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Abstract

We show that if a knot exterior satis"es certain conditions, then it has "nite cyclic coverings with
arbitrarily large numbers of nontrivial algebraic components in their SL(2,�) character varieties (Theorem
A). As an example, these conditions hold for hyperbolic punctured torus bundles over the circle (Theorem B).
We investigate in more detail the "nite cyclic covers of the "gure-eight knot exterior and show that for every
integer m there exists a "nite covering such that its SL(2,�) character variety contains curve components
which have associated boundary slopes whose distance is larger than m (Theorem C). Lastly, we show that
given an integer m then there exists a hyperbolic knot exterior in the 3-shpere which has a "nite cyclic
covering such that its SL(2,�) character variety contains more than m norm curve components each of which
contains the character of a discrete faithful presentation of the fundamental group of the covering space
(Theorem D). � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Throughout this paper, M will denote a knot exterior, that is a compact, connected, orientable,
irreducible, boundary-irreducible 3-manifold with boundary a torus. We shall call M hyperbolic if
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its interior admits a complete Riemannian metric of "nite volume and constant negative sectional
curvature. A knot exterior is said to be small if it does not contain any closed, embedded, orientable
surfaces which are essential, i.e. incompressible and nonboundary-parallel. It is a consequence of
Thurston's uniformisation theorem [26] and the torus theorem [17] that a small knot exterior is
either hyperbolic or admits a Seifert "bred structure whose orbit manifold is a disk and which has
two exceptional "bers.
For any "nitely generated group �, we use R(�) to denote the set of representations of � into

S¸(2,�) [12]. This set can be regarded as a complex a$ne algebraic variety (in this paper a variety
may be reducible). The character of an element �3R(�) is the function

�� :�P�, ��(�)"trace(�(�)).

The character of an irreducible (resp. reducible) representation is called an irreducible (resp.
reducible) character. If two representations are conjugate to each other, they have the same
character. The set of the characters of the representations in R(�), denoted X(�), is also a complex
a$ne variety, called the S¸(2,�)-character variety of � [12]. The natural surjective map t :R(�)P
X(�) which sends a representation to its character is regular. When � is the fundamental group of
space=, we shall denote R(�) by R(=) and X(�) by X(=).
Recent study has shown thatX(M) contains a great deal of topological information about a knot

exteriorM. In particular, it contains information about the manifolds obtained by Dehn "lling M
along �M [26,12,21,7,2}4]. In this paper, we studyX(M) as an algebraic variety. More speci"cally,
we examine how many and what kind of algebraic componentsX(M) can have. Of particular interest
to us, is the case where M is a small knot exterior, for in this case, X(M) has dimension 1 [7].
An algebraic component X

�
of X(�) is called nontrivial if it contains the character of an

irreducible representation and trivial otherwise. Since the character of a reducible representation in
R(�) is also the character of a diagonal representation, the number of trivial algebraic components
of X(�) can be easily determined from the "rst homology of �. Thus, we shall concentrate on the
nontrivial components.
As an example, suppose that M is a knot exterior which admits the structure of a Seifert "bred

space with base orbifold B. Using the fact that an irreducible representation �
�
(M)PS¸(2,�)

factors through ����
�
(B) (a product of cyclic groups), or a degree 2 extension of this group, it is not

di$cult to determine the number of nontrivial algebraic components ofX(M). However, whenM is
a hyperbolic knot exterior, such a determination appears to be more di$cult. The fundamental
groups of such manifolds admit discrete faithful representations to S¸(2,�), which are irreducible,
and it was proven in Chapter 1 of [10] that any component of X(M) which contains the character
of such a representation is 1-dimensional. WhenM is the exterior of a hyperbolic twist knot in S�,
then one can deduce from [6] thatX(M) has exactly one nontrivial component. The same is true for
the exterior of the (!2,3,7)-pretzel knot [1], or more generally the (!2,3, n)-pretzel (n odd) when
it is hyperbolic and nI0 (mod3) [19]. Examples of small hyperbolic knot exteriors with character
varieties containing at least two nontrivial algebraic components were obtained in [6,21,16,22];
they are the exteriors of certain 2-bridge knots in S� (see also [19]). In this paper, we provide some
general methods for producing hyperbolic knot exteriors with a large number of nontrivial
algebraic components in their character varieties.
Given a slope � on �M, we useM(�) to denote the manifold obtained by Dehn "llingM with the

slope �. Note that there are natural inclusions R(M(�))LR(M) and X(M(�))LX(M).

668 S. Boyer et al. / Topology 41 (2002) 667}694



If a knot exterior M contains an orientable, properly embedded surface F with exactly
one boundary component which is essential on �M, we call it a knot exterior with Seifert
surface. (M is with Seifert surface if and only if the composition H

�
(�M)PH

�
(M)P

H
�
(M)/Torsion(H

�
(M)) is onto.) Given a knot exteriorM with Seifert surface F, one can construct

the n-sheeted free cyclic coverM
�
ofM, dual to the surface F, for each integer n'1. The boundary

of the Seifert surface in M
�
is called the longitudinal class of M

�
and will be denoted by �

�
. In

Section 3 we will show

Theorem A. Let M be a small knot exterior with Seifert surface and consider a sequence of positive
integers 1)a

�
(a

�
(2(a

�
(2 where each a

�
divides a

���
. Suppose that for each k*1

(a) M
��

is small knot exterior ;
(b) the number of irreducible characters in X(M

��
(�

��
)) is xnite but increases to R with k ;

(c) no irreducible representation �3R(M
��
(�

��
))LR(M

��
) kills �

�
(�M

��
), i.e. �(�

�
(�M

��
)) is not

contained in �$I	, where I is the unit matrix in S¸(2,�).
Then the number of nontrivial curve components in X(M

��
) increases to R with k.

The proof of the theorem is based on a study of the relationship between the character varieties
X(M

��
) induced by the covering mapsM

��
PM

��
where j*k. More precisely, these covers induce

maps X(M)PX(M
��
)P2PX(M

��
)PX(M

����
)P2 which we shall refer to, henceforth, as

restrictions. We "nd that under the hypothesized conditions, certain mutually distinct, nontrivial
components ofX(M

��
) restrict to mutually distinct, nontrivial components ofX(M

��
) for each j*k.

Moreover, for j<k, X(M
��
) contains nontrivial components which do not arise from restriction.

According to a theorem of Cooper and Long [8], any hyperbolic manifoldM which satis"es the
hypotheses of the theorem necessarily "bers over the circle. We can "nd many "bred knot exteriors
satisfying the conditions of Theorem A. In particular, in Section 4 we determineX(M(�)) whenM is
a hyperbolic punctured torus bundle over the circle S� (Proposition 4.5) and consequently obtain,

Theorem B. Let M be a hyperbolic punctured torus bundle over S�. Then for any sequence of positive
integers 1)a

�
(a

�
(2(a

�
(2 where each a

�
divides a

���
, the number of curve components

in X(M
��
) approaches R with k.

With a view to re"ning our analysis, let � be a "nitely generated group and �3�. Consider the
regular function


� : X(�)P�, 
� (��)"�� (�)"trace(�(�)),

called the trace function onX(�) de"ned by �. Elementary trace identities imply that if �� is either the
inverse of � or conjugate to � in �, then 
��"
� . We say a subset> ofX(�) is 
�-non-constant if 
� �>
is nonconstant. In order to simplify the presentation, we shall frequently use 
� to denote 
� �>.
Since we have assumed our knot exteriors to be boundary-irreducible, there is an injective

homomorphism H
�
(�M)��

�
(�M)P�

�
(M), well-de"ned up to conjugation. Hence, each element


3�
�
(�M)�H

�
(�M) unambiguously determines a trace function 
� on X(M). It is an observation

made in [3], based on the work of [12,10], that for a knot exterior M, each (irreducible) curve
X

�
LX(M) belongs to one of the following three mutually exclusive types:

(i) The curve X
�
is 
�-nonconstant for every nontrivial element 
3�

�
(�M);
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(ii) The function 
� is a constant function on X
�
for every 
3�

�
(�M) (this case cannot arise ifM is

small, cf. Lemma 2.1);
(iii) There is exactly one primitive element 


�
, up to taking inverses, in �

�
(�M), such that 
��

is
a constant function on X

�
.

We will give a proof of this statement below (Proposition 2.2) in our current S¸(2,�) setting.
If X

�
LX(M) is a curve of type (iii), then the slope 


�
is a boundary slope (Lemma 2.1) and we

call it the boundary-slope associated to X
�
. In Section 6, we concentrate on the hyperbolic

punctured torus bundles which arise as cyclic covers of the "gure-eight knot exterior. We give
a complete list of nontrivial curve components, classi"ed according to the three types (i)}(iii) above,
in the character variety of the double cover and of the triple cover of the "gure-eight knot exterior.
For instance, the character variety of the 3-fold cover has precisely four nontrivial curve compo-
nents of type (i) and six nontrivial curve components of type (iii) whose associated boundary slopes
are the meridian slope of the bundle. The calculations there also produce the following unexpected
phenomenon (see Section 6).

Theorem C. For every given integer m, there exists a small hyperbolic knot exteriorM such thatX(M)
contains two type (iii) curve components whose associated boundary slopes have distance (i.e. their
minimal geometric intersection number in �M) larger than m.

