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Introduction

The study of 3-manifolds splits nicely into the cases of "nite fundamental groups and in"nite
fundamental groups. Concerning 3-manifolds with in"nite fundamental groups, the following
important conjecture due to Waldhausen [34] is well known.

Conjecture 0.1. Any closed, connected, orientable, irreducible 3-manifold= with in,nite fundamental
group is virtually Haken, i.e. = has a ,nite cover which is a Haken 3-manifold.

A stronger conjecture is that any closed, connected, orientable, irreducible 3-manifold= with
in"nite fundamental group has a virtually positive "rst Betti number, i.e.= has a "nite cover which
has positive "rst Betti number.

Conjecture 0.1 becomes more compelling due to the recent work of Gabai et al. [16]. In fact it
follows from [16] (as well as [9, 12, 13, 32]) that if a closed 3-manifold= is virtually Haken, then
= is topologically rigid and admits a geometric decomposition in Thurston's sense [32].

In this paper we consider the conjecture through the Dehn "lling construction. Let M be
a compact, connected, orientable, irreducible 3-manifold M such that LM is a torus. Recall that
a slope on LM is the isotopy class of an unoriented, simple, essential loop in LM. We use *(r

1
, r

2
) to

denote the distance (i.e. the minimal geometric intersection number) between two slopes r
1

and
r
2

on LM and use M(r) to denote the closed 3-manifold obtained by Dehn "lling M along LM with
slope r.

Call a slope r on LM a virtually Haken ,lling slope if M(r) is a virtually Haken 3-manifold.
According to Thurston [32], either M is a Seifert "bred manifold, or it contains an incompressible,
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non-boundary parallel torus, or it is hyperbolic, i.e. int(M) admits a complete hyperbolic structure
of "nite volume. In the "rst two cases there is quite a lot known about the virtually Haken "lling
slopes on LM [21] so we shall concentrate, for the most part, on the case where M is hyperbolic.
Here work of Gordon and Luecke [18] and Boyer and Zhang [7] show that there are no more than
nine slopes on LM whose associated "llings are either reducible or have a "nite fundamental group.
Hence, if Conjecture 0.1 holds, we are left with the striking conclusion that the set of slopes on LM
which are not virtually Haken "lling slopes has fewer than 10 elements. A measure of the depth
of the conjecture is that to date there has been little empirical evidence which supports
this conclusion. For instance, combined work of Baker [1], Hempel [21], Kojima and Long
[23], and Nicas [27] has shown that roughly 70% of the "llings of the exterior of Fig. 8 knot
are virtually Haken manifolds, though the status of the remaining cases is open. In this paper
we show that certain hypotheses on a "lling M(r

0
) of M can be used to prove that if *(r, r

0
) is

large enough, then M(r) is a virtually Haken manifold. This work is then combined with a recent
result of Cooper and Long [10] to construct manifolds M for which all but "nitely many of the
"llings are virtually Haken, but non-Haken manifolds. These appear to be the "rst such examples
known.

By an essential surface in a compact orientable 3-manifold, we mean a properly embedded
orientable surface each component of which is incompressible and non-boundary parallel. A slope
r on LM is called a boundary slope if there is a connected essential surface F in M such that LF is not
empty and is of slope r. A strict boundary slope is a slope r for which there is a connected essential
surface F in M satisfying

* LF is not empty and is of slope r;
* F is not a "bre of some "bration of M over the circle;
* F does not split M into two twisted I-bundles.

The strict genus of a strict boundary slope r is the minimal genus of all essential surfaces F in
M satisfying the conditions above. The following theorem is proven in [6].

Theorem 0.2 (Boyer}Culler}Shalen}Zhang). ¸et M be a compact, connected, orientable, irreducible
3-manifold such that LM is a torus and the interior of M admits a complete hyperbolic metric of ,nite
volume. Suppose that r

0
is a strict boundary slope of strict genus g on LM. If r is any other slope on LM

which satis,es *(r, r
0
)'20g#5, then M (r) is irreducible and n

1
(M(r)) contains a free subgroup of

rank 2.

Conjecture 0.1 together with Theorem 0.2 suggest that the following holds.

Conjecture 0.3. For a compact, connected, orientable, irreducible 3-manifold M whose boundary is
a torus and whose interior admits a complete hyperbolic metric of ,nite volume, the distance between
a strict boundary slope of genus g and a non-virtually Haken ,lling slope on LM is less than or equal to
20g#5.

