://www.ams.org/mathscinet-getitem?mr=2140444
http://www.ams.org/mathscinet-getitem?mr=2390346
http://www.ams.org/mathscinet-getitem?mr=2390346
http://www.ams.org/mathscinet-getitem?mr=1913944
http://www.ams.org/mathscinet-getitem?mr=1913944


392 STEVEN BOYER, CAMERON McA. GORDON, AND XINGRU ZHANG

[BZ1] S. Boyer and X. Zhang, Reducing Dehn filling and toroidal Dehn filling, Topology Appl.
68 (1996) 285-303. MR1377050 (97f:57018)

[BZ2] , On Culler-Shalen seminorms and Dehn fillings, Ann. Math. 148 (1998), 737–
801. MR1670053 (2000d:57028)

[CGLS] M. Culler, C. M. Gordon, J. Luecke and P. Shalen, Dehn surgery on knots, Ann. of
Math. 125 (1987) 237–300. MR881270 (88a:57026)

[CJR] M. Culler, W. Jaco and H. Rubinstein, Incompressible surfaces in once-punctured torus

bundles, Proc. Lond. Math. Soc. 45 (1982) 385–419. MR675414 (84a:57010)
[Du] Wm. Dunbar, Geometric orbifolds, Rev. Mat. 1 (1988) 67–99. MR977042 (90k:22011)
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