If X
�
LX(M) is a curve of type (i), then one can use it to establish a norm on the two-

dimensional real vector spaceH
�
(�M;�) [10,3]. So we shall also call a type (i) curve inX(M) a norm

curve. We have mentioned that if M is a hyperbolic knot exterior, then there is at least one
nontrivial curve component X

�
in X(M), one which contains the character of a discrete faithful

representation of �
�
(M). We further note here that X

�
is in fact a norm curve [10] and the norm

associated to this curve plays a crucial role in proving the cyclic surgery theorem of [10] and the
"nite surgery theorem of [2,3]. Our "nal goal in this paper is to show that there is no upper bound
either on the number of norm curve components in the character variety of a hyperbolic knot
exterior (Section 7).

Theorem D. For every given integer m, there exists a hyperbolic knot exterior M such that X(M)
contains more than m norm curve components, each of which contains the character of a discrete
faithful representation of �

�
(M).

Our studies suggest the following open questions for further investigation.
Questions

(1) Given a hyperbolic knot exterior M, is it true that for any integer m, there always exists an
n-fold cyclic cover of M whose character variety has more than m nontrivial algebraic
components?

(2) Given a hyperbolic knot exterior M, is it true that for any integer m, there always exists an
n-fold cyclic cover of M which has more than m distinct boundary slopes?

(3) For any integer m, is there a hyperbolic knot exterior in S� whose character variety has more
than m type (i) curve components?

(4) For any integer m, is there a hyperbolic knot exterior in S� whose character variety has two
type (iii) curve components whose associated boundary slopes have distance larger than m?
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Our basic references for standard terminology and facts are [15,17,23] for 3-manifold topology
and knot theory, [25] for algebraic geometry, and [12] for S¸(2,�)-character varieties of 3-
manifolds.

2. Some properties of character varieties of knot exteriors

In this section, we prepare some general results concerning the character varieties of knot
exteriors which will be needed in later sections.
By an essential surface in a compact orientable 3-manifold=, we mean a properly embedded

orientable incompressible surface, no component of which is either boundary parallel or bounds
a 3-cell in =.
LetM be a knot exterior. A slope on �M is the �M-isotopy class of an unoriented simple closed

essential curve in �M. For notational simplicity, we shall use the same symbol to denote a slope, the
corresponding primitive element in H

�
(�M)"�

�
(�M) (well-de"ned up to sign); the context will

make it clear which is meant.
If 
 is a slope, thenM(
) will denote the manifold obtained by Dehn "llingM along �Mz with the

slope 
 (i.e. a solid torus < is attached to M along their boundaries so that the slope 
 bounds
a meridian disk of <). A slope of a knot exterior is called a boundary slope if there is a connected
essential surface F in M such that �F is a nonempty set of curves in �M of the given slope r.
For an irreducible complex a$ne algebraic curveX

�
, we useXI

�
to denote its smooth projective

completion. Note that XI
�
is birationally equivalent to X

�
. Since such a birational equivalence

induces an isomorphism between the function "elds �(X
�
) and �(XI

�
), any rational function f on

X
�
determines a rational function on XI

�
, which will also be denoted f. A point of XI

�
is called an

ideal point if it is a pole of some f3�[X
�
]L�(X

�
)��(XI

�
).

Consider the case where X
�
is a curve in the S¸(2,�)-character variety X(M) of a knot exterior

M. One of the fundamental connections between the topology and the character variety of M,
found by Culler and Shalen [12], can be brie#y described as follows (see [12] for details):
Start with an ideal point x

�
of XI

�
. It determines a discrete valuation v on the function "eld

�"�(X
�
)��(XI

�
) whose valuation ring consists of those elements of�which do not have pole at

the point x
�
. Choose an algebraic component R

�
LR(M) of t��(X

�
) such that t�R

�
is not constant

and extend v to a discrete valuation on the function "eld �"�(R
�
). According to Bass-Serre [24],

one can construct a simplicial tree on which S¸(2,�) acts. There is a tautological representation
P:�

�
(M)PS¸(2,�), which then induces an action of �

�
(M) on the tree. It is useful to observe that

the tautological representation satis"es the identity

trace(P(�)(�))"
� (��), �3�
�
(M), �3R

�
.

An element �3�
�
(M) "xes a vertex of the tree if and only if x

�
is not a pole of 
� , and so using the

fact that x
�
is an ideal point of X

�
, it can be shown that the action of �

�
(M) is nontrivial, i.e. no

vertex of the tree is "xed by the entire group �
�
(M). Hence, the action yields a nontrivial splitting of

�
�
(M) as the fundamental group of a graph of groups. This splitting of the group in turn yields

a splitting of the manifold M along essential surfaces. We shall say that such essential surfaces in
M are associated to the ideal point x

�
. IfC is a connected subcomplex of �M and x

�
is not a pole of


� for any 
3�
�
(C), then there exists an essential surface inM associated to x

�
that is disjoint from
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C; and if x
�
is a pole of 
� for some slope 
 in �M, then any essential surface associated to x

�
must

intersect 
. Therefore, the following lemma holds.

Lemma 2.1. Let M be a knot exterior, X
�
LX(M) a curve, and x

�
3XI

�
an ideal point.

(1) If x
�
is not a pole of 
� for some slope �, but is a pole of 
� for another slope �, then � is a boundary

slope.
(2) If x

�
is not a pole of 
� and 
� for two diwerent slopes � and �, then there exists a closed essential

surface in M associated to x
�
.

Proposition 2.2. LetM be a knot exterior andX
�
LX(M) a curve. ThenX

�
belongs to one of the three

mutually exclusive types (i)}(iii) described in Section 1.

Proof. Suppose that X
�
is neither of type (i) nor (ii). Then there are two nontrivial elements

�
�
,�

�
3�

�
(�M) such that 
��

is a constant function on X
�
but 
��

is not.

Claim. For any element �3�
�
(M) and integer nO0, 
� is constant on X

�
if and only if 
�� is.

Proof of claim. Since 
��"
��� , we may suppose that n'0. The trace identity

trace(A)trace(B)"trace(AB)#trace(AB��) A,B3S¸(2,�),

implies that for any ��3X
�
, 
��(��)"trace(�(��))"trace((�(�))�)"[trace(�(�))]�!2. Thus, 
� is

constant onX
�
if and only 
�� is a constant function onX�

. A simple induction argument, based on
the trace identity, can now be constructed to see that 
� is constant on X

�
if and only if 
�� is

constant on X
�
for any integer n'0, and hence for each nO0. This proves the claim.

By the claim, we may assume that the elements �
�
,�

�
are primitive elements of �

�
(�M). It follows

from Lemma 2.1(1) that for any slope 
 on �M, if 
� is constant on X
�
, then 
 is a boundary slope.

By [14], there are only "nitely many boundary slopes on �M and, therefore, there must exist
a slope �

�
on �M such that ��

�
,�

�
	 is a basis for �

�
(�M) but �

�
is not a boundary slope. It follows

that X
�
is 
��

-nonconstant.
Let R

�
be an algebraic component of t��(X

�
) for which t :R

�
PX

�
nonconstant. Since X

�
is


��
-nonconstant, there is a "eld extension � of �"�(R

�
), of degree at most two, such that the

tautological representation P :�
�
(M)PS¸(2,�) is conjugate over G¸(2,�) to a representation

P� : �
�
(M)PS¸(2,�) and that P�(�

�
) is a diagonal matrix. Since �

�
and �

�
commute and since

P�(�
�
)O$I, P�(�

�
) must also be a diagonal matrix, say

P�(�
�
)"�

a
�

0

0 a��
�
� and P�(�

�
)"�

b
�

0

0 b��
�
�.

From the identity trace(P(�)(�))"
� (��), we have that for any 
"��
�
��
�
3�

�
(�M),


�"a�
�
b�
�
#a��

�
b��
�
.

Let x
�
be a pole of 
��

in XI
�
(x

�
is necessarily an ideal point) and v be the discrete valuation on

�"�(XI
�
) de"ned by x

�
. By [20, Lemma II.4.4], the discrete valuation v can be extended to

a discrete valuation w on the "eld �, i.e. w��"dv for some integer d'0. It is easy to check that for
any a3���0	, w(a#a��)(0 if and only if w(a)O0, and so by construction w(a

�
)"0,w(b

�
)O0.
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Hence if 
"a�
�
b�
�
3�

�
(�M), then 0Ow(
)"w(a�

�
b�
�
)"nw(b

�
) if and only if nO0; that is,

v(
� )"�
�
w(
�)(0 if and only if nO0. Put another way, x

�
is a pole of 


�
if and only if nO0. It

follows thatX
�
is a 
�-nonconstant curve if and only if nO0. ThusX

�
is of type (iii) and the lemma

has been proven. �

The next proposition is a special case, su$cient for our needs, of a result in [26,12] concerning
the dimensions of components of X(M) for a general compact 3-manifold with boundary.

Proposition 2.3 (Thurston [26], Culler and Shalen [12]). Let M be a knot exterior. If ��3X(M) is
the character of an irreducible representation �3R(M) such that �(�

�
(�M)) is not contained in �$I	,

then any component of X(M) containing �� has dimension at least 1.

Proposition 2.4. Let M be a small knot exterior.
(1) [10] Each component of X(M) is at most 1-dimensional.
(2) Every 1-dimensional component X

�
of X(M) is either a type (i) or type (iii) curve.