The condition that one of the slopes be a strict boundary slope can probably be replaced by the
weaker condition that it be a boundary slope, though most results to date require the stronger
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condition as a hypothesis. Note that in the more general situation the hyperbolicity condition is
necessary, as can be seen by taking M to be the exterior of a non-trivial torus knot. In this case the
longitudinal slope on LM is a boundary slope, but not a strict one, and there are non-virtually
Haken "lling slopes on LM which are of arbitrarily large distance from it [26]. It is interesting to
note that there is no universal bound, independent of genus, for the distance between a boundary
slope and a non-virtually Haken "lling slope, as is shown by examples of Bleiler and Hodgson [5,
Proposition 18].

Recently, Cooper and Long [10] have provided the following supporting evidence for the truth
of Conjecture 0.3.

Theorem 0.4 (Cooper}Long [10]). Suppose that M is a compact, connected, orientable, irreducible
3-manifold such that LM is a torus and that the interior of M admits a complete hyperbolic metric of
,nite volume. Suppose that M does not ,bre over the circle and that there is a connected essential
surface F of genus g in M such that LF is connected of slope r

0
on LM. ¹hen any slope r on LM

satisfying *(r, r
0
)*12g!4 is a virtually Haken ,lling slope.

We shall prove several theorems below which provide other supporting evidence for Conjecture
0.3. Our results are based on the following theorem and the methods developed in [8].

Let G and H be groups. We say that G is virtually H-representable if G has a "nite index subgroup
which admits a homomorphism onto H.

Theorem 0.5. Suppose that M is a compact, connected, orientable, irreducible 3-manifold whose
boundary is a torus and that there is no closed essential surface in M. Suppose further that for some
slope r

0
on LM, there is a surjective homomorphism / :n

1
(M(r

0
))PC where C is the orbifold

fundamental group of a two-dimensional hyperbolic orbifold B of the form B(p
1
, p

2
,2, p

m
)O

S2(p, q, r). ¹hen if r is a slope on LM satisfying *(r, r
0
)'5, n

1
(M (r)) is virtually Z-representable.

Further if *(r, r
0
)'6, then n

1
(M (r)) is virtually Z * Z-representable.

Theorem 0.5 can be re"ned as follows. Recall the orbifold Euler characteristic of a two-
dimensional orbifold of the form B(p

1
, p

2
, 2, p

m
) is given by

s03"(B)"s(B)!
m
+
j/1

(1!1/p
j
) (1)

where s(B) is the usual Euler characteristic of the surface B.

Addendum. Assume the conditions of ¹heorem 0.5. If r is a slope on LM such that s03"(B)#
1/*(r, r

0
))0, then n

1
(M(r)) is virtually Z-representable, and if s03"(B)#1/*(r, r

0
)(0, then n

1
(M(r))

is virtually Z * Z-representable.

Remark. (1) The condition that M be small, i.e. it contains no closed, essential surface, gives rise to
what is in some ways the most interesting case for investigation. On the one hand, all but "nitely
many "llings of a small manifold are non-Haken ([19]), so the virtual Haken nature of these
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manifolds is subtle. On the other hand, if M contains a closed, essential surface S, there is always
a slope r

0
on LM such that S is incompressible in M(r) for any slope r satisfying *(r, r

0
)'1 [35].

Since at most three "llings of M are reducible [18], the generic "lling of M is Haken. Of course,
there is, in general, no a priori way to determine such an r

0
, and so identify the slopes which yield

Haken manifolds. Hence it is still of interest to study the "llings of manifolds which are not small.
(2) The conditions of Theorem 0.5 imply that the slope r

0
is a strict boundary slope (see the proof

of Theorem 0.5).
(3) If the fundamental group of a 3-manifold= is virtually Z-representable, then its virtual "rst

Betti number b7*35
1

(=)"supMrank(H
1
(=I )) D there is a"nite cover=I P=N is positive.

(4) If the fundamental group of a 3-manifold = is virtually Z *Z-representable, then it is
virtually H-representable for an arbitrary "nitely generated group H. Hence b7*35

1
(=)"R.

In Theorems 0.6 and 0.7 below we show that the requirement in Theorem 0.5 that M be small can
be removed in various situations (see Remark 1 above).

Theorem 0.6. Suppose that M is a compact, connected, orientable, 3-manifold whose boundary is
a torus and whose interior has a hyperbolic metric of ,nite volume. Suppose that r

0
is a slope on LM

such that M (r
0
) is a reducible manifold which is not S1]S2 or RP3dRP3.