Proof. The argument for part (1) can be found in the proof of [7, Proposition 2.4]. To prove part
(2), suppose otherwise thatX

�
has type (ii) (Proposition 2.2). Then for any ideal point x

�
ofXI

�
and

�3�
�
(�M), x

�
is not a pole of 
� . It follows from Lemma 2.1(2) that there is a closed, essential

surface in M. But this contradicts our assumption that M is a small knot exterior. �

Proposition 2.5. Suppose that M is a small knot exterior and that � is a primitive element of H
�
(�M)

such that X(M(�)) contains no nontrivial component of positive-dimension. Then, 
� cannot be
identically equal to 2 on any nontrivial positive-dimensional component of X(M).

Proof. Suppose otherwise that there is a nontrivial positive-dimensional component X
�
of X(M)

on which 
� is constantly equal to 2. According to Proposition 2.4(1), X
�
is a curve. Recall

t :R(M)PX(M) the regular, surjective map which sends a representation to its character. LetR
�
be

an algebraic component of t��(X
�
) on which t is nonconstant. Then every representation in

R
�
maps � to a matrix of trace 2.

Claim. �(�)"I for every �3R
�
.

Proof of claim. We only need to show the claim for irreducible representations since they form
a dense subset of R

�
. Suppose otherwise that there is an irreducible representation �

�
3R

�
such

that �
�
(�) is not the identity matrix. It follows from [12, Proposition 1.5.4] that there is a Zariski

open neighborhood ; of �
�
in R

�
such that �(�)OI for each �3;. Thus �(�) must be a trace

2 parabolic element of S¸(2,�) for each �3;. If � is any element of �
�
(�M), then as it commutes

with �, �(�) is either parabolic or $I for each �3;. Hence 
� is also constantly equal to either 2 or
!2 on t(;), and therefore on X

�
. This is impossible as it contradicts Proposition 2.4(2). Thus the

claim holds.
According to this claim, R

�
LR(M(�)) and, therefore, X

�
is contained in X(M(�)), contrary to

our hypothesis that X(M(�)) does not contain any nontrivial positive-dimensional components.
The proposition is proved. �
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Proposition 2.6. Suppose that M is a knot exterior such that some primitive element � of H
�
(�M) is

zero in H
�
(M). Suppose also that X

�
LX(M) is an algebraic component on which 
� is nonconstant.

Then, X
�
is a nontrivial component of X(M) of positive dimension.

Proof. Since �"0 inH
�
(M), we haveH

�
(M(�))"H

�
(M). Any character of a reducible representa-

tion of �
�
(M) is also the character of a diagonal representation of �

�
(M), and thus is the character

of a representation which factors throughH
�
(M)"H

�
(M(�)). Therefore, any trivial component of

X(M) is also contained in X(M(�)). Clearly 
� is constantly equal to 2 on X(M(�)), and so the
proposition follows. �

3. Character varieties and covering spaces

In this section we study relations between the character varieties of covering spaces. This will
lead us to a proof of Theorem A.
LetM be a knot exterior and let p :M

�
PM an n-fold regular (free) covering. The map p induces

an injective homomorphism p
H
: �

�
(M

�
)P�

�
(M) whose image is an index n normal subgroup of

�
�
(M). The homomorphism p

H
in turn induces regular maps

pH :R(M)PR(M
�
), pH(�)"��p

H
,

where `�a denotes composition, and

p( :X(M)PX(M
�
), p( (�� )"�

�
H��	 .

We have the following commutative diagram of regular maps, the two vertical ones being
surjective:

For any subset R
�
of R(M), we call the Zariski closure of pH(R

�
) in R(M

�
) the restriction

subvariety of R
�
in R(M

�
). Similarly, for X

�
LX(M), the restriction subvariety of X

�
in X(M

�
) is

the Zariski closure of p( (X
�
) in X(M

�
).

Proposition 3.1. If X
�
LX(M) is an algebraic curve, then p( (X

�
) is a (closed ) algebraic curve in

X(M
�
).

Proof. Let p( (X
�
) denote the restriction subvariety of X

�
in X(M

�
). Since the restriction of

p( � :X
�
Pp( (X

�
) is dominating, the dimension of p( (X

�
) is bounded above by 1. On the other hand, if

x is an ideal point ofX
�
, there is some 
3�

�
(M) such that x is a pole of 
� . But then x is also a pole

of 
� (cf. the proof of the claim in the proof of Proposition 2.2). Since 
�3�
�
(M

�
), it follows that 
�� is

nonconstant on p( (X
�
), which therefore has dimension 1. It also follows that the induced surjection
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between the smooth projective models of X
�
and p( (X

�
) sends ideal points to ideal points. Thus

p( (X
�
)"p( (X

�
). �

Proposition 3.2. Suppose M is a small knot exterior and that some primitive element � of H
�
(�M) is

zero in H
�
(M). Let p :M

�
PM be a free n-fold cyclic covering such that M

�
is also a small knot

exterior, and suppose that �
�
is the primitive element of �

�
(�M

�
) such that p

H
(�

�
)"�. IfX

�
LX(M) is

a 
�-nonconstant component, then the restriction subvariety >
�
of X

�
in X(M

�
) is a nontrivial,


��
-nonconstant curve component of X(M

�
).

Proof. By Propositions 2.4 and 2.6, X
�
is a nontrivial curve component of X(M). It follows as in

Lemma 4.1 of [3] that there is a four-dimensional algebraic component R
�
of R(M) such that

t(R
�
)"X

�
. If we denote by S

�
the restriction subvariety of R

�
on R(M

�
), then S

�
is necessarily

irreducible and pH(R
�
) contains a Zariski open subset of S

�
. Similarly, if we let>

�
be the restriction

subvariety of X
�
in X(M

�
), then >

�
is irreducible and p( (X

�
)"t(pH(R

�
)) is a dense subset of >

�
.

Since the covering is cyclic and �"0 in H
�
(M), the simple closed curve � lifts to n parallel, simple

closed curves in �M
�
, each representing �

�
3�

�
(�M

�
). Observe that for ��3X

�
,


�(��)"trace(�(�))"trace(�(p
H
(�

�
)))"
��

(t(pH(�))),

and therefore >
�
is 
��

-nonconstant. Hence by Proposition 2.6, the component of X(M
�
) contain-

ing >
�
is nontrivial. Now applying Proposition 2.4, we see that >

�
is itself a curve component of

X(M
�
). �

Proposition 3.3. Let � be a xnitely generated group and �
�

a normal subgroup. Suppose that
���

,���
3X(�) both restrict to the same irreducible character of �

�
. Then there is a homomorphism

� :�P�$I	, which vanishes on �
�
, such that �

�
is conjugate to ��

�
. Hence, a given irreducible

representation �
�
PS¸(2,�) extends to no more than �H�(�/�

�
;�/2) representations in R(M).

Proof. By [12, Proposition 1.5.2] we may assume that �
�
and �

�
actually restrict to the same

representation on �
�
. The normality of �

�
in � implies that for each �3� and �3�

�
we have

�
�
(�)�

�
(�)�

�
(���)"�

�
(�����)"�

�
(�����)"�

�
(�)�

�
(�)�

�
(���)"�

�
(�)�

�
(�)�

�
(���).

Hence, by the irreducibility of �
�
��

�
, we see that �

�
(�)���

�
(�)"I or !I. Thus, we have a map

� :�P�$I	, easily seen to be a homomorphism which vanishes on �
�
, such that �

�
(�)"�(�)�

�
(�)

for every �3�. This completes the proof. �

Remark 3.4. Recall from [3] that there is an action of H�(�;�/2)"Hom(�,�$1	) on both R(�)
andX(�). Thus for �3H�(�;�/2) there are algebraic isomorphisms �H :R(�)PR(�), �( :X(�)PX(�)
given by

�H(�)(g)"�(g)�(g), �( (��)(g)"��H��	(g)"�(g)��(g).

The previous proposition may be interpreted as saying that the set of representations (character) of
� which restrict to an irreducible representation (character) of �

�
is either empty or an orbit of the

H�(�/�
�
;�/2)LH�(�;�/2) action.
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Corollary 3.5. M be a knot exterior and suppose that p :M
�
PM is a free, n-fold cyclic covering. Let

p( :X(M)PX(M
�
) be the regular map induced by the covering map p. Then each irreducible character

in X(M
�
) has at most two inverse images in X(M) under the map p( .

Proposition 3.6. Suppose that p :M
�
PM is a free n-fold cyclic covering between knot exteriors.

Suppose further that �3H
�
(�M) is zero in H

�
(M) and that �

�
is the primitive element of �

�
(�M

�
) such

that p
H
(�

�
)"�. IfX

�
is a 
�-nonconstant component ofX(M) and>

�
its restriction inX(M

�
), then the

degree of the function 
� :XI �P�P� is non-zero and is either equal to or the double of the degree of

��

:>I
�
P�P�.

Proof. The regular dominating map p( :X
�
P>

�
induces the rational map p� :XI

�
P>I

�
such that

the following diagram of maps commutes:

where the vertical arrows denote the birational isomorphisms. Now the commutative diagram of
regular maps:

induces a commutative diagram of rational maps:

Therefore, 
�"
��
�p� and so degree(
�)"degree(p� )degree(
��

). Since 
� is nonconstant, de-
gree(p� )'0.We need only show that degree(p� :XI

�
P>I

�
)3�1,2	 to complete the proof. But from the

"rst diagram above, it is enough to show that there is a dense subset of >
�
each point of which has

no more than two inverse images in X
�
under the map p( . Since >

�
is a nontrivial component

(Proposition 3.2), the set of irreducible characters in>
�
is dense [12], so an appeal to Corollary 3.5

completes the proof. �

Corollary 3.7. Suppose that p :M
�
PM is a free n-fold cyclic covering between knot exteriors

and that some primitive element � of H
�
(�M) is zero in H

�
(M). If X

�
and X

�
are two 
�-non-

constant components in X(M) such that the degree of 
� on XI
�
is diwerent from the degree of 
� on

XI
�
, then the restriction subvarieties >

�
and >

�
of X

�
and X

�
on M

�
are distinct curve components

of X(M
�
).
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Proof. Let �
�
be the primitive element of �

�
(�M

�
) such that p

H
(�

�
)"�. By the proof of Proposi-

tion 3.6, we have degree(
� �	I � )"degree(p� �
	I �
)degree(
��

�

I �
) and degree(
� �	I � )"degree(p� �

	I �
)de-

gree(
��
�

I �
). Hence if degree(p� �

	I �
)"degree(p� �

	I �
), then degree(
��

�

I �
)Odegree(
��

�

I �
) and so >

�
and

>
�
are distinct curve components of X(M

�
). Without loss of generality then, we may assume,

by Proposition 3.6, that degree(p� �
	I �
)"1 and degree(p� �

	I �
)"2. But now >

�
and >

�
cannot be the

same component. For otherwise, there would be three inverse images in X
�
�X

�
for a generic

irreducible character of >
�
">

�
under the map p( , one in X

�
and two in X

�
, and this contradicts

Corollary 3.5. �

Lemma 3.8. Suppose that p :M
�
PM is a free n-fold regular covering of knot exteriors and thatX

�
is

a curve component ofX(M). IfX
�
has, respectively, type (i), (ii), or (iii), then its restriction>

�
onM

�
is

a type (i), (ii) or (iii) curve component of X(M
�
) respectively. In the case where X

�
is a type (iii) curve

whose associated boundary slope is 
, then the boundary slope associated to >
�
is the slope of

p��(
)L�M
�
.

Proof. Suppose that X
�
is a type (i) curve and let 


�
3�

�
(�M

�
) be any nontrivial element. Then

p
H
(


�
) is a nontrivial element of �

�
(�M) and by a similar argument to that used in proving

Proposition 3.6 we have

degree(

�H ��� 	 �	I � )"degree(p� �

	I �
)degree(
�� �
I � ).

Now sinceX
�
is a type (i) curve, we have degree(


�H ��� 	 �	I � )'0, and therefore degree(
��
�

I �
)'0, i.e.


�� is nonconstant on >�
. Thus >

�
is a type (i) curve.

The cases when X
�
is a type (ii) or (iii) curve are proven similarly. �

Proof of Theorem A. We shall proceed by contradiction. Suppose that the theorem does not
hold. Then after possibly passing to a subsequence of �a

�
	, we may assume that there is someN'0

such that for each M
��
, the number of nontrivial curve components in X(M

��
) is bounded above

by N.
Fix k*1 and suppose that there are exactly j

�
mutually distinct nontrivial, 
���

-nonconstant
curve componentsX

�
,2,X

��
ofX(M

��
). Among these curves, assume that there are i

�
of them, say

X
�
,2,X

��
, and no more, which satisfy the condition that when restricted to any cyclic coverM

��
,

l*k, they always yield i
�
mutually distinct, nontrivial curve components >

�
,2,>

��
of X(M

��
).

Note that >
�
,2,>

��
are 
���

-nonconstant by Proposition 3.2. By our choice of N, there is some
k
�
for which i

�
)i

��
for all k. Set i"i

��
, j"j

��
, and n

�
"a

��
. Let X

�
,2,X

�
,X

���
,2,X

�
be the

nontrivial, 
���
-nonconstant curve components components of X(M

��
), ordered in the fashion

described above.
We claim that i'0. By condition (b) of the hypotheses, there is a k*1 for which

X(M
��
)(�

��
) contains an irreducible character �

�
. Since 
���

(�
�
)"2, Proposition 2.5 implies

that 
���
is nonconstant on such a curve. Now applying Proposition 3.2, we see that the restriction

of such a curve to M
��
, l*k, is a nontrivial, 
���

-nonconstant curve component of X(M
��
). Thus

i'0.
By Corollaries 3.5 and 3.7 and the de"ning choice of i, each of the integers

degree(
���
�
	
I
���
), degree(
���

�
	
I
���
),2, degree(
���

�
	
I
�
)
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is equal to one of

degree(
���
�
	
I
�
), degree(
���

�
	
I
�
),2, degree(
���

�
	
I
�
).

Set q"max�degree(
���
�
	
I
�
)�1)l)i	 and let n

�
"a

��
where k

�
'k

�
is chosen so that the number

of irreducible characters inX(M
��
(�

��
)) is larger thanNq. If>

�
,2,>

�
are the restrictions toM

��
of

X
�
,2,X

�
, then our assumptions imply that >

�
,2,>

�
are mutually distinct nontrivial, 
���

-
nonconstant curve components of X(M

��
). Let >

�
,2,>

�
,>

���
,2,>

��
be the complete collection

of such curves inX(M
��
). Again by Corollaries 3.5 and 3.7 and the de"ning choice of i, each integer

degree(
���
�


I
���
),2, degree(
���

�


I
��
)

is equal to one of

degree(
���
�


I
�
),2, degree(
���

�


I
�
)

and by Proposition 3.6 we have

degree(
���
�


I
�
))degree(
���

�
	
I
�
),2, degree(
���

�


I
�
))degree(
���

�
	
I
�
).

Thus, degree(
���
�


I
�
))q for each l3�1,2,2, j�	. But then as 
���

takes the value 2 at each of the
irreducible characters inX(M

��
(�

��
))LX(M

��
), it follows that no >

�
contains more than q of these

characters. By construction, the number of irreducible characters inX(M
��
) is larger thanNq*j�q

and so at least one such character, � say, is not contained in >
�
�2�>

��
. But then by

Propositions 2.3 and 2.4, � is contained in a nontrivial, 
���
-nonconstant curve component>

����
of

X(M
��
), contrary to the de"nition of j�. Thus, the theorem must hold. �

4. Character varieties of torus bundles over S1

We call an S¸(2,�)-character binary dihedral if it is the character of a representation whose image
is a nonabelian binary dihedral group. In this section, we show that each irreducible S¸(2,�)-
character of torus bundle over S� with hyperbolic monodromy is binary dihedral and obtain an
exact count of their number. Together with results from [13,11], we show that any hyperbolic
punctured torus bundle satis"es all the conditions of Theorem A. Hence, we obtain Theorem B.
Consider a torus ¹"S�	S�"��/�� and "x base points (1,1)3¹ and (0,0)3��. The action of

G¸
�
(�) on �� descends to one on ¹ in such a way that under the natural identi"cation

H
�
(¹)"��L��, the di!eotopy group of ¹ is isomorphic, in the obvious way, to

G¸
�
(�)"Aut(H

�
(¹)). An element of this group is called hyperbolic if its trace is larger than 2 in

absolute value.
Fix an orientation preserving di!eomorphism

h"�
a b

c d�3S¸
�
(�) of ¹

and let= be the torus bundle over the circle with monodromy h. Since h has a "xed point, the trace
of this point is a closed loop in=. Throughout this section we shall use � to denote either this loop,
or its class in �

�
(=) or H

�
(=), and in all cases refer to it as a meridian of=. Evidently � is sent to

a generator of H
�
(S�) under the projection-induced homomorphism H

�
(=)PH

�
(S�).
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Consider the endomorphism

h
H

!1

� ��	

:H
�
(¹)PH

�
(¹).

Lemma 4.1. Let = be a torus bundle over S� with monodromy h.
(1) H

�
(=)���coker(h

H
!1


� ��	
) where the �-factor is generated by �.

(2) �coker(h
H

!1

� ��	

)"�2!trace(h)� if trace(h)O2.

Proof. (1) Let N(¹)L= be a collar neighbourhood of ¹ and set=
�
"=�int(N(¹)). Evidently

=
�
�¹	I. The isomorphisms H

�
(=,¹)"H

�
(=,N(¹)) (homotopy) �H

�
(=

�
,�=

�
) (excision)

�H
���

(¹) (Thom isomorphism) can be used to convert the exact sequence

H
�
(=,¹)PH

�
(¹)PH

�
(=)PH

�
(=,¹)PH

�
(¹)PH

�
(=)

to

H
�
(¹)

�H��
P H

�
(¹)PH

�
(=)P�P0.

Part (1) follows.
(2) Part (2) follows from the identity �det(h

H
!1


� ��	
)�"�2!trace(h)�. �

Proposition 4.2. If = is a torus bundle over S� with monodromy h then

H
�
(=)��

��¹orsion if trace(h)O2

����¹orsion if trace(h)"2 and hOI

����� if h"I

where the xrst �-factor is generated by � and the rest is coker(h
H

!1

� ��	

).