(i) If M (r) is not virtually Haken, then *(r, r
0
))5.

(ii) If n
1
(M (r)) does not contain a free group of rank 2, then *(r, r

0
))6.

(iii) If we assume further that M (r
0
) is not a connected two lens spaces of orders p, q where

1/p#1/q(1/2, then the distance bounds given in parts (i) and (ii) can be reduced to 1.

Remark. The conditions of Theorem 0.6 imply that the slope r
0

is a strict boundary slope of genus
zero. On the other hand, if we add the hypothesis that r

0
be a strict boundary slope, then the

condition that M(r
0
)OS1]S2 can be removed.

Theorem 0.7. Suppose that M is a compact, connected, orientable 3-manifold whose boundary is
a torus and whose interior has a hyperbolic metric of ,nite volume. Suppose that for some slope r

0
on

LM, M (r
0
) admits the structure of a Seifert ,bred space whose base orbifold B is hyperbolic and is not

of the form S2(p, q, r). If r is a slope on LM such that *(r, r
0
)'5, then M (r) is virtually Haken.

Remark. (1) The theorem can be re"ned: if r is a slope on LM such that s03"(B)#1/*(r, r
0
))0,

then a "nite cover of M(r) contains an essential surface.
(2) A closed Seifert "bred manifold whose base orbifold is hyperbolic and does not have the form

S2(p, q, r) contains an essential torus. Therefore as M is assumed to be hyperbolic, r
0

is necessarily
a strict boundary slope on LM of genus less than or equal to 1.

One of the key ingredients in the proofs of Theorems 0.5}0.7 is a general result, essentially due to
Baumslag, Morgan, and Shalen, on the virtual Z-representability and Z *Z-representability of
certain quotients of a Fuchsian group C [2] (though they considered a special case, their proof
applies to a more general situation). This is the focus of the next section of the paper, where we
prove Theorem 1.2 from which Theorem 0.5 will follow directly. The proof of Theorems 0.6 and 0.7
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will depend on Theorem 0.5 and some results obtained in [8] concerning the incompressibility,
after Dehn "lling, of certain essential closed surfaces in M associated to the character varieties of
M. The proofs of Theorems 0.5}0.7 and the Addendum to Theorem 0.5 will be given in Section 2.
In Section 3 we give some examples of 3-manifolds M which satisfy the hypotheses of Theorems 0.5
and 0.6. In particular, we will give an in"nite family of small knots in S3 (i.e. knots whose exteriors
are small manifolds) such that each one has a hyperbolic exterior M and except for at most "nitely
many slopes, all other slopes on LM yield manifolds which are non-Haken but virtually Haken.
Such examples of small knots seem to be the "rst known.

We work in the smooth category and use the standard 3-manifold and knot theory terminology
as found, for instance, in [20, 30].

1. Virtual representations of C/@cnA

Throughout this section C will denote the orbifold fundamental group of a two-dimensional
hyperbolic orbifold B of the form B(p

1
, p

2
,2 , p

m
) where 2)p

1
, p

2
,2, p

m
. It is known that the

hyperbolicity of B implies that

s (C) ("s03"(B))(0. (2)

Let c
1
, c

2
, 2c

m
3C be elements of order p

1
, p

2
, 2, p

m
corresponding to small loops about the

cone points of B.

Lemma 1.1. A torsion element c of C is conjugate to a power of some c
i
.

Proof. The group C admits a properly discontinuous action on H2 with quotient orbifold B. The
point stabilizers of this action are "nite subgroups of C and if the stabilizer of a point p is
non-trivial, then p maps to one of the cone points of B. Hence each point stabilizer conjugates into
a subgroup generated by some c

i
. Now it is well known that any c3C which has "nite order has

a "xed point in H2 ([4, Corollary, p. 70]), and so in particular lies in some point stabilizer. The
result follows. h

For an element c3C, we use @cA to denote the normal subgroup of C generated by c. Recall
that the de,ciency of a presentation of a group is the integer equal to the number of generators
minus the number of relators in the presentation.

The method of proof of the following theorem is taken more or less verbatim from the proof of
Theorem B of [2] (those authors considered the special case C"Z/p * Z/q).