Proof. The proposition is a consequence of the previous lemma and the following observation: if
trace(h)"2 and hOI, then h is conjugate in S¸

�
(�) to a matrix of the form

�
1 n

0 1�
for some n3���0	. �

Our next goal is to determine the S¸(2,�)-character variety of=. To that end let �3R(=) be
irreducible and observe that ���

�
(¹) is reducible. If ���

�
(¹) is central, then �(�

�
(¹))L�$I	 and so

as �(�
�
(=)) is generated by �(�) and �(�

�
(¹)), � is abelian, and therefore reducible, contrary to our

hypotheses. Thus ���
�
(¹) is noncentral and so there are exactly one or two ���

�
(¹)-invariant lines

in ��. Since �
�
(¹) is normal in �

�
(=), the union of these lines is actually �-invariant. Since � is

irreducible there must be two lines, and so a standard argument now implies that � is conjugate to
a representation with image in

N"��
z 0

0 z���, �
0 w

!w�� 0��z,w3�H�.
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We can be more precise. Assume that � has image inN. Since there are two ���
�
(¹)-invariant lines,

���
�
(¹) is diagonalisable, and so �(�

�
(¹)) consists of diagonal matrices. It follows that �(�) must be

a non-diagonal element of N. Thus, �(�) has order 4. Note that � can be conjugated by a diagonal
matrix so that

�(�)"�
0 1

!1 0�.

Proposition 4.3. Let = be a torus bundle over S� with monodromy h. An irreducible representation
�
�
(=)PS¸(2,�) is conjugate to a representation with image in N. Furthermore we can assume that

�(�
�
(¹))LD and �(�)"�

0 1

!1 0�.
We can be even more speci"c. Let=

�
be the torus bundle with monodromy h�. Its fundamental

group is presented by

�
�
(=

�
)"��

�
,�

�
(¹) � �

�
����

�
"h�(�) for all �3�

�
(¹)�,

where �
�
is the meridian of the ¹-bundle=

�
. The natural covering projection p

�
:=

�
P= sends

�
�
to ��3�

�
(=), and is the identity on �

�
(¹).

It is a consequence of Proposition 4.3 that any irreducible character of �
�
(=) is the character of

a representation � :�
�
(=)PN such that

�(�)"�
0 1

!1 0�
and �(�

�
(=

�
))LD, the group of diagonal matrices. Hence ���

�
(=

�
) factors through a representa-

tion �
�
:H

�
(=

�
)PD which, from our discussion above, determines �. Thus we are led to ask:

which �
�
:H

�
(=

�
)PD can be so obtained? To answer this question, observe that if �3�

�
(=

�
),

then as �(�)3D we have

�(�����)"�(�)�(�)�(�)��"�
0 1

!1 0� �(�) �
0 1

!1 0�
��

"�(�)��"�(���)

and, therefore,

�(������)"I for all �3�
�
(=

�
).

Let t3Aut(=
�
P=)"�/2 be the generator and note that its action on H

�
(=

�
)"

��coker(h�!1

� ��	

) (Proposition 4.2) is given by

t(�
�
)"�

�
, t(�)"h(�) for �3coker(h�!1).

The identity �(������)"I for �3�
�
(=

�
) yields

�
�
((1#t)H

�
(=

�
))"�I	.
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In other words, �
�
factors through H

�
(=

�
)/(1#t)H

�
(=

�
). To determine this quotient, observe

that (1#t)(�
�
)"2�

�
and as t acts as h on �

�
(¹)L�

�
(=

�
), we see that

coker(h�!1)/(h#1)coker(h�!1)"coker(h#1). Hence,

H
�
(=

�
)/(1#t)H

�
(=

�
)��/2�coker(h#1),

where the �/2-factor is generated by the class of �
�
.

Conversely, if �
�
:H

�
(=

�
)/(1#t)H

�
(=

�
)PD is a given homomorphism which sends the class

of �
�
to !I and we de"ne �

�
to be the composition H

�
(=

�
)PH

�
(=

�
)/(1#t)H

�
(=

�
) ��
PD, the

identity �
�
(t(�� ))"�

�
(!�� ) is satis"ed. It is then a simple matter to verify that we may de"ne

a representation � :�
�
(=)PN by setting

�(�)"�
0 1

!1 0�
and ���

�
(=

�
) to be the composition �

�
(=

�
)PH

�
(=

�
) ��
P D. The representation will be ir-

reducible precisely when �
�
�coker(h�!1


���	
) does not have image in �$I	, or equivalently,

�
�
(coker(h#1


���	
))�$I	. Let

Z
�
"Hom(coker(h#1


� ��	
),�$I	)LHom(coker(h#1


� ��	
),D).

Lemma 4.4. The set of S¸(2,�) conjugacy classes of irreducible representations �
�
(=)PS¸(2,�)

corresponds bijectively with (Hom(coker(h#1

� ��	

),D)�Z
�
)/(�"���). Moreover,

� if trace(h)O!2, then each such character is binary dihedral.
� if trace(h)"!2 but hO!I, then X���(=) consists of [(n#2)/2] curves of characters of

representations with image in N, where n is the order of the torsion subgroup of H
�
(=).

� if h"!I, then X���(=) is a two-dimensional variety.

Proof. The only part of the "rst statement which is left to verify is that an S¸(2,�)-conjugacy
between N-representations corresponds to replacing �3Hom(coker(h#1


� ��	
),D) by either � or

���. We leave this as an elementary exercise.
To prove the second statement, note that if trace(h)O!2, then coker(h#1


� ��	
) is "nite, and

hence by our analysis above, each irreducible representation �
�
(=)PN has a "nite image and,

therefore, is binary dihedral. On the other hand, if trace(h)"!2, it is straightforward to verify the
claimed results holds. �

We have proven the following proposition.

Proposition 4.5. Let = be a torus bundle over S� with monodromy h where trace(h)O!2. Set
�
�
"�Z

�
3�1,2,4	. Then

�X���(=)"�
�
(�2#trace(h)�!�

�
).

Furthermore, each such character is binary dihedral.
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Corollary 4.6. Let =
�
be the torus bundle over S� with monodromy h�. If �trace(h)�'2, then the

number of irreducible characters of �
�
(=

�
) tends to R with n.

Proof. Since �trace(h)�'2, there is an eigenvalue � of h with ���'1. Then �� is an eigenvalue of
h� and therefore trace(h�)"��#���. Thus the number of conjugacy classes of irreducible repres-
entations �

�
(=

�
)PS¸(2,�) is

1
2
(�2#trace(h�)�!�)"�

2 cosh�
nln(���)

2 �!
�
2

if �'1 or n is even,

2 sinh�
nln(���)

2 �!
�
2

if �(!1 and n is odd.

This proves the result. �

We can now verify that the hypotheses of Theorem A hold for hyperbolic punctured torus
bundles over S�.

Proof of Theorem B. We only need to show that for a hyperbolic punctured torus bundleM over
S�, all the conditions of Theorem A are satis"ed. Obviously, such a manifold is a knot exterior with
Seifert surface (a "ber). By either [13] or [11], any hyperbolic punctured torus bundle over the
circle is a small knot exterior, so condition (a) of the theorem holds. Condition (b) holds because of
Proposition 4.5 and Corollary 4.6 if we observe that (i) the manifold =

�
of these results is the

manifoldM
�
(�

�
) of the theorem, and (ii) the hyperbolicity ofM is equivalent to the condition that

the monodromy h of the torus bundle=
�
satis"es �trace(h)�'2. Finally, by Proposition 4.3, any

irreducible representation of M
�
(�

�
) sends �

�
(�M

�
) to a group of order 4, which implies that

condition (c) holds. �

5. Character varieties of punctured torus bundles over S1

In this section, we prove some general results concerning the S¸(2,�)-character variety of
a hyperbolic punctured torus bundle over S�,M. Throughout, F will denote a "xed "ber ofM and
we shall assume that the monodromy ofM is the identity on �F. Moreover, we shall suppose that
the base point of M lies in �F.
Let h :�

�
(F)P�

�
(F) be the monodromy-induced isomorphism. It is known that the condition

that M be hyperbolic is equivalent to requiring that h
H
:H

�
(F)PH

�
(F) be hyperbolic, i.e.

�trace(h
H
)�'2. We denote by H :X(F)PX(F) the algebraic equivalence determined by precom-

position with h.
The meridian ofM, denoted �, is the trace under h of the base point ofM. The longitude, denoted

�, is simply the boundary of F. Fix orientations for these curves. For the rest of the paper we shall
also use � and � to denote the class of the meridian and longitude in either
H

�
(�M)"�

�
(�M),H

�
(M) or �

�
(M). This gives us a canonical way to identify the slopes on �M

with ����
�
	 by associating the slope r with p/q if $(p�#q�) is the pair of primitive homology

classes in H
�
(�M) determined by r.
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The fundamental group of M admits a presentation of the form

�
�
(M)"�x, y,� � �x���"h(x),�y���"h(y)�,

where x and y are free generators of �
�
(F) and � corresponds to the meridian of M (after possibly

altering its orientation). Evidently, the free group �
�
(F)"�x, y� is normal in �

�
(M). We can

assume that x and y are chosen so that �"xyx��y��.
Recall that a curve >

�
LX(F) is called nontrivial if it contains an irreducible character and


�-nonconstant if 
� �>�
is nonconstant (note �3�

�
(F)). As in the proof of Proposition 2.6, it can be

shown that if >
�
is 
�-nonconstant, then >�

is nontrivial.
Let iK :X(M)PX(F) be the regular map induced by inclusion. For each componentX

�
ofX(M

�
),

the restriction of X
�
in X(F) is the Zariski closure of its image under iK . Note that X

�
is


�-nonconstant if and only if its restriction to X(F) is 
�-nonconstant as well.
Our goal in this section is to establish the relationship between 
�-nonconstant components of

X(M) and their restrictions in X(F). Inspection of the presentation of �
�
(M) above shows that

H�iK"iK , that is the image of iK is contained in the "xed point set of H. Our "rst result shows that
nontrivial curves which lie in this "xed point set arise as restrictions of curves from X(M).

Proposition 5.1. A 
�-nonconstant curve >�
in X(F) is the restriction of a 
�-nonconstant curve

component X
�
of X(M) if and only if >

�
is pointwise xxed by H.

Proof. We have already observed that the image of iK is contained in the "xed-point set of H, so
assume that >

�
is a 
�-nonconstant curve >�

in X(F). As such curves are nontrivial, irreducible
characters form a dense subset of >

�
. Let ��3>

�
be an irreducible character. Since it is a "xed

point of H, � and ��h are conjugate representations of �
�
(F). Thus there is a matrix A3S¸(2,�),

uniquely determined up to sign, such that A�(x)A��"�(h(x)), A�(y)A��"�(h(y)), and
A�(xy)A��"�(h(xy)). We can, therefore, extend � to two irreducible representations of �

�
(M) by

setting �(�)"A or !A. Hence, iK��(>
�
) is a subvariety of X(M) of positive dimension. By

Proposition 2.4, iK��(>
�
) contains a nontrivial, 
�-nonconstant curve component X�

. �

Recall from Remark 3.4 there is an action of H�(M ; �/2)"Hom(�
�
(M),�$1	) on R(M) and

X(M). Let � : �
�
(M)P�$1	 be the homomorphism determined by

�(x)"�(y)"1, �(�)"!1

and recall the algebraic isomorphisms �H :R(M)PR(M) and �K :X(M)PX(M). Since ���
�
(F),I,

we see that

iK (�)"iK (�K (�)) for all �3X(M).

Thus, from Proposition 3.3 we obtain:

Proposition 5.2. Let X
�
be a 
�-nonconstant curve component of X(M). Then iK �

	�
is a degree two or

degree one map depending exactly on whether �K (X
�
)"X

�
or �K (X

�
)OX

�
, respectively.
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As an aid to the calculations of the next section, we are interested in "nding conditions which
guarantee that a given curve component ofX(M) is invariant under �K . To obtain such a condition,
we must "rst examine the smoothness in X(M) of the binary dihedral characters in X(M(�)).
Recall that a point of a complex a$ne algebraic varietyX is called a simple point if it is contained

in a unique component X
�
of X and is a smooth point of X

�
[25].

Proposition 5.3. Let M be a hyperbolic once-punctured torus bundle over S�. Then every binary
dihedral character in X(M(�))LX(M) is a simple point of X(M).

Proof. There is an exact sequence

1P�
�
(F)P�

�
(M)P�P1

and there is a simple closed curve on �M whose associated class �3�
�
(M) "ts into a presentation

�
�
(M(�))"�x, y,� � �x���"x�y�, �y���"x�y�,xy"yx�

where

h"�
p r

q s�
is a hyperbolic monodromy matrix for M(�), i.e. �p#s�'2.
Suppose that ��3X(M(�)) is a binary dihedral character. From Section 4 we see that up to

conjugation we may assume

�(�)"�
0 1

!1 0�, �(x)"�
� 0

0 ����, �(y)"�
� 0

0 ����
where �,� satisfy ������"1, ������"1 and either �O$1 or �O$1. Appealing to [5, Theorem
3], we only need to show that H�(M(�); sl(2,�)�)"0, where sl(2,�)� is the �

�
(M(�))-module

structure on the Lie algebra sl(2,�) of S¸(2,�) induced by �
�
(M(�))

�
P S¸(2,�)

��
P sl(2,�). Equiva-

lently, we need to showH�(�; sl(2,�)� )"0 where �"�
�
(M(�)). Since � is non-abelian, it su$ces to

prove that the space of 1-cocycles, Z�(�; sl(2,�)�), is three-dimensional.
Any 1-cocycle u3Z�(�; sl(2,�)�) satis"es the cocycle condition

u(zz�)"u(z)#Ad�(z)(u(z�)) z, z�3�

and so is determined by the trace zero matrices

u(x)"�
a b

c !a�, u(y)"�
e f

g !e�, u(�)"�
u v

w !u�.
The cocycle condition implies that for each z3� and n3� we have

u(z�)"�(n)
�����
�
�
�

Ad�(z)��������	��	���	(u(z)) where �(n)"�
0 if n"0,

�
���

otherwise.
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Hence the three relations u(�x���)"u(x�y�), u(�y���)"u(x�y�) and u(xy)"u(yx) yield the follow-
ing conditions:

�(1!Ad�(�x���))(u(�))#Ad�(�)(u(x))"�(p)�
�����
�
�
�

Ad�(x)��������	��	���	�(u(x))

# �(q)Ad�(x)��
�����
�
�
�

Ad�(y)��������	��	���	�(u(y)),

�(1!Ad�(�y���))(u(�))#Ad�(�)(u(y))"�(r)�
�����
�
�
�

Ad�(x)��������	��	���	�(u(x))

# �(s)Ad�(y)��
�����
�
�
�

Ad�(y)��������	��	���	�(u(y)),
�u(x)#Ad�(x)(u(y))"u(y)#Ad�(y)(u(x)).

Assuming that �O$1 and �O$1 we obtain three matrix identities

��
!a !c#(1!���)v

!b#(1!��)w a �"�
pa#qe ������	

�����	
b#���������	

�����	
f

�������	
������	

c#�����������	
������	

g !(pa#qe) � ,
��

!e !g#(1!���)v

!f#(1!��)w e �"�
ra#se ������	

�����	
b#���������		

�����	
f

�������	
������	

c#�����������	
������	

g !(ra#se) � ,
��

a#e b#��f

c#���g !a!e�"�
a#e f#��b

g#���c !a!e�,
which can be converted into the following system of linear relations in nine variables
a, b, c, e, f, g, u, v,w:

�
(1) (p#1)a#qe"0,

(2) ������	
�����	

b#���������	
�����	

f#c!(1!���)v"0,

(3) �������	
������	

c#�����������	
������	

g#b!(1!��)w"0,

(4) ra#(s#1)e"0,

(5) ������	
�����	

b#���������	
�����	

f#g!(1!���)v"0,

(6) �������	
������	

c#�����������	
������	

g#f!(1!��)w"0,

(7) (1!��)b#(��!1)f"0,

(8) (1!���)c#(���!1)g"0.
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Since �p#s�'2, Eqs. (1) and (4) show a"e"0. Next plugging into (2) the value for f determined
by Eq. (7) yields

v"
(1!������)b

(1!��)(1!���)
#

c
(1!���)

"

b
1!��

#

c
1!���

since ������"1. Similarly (8) and (3) lead us to

w"

b
1!��

#

c
1!���

"v.

Eqs. (5) and (6) add no new constraints, and so the solution space of this system of linear equations,
i.e. the space Z�(�; sl(2,�)�), is three dimensional.
A similar, though easier, argument deals with the cases �"$1, �"$1. �

Corollary 5.4. Let X
�
be a curve component in X(M) which contains a binary dihedral character of

X(M(�)). Then �K (X
�
)"X

�
and iK �

	�
is a degree-two map to a curve >

�
LX(F).

Proof. Since �K is an isomorphism, �K (X
�
) is a curve component of X(M

�
). We already knew that if

��3X(M(�))LX(M) is a binary dihedral character, then up to conjugation,

�(�)"�
0 1

!1 0�
and �(x) and �(y) are diagonal matrices. It is easy to see that �K (�� )"�� , so if ��3X

�
, then

��3�K (X
�
) as well. Hence as �� is a simple point ofX(M) (Proposition 5.3), we have�K (X

�
)"X

�
. To

complete the proof, we need only show that X
�
is 
�-nonconstant (cf. Proposition 5.2). But this is

a consequence of Proposition 2.5, as 
�(��)"2. �

6. Character varieties of 5nite cyclic covers of the 5gure-eight knot exterior

In this section we look more closely at the character varieties of the cyclic covers of the
"gure-eight knot exterior, which we shall denote by M. We shall continue to use the notation
developed in the previous section.
The n-fold cyclic cover ofM is known to be a hyperbolic punctured torus bundle over S� whose

fundamental group admits a presentation of the form

�
�
(M

�
)"�x, y,�

�
� �

�
x���

�
"h�(x),�

�
y���

�
"h�(y)�,

where h is the monodromy isomorphism given by

h(x)"xy, h(y)"yxy

and �
�
is the meridian ofM

�
. The longitude class ofM

�
, which we denote by �

�
, equals xyx��y��.

Let H :X(F)PX(F) be the algebraic equivalence determined by precomposition with h. Note
that theM

�
-monodromy isomorphism of �

�
(F) is simply h� and the associated equivalence ofX(F)

is H�.
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In what follows, we shall use the algebraic isomorphism

X(F)P��, �C(�(x), �(y), �(xy))

to identify X(F) with ��. Using the trace identity

trace(AB)#trace(AB��)"trace(A)trace(B),

one can deduce that the map H :X(F)PX(F) is given by

H(a, b, c)"(c, bc!a,(bc!a)c!b)

and the trace function 
��
:X(F)P� equals:


��
(a, b, c)"a�#b�#c�!abc!2.

Recall from Remark 3.4 there is an action of H�(M
�
; �/2)"Hom(�

�
(M

�
),�$1	) on R(M

�
) and

X(M
�
). A simple argument based on "rst principles shows that this action preserves the type of

a curve component of X(M) (or see the method of proof of [4, Lemma 5.4]).
Let �

�
:�

�
(M

�
)P�$1	 denote the homomorphism determined by

�
�
(x)"�

�
(y)"1, �

�
(�

�
)"!1.