Theorem 1.2. ¸et c3C and suppose that for some n*1 there is a representation o :CPPS¸
2
(C) for

which each o (c
i
) has order p

i
and o (c) has order n. ¹hen there is an integer d*1 and a ,nite index

normal subgroup of C/@cnA which admits a presentation P of de,ciency

def (P)"1!d(s(C)#1/n).
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Proof. As o (C) is residually "nite (being a "nitely generated subgroup of PS¸
2
(C)LS¸

3
(C)), there

is a normal subgroup H of "nite index in o (C) such that each o (c
i
) is of order p

i
modulo H and o(c)

has order n modulo H. Set C3 "o~1(H) and observe that

C/C3 :o (C) /H.

In particular, C3 has some "nite index, say d, in C.
We claim that C3 is torsion free. For by Lemma 1.1, if cJ 3C3 and there is an integer k*1 such that

cJ k"1, then cJ is conjugate to a power of some c
i
, say cJ is conjugate to cl

i
where l*1. But then cl

i
3C3

so that o (cl
i
)3H. Thus p

i
, the order of o (c

i
) modulo H, divides l. Hence cl

i
"1 and so cJ"1, i.e. C3 is

torsion free. It follows that C3 is the fundamental group of a compact, connected Euclidean or
hyperbolic surface. It is easy to check that the standard presentation P

0
of C3 has de"ciency given

by

def (P
0
)"1!s (C3 )"1!ds(C). (3)

Now we know that c has order n modulo C3 and so Corollary 3 of [2] says that there is
a presentation P of C3 /@cnA obtained from P

0
by adding d/n relators. It follows then from eq. (2)

that P has de"ciency def (P)"def (P
0
)!d/n"1!ds(C)!d/n"1!d (s(C)#1/n). K

Corollary 1.3. If s (C)#1/n)0, then C/@cnA is virtually Z-representable. If s(C)#1/n(0, then
C/@cnA is virtually Z * Z-representable.

Proof. Groups having a presentation of de"ciency 1 are virtually Z-representable, while those
admitting a presentation of de"ciency at least 2 are virtually Z * Z-representable [3]. K

It is a simple matter to determine for which pairs (C, n) the conditions of Corollary 1.3 are
satis"ed. Observe that eq. (1) implies that the following inequality holds:

s (B)!m)s (C)"s (B)!
m
+
j/1

(1!1/p
j
) )s (B)!m/2. (4)

Recall that s (C)(0.

Case 1. s (B)(!1. In this case inequality (4) shows that for each n*1, s (C)#1/n(0, so that
C/@cnA is virtually Z * Z-representable.

Case 2. s (B)"!1. Here C/@cnA is always virtually Z-representable and C/@cnA is virtually
Z * Z-representable unless n"1 and m"0.

Case 3. s (B)"0. In this case our assumption that s (C) (0 gives m*1 (eq. (1)). It then follows
from inequality (4) that

f when m'1, C/@cnA is virtually Z-representable for each n*1, and is virtually Z * Z-
representable unless n"1, m"2, and p

1
"p

2
"2,

f when m"1, C/@cnA is virtually Z-representable for each n*2, and is virtually Z * Z-
representable for each n*2 unless, perhaps, n"p

1
"2.
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Case 4. s(B)"1. Here the assumption that s (C)(0 gives m*2 and thus

f C/@cnA is virtually Z-representable unless, perhaps, (i) m"3, n"1 and (p
1
, p

2
, p

3
) is

a Platonic triple (i.e. 1/p
1
#1/p

2
#1/p

3
'1), or (ii) m"2 and (p

1
, p

2
, n) is a Platonic triple.

Note s (C) (0 precludes the possibility that p
1
"p

2
"2.

f C/@cnA is virtually Z * Z-representable unless, perhaps, (i) m"4, n"1, and
p
1
"p

2
"p

3
"p

4
"2, or (ii) m"3, n"1, and (p

1
, p

2
, p

3
) is a Platonic triple, or (iii) m"3,

n"2, and p
1
"p

2
"p

3
"2, or (iv) m"2 and (p

1
, p

2
, n) is a Euclidean or Platonic triple (i.e.

1/p
1
#1/p

2
#1/n*1). Note s(C) (0 precludes the possibility that p

1
"p

2
"2.