The restriction map X(M
�
)PX(F) will be denoted by i

�
. Evidently,

iK
�
��K

�
"iK

�
:X(M

�
)PX(M

�
).

We are now ready to determine the number and the types of nontrivial curve components in
X(M

�
) for n"2,3.

Proposition 6.1. X(M
�
) has exactly two curve components of type (i). It also has exactly two nontrivial

curve components of type (iii) whose associated boundary slopes are 2 and !2, respectively.

Proof. We "rst "nd all nontrivial curve components of X(M
�
) by applying Proposition 5.1. This

amounts to "nding the curve components in the "xed point set of H� :X(F)PX(F). A simple
calculation reveals that for (a,b, c)3��"X(F), H�(a,b, c)"(a, b, c) if and only if

(bc!a)c!b"a,

(bc!a)�c!(bc!a)b!c"b,

(bc!a)�(c�!2)!2(bc!a)�a#(bc!a)(b!c)#a"c

or equivalently

(c#1)(bc!a!b)"0, (1)

(ac#b!bc�#c)(a!1!bc)"0, (2)

(ac!1#b!bc�)(a�c!2abc�#ab#a#b�c�!c!b�c!bc)"0. (3)

From Eq. (1) we deduce that either c"!1 or a"!b#bc. When c"!1, Eqs. (2) and (3)
become (1#a)(a#b!1)"0 and (1#a)(ab!b#a�!a!1)"0, respectively. This produces
exactly one curve:

>
�
"�(!1, b,!1) � b3�	L��"X(F).
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When a"!b#bc, Eqs. (2) and (3) become (1#b)(bc!b!c)"0 and (1#b)(bc!c!b)
(bc!b#1)"0, for which there are exactly two solution curves:

>
�
"�(a,!1,1!a) � a3�	,

>
�
"��a,

a
a!1

, a��a3���1	�.
One can easily check that on each of the three curves the trace function 
��

is nonconstant. Thus, by
Proposition 5.1, all three are restrictions of nontrivial curve components of X(M

�
). Our next task

will be to show that both >
�
and >

�
are the restrictions of unique curves X

�
and X

�
in X(M

�
),

while there are exactly two curves X
�
,X

�
LX(M

�
) which restrict to >

�
.

According to Proposition 4.5, there are exactly four binary dihedral characters in
X(M

�
(�

�
))LX(M

�
). An explicit calculation based on the discussion in Section 4 shows that the

images of these characters under the map iK
�
are the following points in X(F)"��:

(!1, 2,!1),(!1,!1,!1),(!1,!1, 2) and (2,!1,!1).

One can easily check that the "rst two points are contained in >
�
�(>

�
�>

�
) while the last two are

contained in >
�
�(>

�
�>

�
). Therefore, it follows from Proposition 5.2 and Corollary 5.4 that there

is exactly one curve component X
�
of X(M

�
) which restricts to >

�
, and one curve component

X
�
which restricts to >

�
.

Now we show that there are two type (i) curve components ofX(M
�
) which restrict to>

�
. By the

results of Section 5 it su$ces to prove that there is a curve componentX
�
ofX(M

�
) which restricts

to >
�
and for which iK

�
�
	�

is a degree one map.
Recall thatX(M) is known to have only one nontrivial curve component X

�
(see eg. [6]), which

is a type (i) curve. It follows that �K
�
(X

�
)"X

�
and hence iK

�
�
	�

is a degree-two map onto its image.
The covering map p

�
:M

�
PM induces a restriction p(

�
:X(M)PX(M

�
). If X

�
LX(M

�
) is the

restriction of X
�
, then X

�
is a type (i) curve component of X(M

�
) (Lemma 3.8). The same lemma

implies thatX
�
restricts to>

�
. Since �

�
(M

�
) is the unique index 2 subgroup of �

�
(M),�

�
��

�
(M

�
) is

trivial. Thus p(
�
��K

�
"p(

�
and, therefore, p(

�
�
	�

is a degree two map to X
�
. Hence from the

commutative diagram

we deduce that iK
�
�
	�

is of degree 1.
Finally we shall show thatX

�
andX

�
are type (iii) curve components ofX(M

�
) whose associated

slopes are 2 and !2, respectively. We shall assume that the reader is familiar with [13] and the
algorithm described there which calculates the boundary slopes of punctured torus bundles over
the circle. Accordingly, we note that essential surfaces in such manifolds correspond to certain
`minimal edge pathsa in the diagram of PS¸

�
(�). From the minimal edge path associated to a given

essential surface S in M
�
, one can read o! a sequence elements of �

�
(S), well-de"ned up to

conjugation in �
�
(M

�
), and expressed in terms of x and y.

According to either [13] (or [11]), the set of boundary slopes of M
�
are 2,0,!2 and the

components of any essential surface inM
�
of slope 0 are isotopic to punctured torus "bers, i.e. 0 is
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not a strict boundary slope. If we observe that an irreducible character in X(F) of a representation
conjugate into N (Section 4) corresponds to (a, b, c) where one of a, b or c is 0, then the generic
character in >

�
,>

�
,>

�
is not the character of such a representation. It then follows from [3,

Proposition 4.7 (2)] and the method of proof of [4, Proposition 4.2] that the 0 slope is not
associated to an ideal point of any non-trivial curve in X(M

�
). We also note that the method of

[13] shows that any essential surface with boundary slope !2 contains a loop which represents y,
at least up to conjugation. Similarly any essential surface with boundary slope 2 contains a loop
which represents x, up to conjugation.
Now consider an ideal point x

�
of XI

�
. Since M

�
is small, x

�
is associated to some boundary

slope ofM
�
which, as we have just noted, must be either 2 or !2. In particular 
��

has a pole at x
�
.

Hence, the image of x
�
in >I

�
under the restriction induced map XI

�
P>I

�
, call it y

�
, is also ideal.

From the calculations above, >
�
is a complex line and thus >I

�
��P� has a unique ideal point,

namely y
�
. These calculations also show that 


�
(y

�
)"


��
(y

�
)"!1 while 


�
has a pole there. In

particular, the y cannot conjugate into the fundamental group of any essential surface associated to
x
�
. Thus, from the previous paragraph we see that x

�
must be associated to the slope 2. Since

x
�
was an arbitrary ideal point ofX

�
it follows that f

�
�X

�
is constant. HenceX

�
is a type (iii) curve

associated to the slope 2.
Similarly, one can show that if X

�
is a type (iii) curve whose associated boundary slope is

!2. �

Proof of Theorem C. By Proposition 6.1,M
�
has two type (iii) curvesX

�
andX

�
whose associated

boundary slopes are 2 and !2 respectively. By Lemma 3.8, the restriction ofX
�
toM

�� , call it>
��
,

is still a type (iii) curve in X(M
��). The associated boundary slopes are 1/2��� and !1/2���

respectively. The proof is completed by noting that the distance between the slopes 1/2��� and
!1/2��� is 2���. �

Proposition 6.2. X(M
�
) has exactly four type (i) curve components and six nontrivial type (iii) curve

components. The boundary slopes associated to the latter curves are each the meridian slope �
�
.

Proof. The approach is similar to that we used in the proof of Proposition 6.1, though slightly
more involved owing to the increased complexity of H�.
The "xed-point set ofH� :X(F)PX(F) is given by the solutions to the following three equations

in a, b, c:

0"(!a#bc)(!b!c!ac#bc�)(!b#c!ac#bc�), (4)

0"(ac#b!bc�)(a�c!a#ab!c#bc!b�c!2abc�#b�c�)(a�c#a#ab!c!bc

!b�c!2abc�#b�c�), (5)

0"(a�c#ab!c!b�c!2abc�#b�c�)(ac!bc�#3ab�c�#bc�!4ab�c�!a#b

#2a�bc#ab�#a�c�#2b�c�!b�c!ac�!3a�bc�!b�c
)(!ac#bc�#3ab�c�

#bc�!4ab�c�!a!b#2a�bc#ab�#a�c�#2b�c�!b�c!ac�!3a�bc�!b�c
).

(6)
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It is straightforward to verify that

>
�
"�(a,0,0) � a3�	

is a solution curve of these equations. Next observe that the only other solution curves for which
b"0, respectively c"0, are

>
�
"�(0,0, c) � c3�	,

respectively,

>
�
"�(0, b,0) � b3�	.

Thus, we shall assume below that neither b nor c is identically zero.
From Eq. (4) we see that either a"bc or 0"!b!c!ac#bc� or 0"!b#c!ac#bc�.

The "rst case cannot arise, for if it did, Eq. (5) becomes bc�"0, contradicting the assumption we
made at the end of the last paragraph. In the last case we have a"!b/c!1#bc and so Eqs. (5)
and (6) become
(!b!c#bc)(b#c#bc)"0,
b(c�!1)(!b!c#bc)(b#c#bc)"0.
This produces the two curves:

>
�
"��a,

a
a!1

, a��aO1�
and

>


"��a,

!a
a!1

,!a��aO1�.
In our the last case we have a"!�

�
#1#bc which gives rise to

>
�
"��a,

a
a#1

, a��aO!1�
and

>
�
"��a,

!a
a#1

,!a��aO!1�.
One can easily check that on each >

�
, the trace function 
��

is nonconstant and therefore by
Proposition 5.1 we may choose a nontrivial 
��

-nonconstant component X
�
LX(M

�
) which

restricts to >
�
, i"1, 2,2,7.

In order to see that X
�
is a type (iii) curve whose associated boundary slope is �

�
, we "rst

observe that >
�
is the set of characters of the representations �

�
: �

�
(F)PN (a3�) which are

de"ned by

�
�
(x)"�

��
�
���

�
0

0 ��
�
���

�
�, �

�
(y)"�

0 1

!1 0�.
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Note that �
�
is irreducible as long as aO$2. We know that �

�
extends to �

�
(M

�
) in such a way

that �
�
(h�(x))"�

�
(�

�
)�

�
(x)�

�
(�

�
)�� and �

�
(h�(y))"�

�
(�

�
)�

�
(y)�

�
(�

�
)��. Now

h�(x)"xy�xy�xyxy�xy, h�(y)"yxyxy�xyxy�xy�xyxy�xy

and a direct calculation now shows that �
�
(h�(x))"�

�
(x) and �

�
(h�(y))"�

�
(y). Thus for aO$2

we must have �
�
(�

�
)"$I. It follows that 
��

�X
�
is identically 2 or !2, which is what we set out

to prove.
We can also deduce thatX

�
cannot be invariant under �K

�
, and therefore there are precisely two

curve components of X(M
�
) which restrict to >

�
(cf. Proposition 5.2). For


��
��K

�
�X

�
"�K

�
(�

�
)
��

�X
�
"!
��

�X
�
O
��

�X
�
,

since 
��
�X

�
is constantly 2 or !2.

A similar argument can be used to see thatX
�
andX

�
are also type (iii) curves associated to the

slope �
�
and that there are precisely two curves in X(M

�
) which restrict to each of >

�
and >

�
.

Next, we consider the curves X
�
,X



,X

�
,X

�
. Let X

�
LX(M) be the unique nontrivial curve,

which we remind the reader is of type (i). Let >
�
be the restriction of X

�
in X(F) and Z

�
be the

image of X
�
in X(M

�
) under the restriction p(

�
:X(M)PX(M

�
) induced by a covering map

p
�
:M

�
PM. By Lemma 3.8, Z

�
is a curve of type (i) Furthermore, since iK

�
�p(

�
"iK

�
, >

�
is the

restriction of Z
�
toX(F). It follows that>

�
">

�
for some i"4,5,6,7. Without loss of generality we

take i"4 and X
�
"Z

�
.

Observation reveals that (a) the curves>
�
,>



,>

�
,>

�
form anH�(F;�/2)-orbit of curves inX(F)

and (b) each element of H�(F;�/2)"Hom(�
�
(F),�$1	) extends to an element of H

�
(M

�
;�/2).

HenceX
�
,X



,X

�
,X

�
form part of a H� (M

�
;�/2)-orbit of curves in X(M

�
). In particular, they are

all curves of type (i). Since the boundary slopes associated to the ideal points ofX
�
are 4 and!4, it

follows that those associated to the ideal points of X
�
,X



,X

�
,X

�
are 4/3 and !4/3.

Finally, observe that since �K
�
(X

�
)"X

�
and p(

�
��K

�
"�K

�
�p(

�
, we have �K

�
(X

�
)"�K

�
(p(

�
(X

�
))"

p(
�
(�K

�
(X

�
))"p(

�
(X

�
)"X

�
. Then, by Proposition 5.2, X

�
is the unique curve in X(M

�
) which

restricts to >
�
. Since, X



,X

�
, and X

�
all lie in the H�(M

�
;�/2)-orbit of X

�
, they are the unique

curves in X(M
�
) which restrict to >



,>

�
and >

�
, respectively.

Alternately, a direct calculation shows that X(M
�
) contains exactly eight binary dihedral

characters and their images in X(F)"�� under �K
�
are

(2 cos �/5, 2 cos 3�/5, 2 cos 4�/5),

(2 cos �/5, 2 cos 8�/5, 2 cos 9�/5),

(2 cos 2�/5, 2 cos�/5, 2 cos 3�/5),

(2 cos 2�/5, 2 cos 6�/5, 2 cos 8�/5),

(2 cos 3�/5, 2 cos 4�/5, 2 cos 7�/5),

(2 cos 3�/5, 2 cos 9�/5, 2 cos 2�/5),

(2 cos 4�/5, 2 cos 2�/5, 2 cos 6�/5),

(2 cos 4�/5, 2 cos 7�/5, 2 cos 1�/5).

One can check that the fourth point and the seventh point are contained in>
�
and no other>

�
; the

third point and the eighth point are contained in >


only; the second point and the "fth point are
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contained in >
�
only; the "rst point and the sixth point are contained in >

�
only. Therefore, by

Corollary 5.4 and Proposition 5.2, there is exactly one curve component X
�
of X(M

�
) which

restricts to >
�
for each of i"4,5,6,7. �

7. Discrete faithful characters and norm curve components

In this section, we shall describe a method which produces hyperbolic knot exteriors with large
numbers of norm curve components in their character varieties. Recall that for a knot exteriorM,
each element �3H�(M;�/2)"Hom (�

�
(M),�/2) induces isomorphisms �H of R(M) and �( of X(M)

(see Remark 3.4). A simple argument based on "rst principles shows that norm curve components
ofX(M) are preserved by this action (or see [4, Lemma 5.4]). Also recall that for a hyperbolic knot
exteriorM there are precisely 2�H�(M;�/2)� characters of discrete faithful representations of �

�
(M)

into S¸(2,�). In fact if �
�
is such a character, then the set of all such characters inX(M) is given by

��( (�
�
),�( (��

�
) � �3H�(M; �/2)	,

where �� denotes the complex conjugate of �
�
.

Proposition 7.1. Let M be a hyperbolic knot exterior in S� and p :M
�
PM be the n-fold cyclic cover.

Then X(M
�
) contains at least �

�
�H

�
(M

�
; �/2) norm curve components, each of which contains

a discrete faithful character.

Proof. LetX
�
LX(M) be a norm curve component containing a discrete faithful character ���

. Let
>

�
LX(M

�
) be the restriction of X

�
on X(M

�
). By Proposition 3.1, >

�
"p( (X

�
) where

p( :X(M)PX(M
�
) is the regular map induced by the covering. Note that >

�
is a norm curve

component of X(M
�
) which contains the character of the discrete faithful representation

�
�
"�

�
��

�
(M

�
).

Denote by �
�
the unique non-zero element of H�(M; �/2) and de"ne

�
�
"�

�
��

�
(M

�
)3H�(M

�
; �/2).

Suppose that �3H�(M
�
, �/2)��0,�

�
	 and consider the isomorphism �( :X(M

�
)PX(M

�
) induced by

�. We remarked above that �( (>
�
) is a norm curve component. It contains the discrete faithful

character ����
.

Claim. �( (>
�
)O>

�
.

Proof of claim. Suppose otherwise and observe that as p( (X
�
)">

�
(Proposition 3.1), there is

a point ��3X
�
such that p( (�� )"�( (���

). Since �(�
�
(M))LS¸(2, �) contains a "nite index sub-

group which is discrete in S¸(2, �), �(�
�
(M)) is also discrete in S¸(2,�). Note as well that if �(
)"I

for some nontrivial element 
3�
�
(M), then �(
�)"I. But this is impossible because


�3�
�
(M

�
)��1	, since �

�
(M) is torsion free, and ���

�
(M

�
) is faithful. Hence, we see that � is

a discrete faithful representation of �
�
(M). It follows that ��3����

,�
�
���

,�� ��
,�
�
�� ��

	 and therefore

����
3����

,�
�
���

,�� ��
,�
�
�� ��

	.
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If ����
3��� ��

,�
�
�� ��

	, then there is a "nite index subgroup� of �
�
(M) contained in ker(�)�ker(�

�
) such

that ���
��"�� ��

��, something which is impossible since � is a discrete subgroup of co"nite volume.
On the other hand, ����

�����
, �

�
���

	 since ���0,�
�
	 and ���

does not take on the value 0. This
contradiction completes the proof of the claim.
Now suppose that �,��3H�(M

�
; �/2) and �( (>

�
)"�( �(>

�
). Then �( �(�( (>

�
))">

�
, which implies

that ��#�3�0,�
�
	. It follows that the orbit of >

�
under the action of H�(M

�
;�/2) has at least

�
�
�H�(M

�
;�/2) elements. �

Thus, in order to construct knot exteriors with large numbers of norm curve components, we
need to "nd hyperbolic knot exteriors in S� having cyclic covers with large rank in �/2-homology.
The Alexander polynomial can be used to "nd such knots, for it is known that the "rst Betti
number of the cyclic coverM

�
of the exteriorM of a knotKLS� is equal to one plus the number of

roots of the Alexander polynomials of K which are nth roots of unity. Now any polynomial A(t)
having integer coe$cients and even degree which satis"es the two conditionsA(t��)"t�A(t), some
n3�, and A(1)"$1, can be realized as the Alexander polynomial of a knot KLS� [18]. In fact,
it can be realized as the Alexander polynomial for in"nitely many distinct hyperbolic knots [9].

Proof of Theorem D. For instance, take A(t)"t�!t���#t���!2#t�!t#1"(t���#1)/
(t#1), where k is any even integer larger than 1, and realize it as the Alexander polynomial of
a hyperbolic knot KLS�. By our remarks above, the 2(k#1)-fold cover of the exterior of such
a knot has �/2-rank at least k#1. Hence by Proposition 7.1, its character variety contains at least
2� curve components and each of them contains a discrete faithful character. �
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