Case 5. s(B)"2. In this case the assumption that s(C)(0 gives m*3. Then

f if m'6 then C/@cnA is virtually Z * Z-representable for all n*1.
f if m"6 then C/@cnA is virtually Z representable for all n*1 and virtually Z * Z-representa-

ble unless n"1 and p
1
"p

2
"2"p

6
"2.

f if m"5 then C/@cnA is virtually Z *Z- representable for all n*3 and is virtually Z-
representable for all n*2.

f if m"4 then since s(C) (0 we have p
4
*3 and so C/@cnA is virtually Z *Z-representable

for all n*7 and is virtually Z-representable for all n*6.
f if m"3, then C/@cnA is virtually Z * Z-representable for all (p

1
, p

2
, p

3
) such that

1/p
1
#1/p

2
#1/p

3
#1/n(1 and is virtually Z-representable for all (p

1
, p

2
, p

3
) such that

1/p
1
#1/p

2
#1/p

3
#1/n)1.

As a consequence of these calculations we obtain the following result.

Corollary 1.4. Suppose that B is not of the form S2(p, q, r), c3C, and for some n there is a representa-
tion o : CPPS¸

2
(C) for which each o (c

i
) has order p

i
and o (c) has order n. ¹hen if n'5, C/@cnA is

virtually Z-representable, and if n'6, C/@cnA is virtually Z *Z-representable.

2. Proofs of Theorems 0.5+0.7

First of all we must set the notation to be used and recall some of the results concerning the
relations between the topology of 3-manifolds and the PS¸

2
(C) -character varieties of 3-manifolds.

The reader is referred to [8] for more details.
For any "nitely generated group G, we use RM (G)"Hom(G, PS¸

2
(C)) to denote the PS¸

2
(C)-

representation variety of G and use XM (G) to denote the algebro-geometric quotient of RM (G) under
the natural PS¸

2
(C)-action. The complex, a$ne, algebraic set XM (G) is called the PS¸

2
(C)-character

variety of G. There is a surjective, regular quotient map tN : RM (G)PXM (G). For a compact 3-manifold
=, we use RM (=) and XM (=) to denote RM (n

1
(=)) and XM (n

1
(=)), respectively.

If XM (G) is positive dimensional and X
0

be a curve in XM (G), let X]
0

be a projective completion of
X

0
. Each point of X]

0
CX

0
is called an ideal point of X

0
.

For each c3G, the function fc : XM (G)PC is de"ned by fc(x)"[trace(o(c)
'C

)]2!4, where
o3tN ~1(x)LRM (G) and o(c)

'C
is an element of U~1(o(c)) under the canonical map

U : S¸
2
(C)PPS¸

2
(C). Obviously fc is well de"ned and it can be shown to be a regular function.
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Let M be a compact, connected, orientable, irreducible 3-manifold with LM a torus. There is
a homomorphism, well de"ned up to conjugation, t :H

1
(LM),n

1
(LM)Pn

1
(M). Hence for each

a3H
1
(LM) we may unambiguously de"ne fa"ft(a). To each slope r on LM we may associate a class

a(r)3H
1
(LM), well de"ned up to sign, by orienting one of its representative loops. We shall use the

symbol f
r
to denote the function fa(r).

Suppose that XM (M) is positive dimensional and suppose that X
0
LXM (M) is a curve which

contains the character of an irreducible representation. There is a unique four-dimensional variety
R

0
LRM (M) such that tN (R

0
)"X

0
([8, Lemma 4.1]). The following results from [8] will be needed in

the proofs of Theorems 0.5}0.7.

(2.1) On X
0
, either f

r
is constant for each slope r, or there is a unique slope r

0
for which f

rÒ
is

constant, or f
r
is non-constant for each slope r [8, Section 5].

(2.2) If at an ideal point of X
0
, f

r
has "nite limiting value for each slope r, then there is a closed

essential surface in M [8, Proposition 4.7].
(2.3) If r

0
is the unique slope with f

rÒ
being constant on X

0
, then r

0
is a boundary slope. Further if

X
0

contains the character of a representation in R
0

whose image in PS¸
2
(C) has no index

two abelian subgroup, then r
0

is a strict boundary slope [8, Proposition 4.7].
(2.4) If o (r

0
)"$I for each o3R

0
and if at an ideal point of X

0
, f

r
has "nite limiting value for

each slope r, then there is a closed essential surface S in M such that if S compresses in both
M (r

0
) and M(r) for some slope r, then D(r, r

0
))1 [8, Proposition 4.10].

Proof of Theorem 0.5 and its Addendum. The homomorphism / induces an inclusion
XM (C)LXM (M(r

0
)). As we have assumed that B(p

1
, p

2
, 2 , p

m
) is hyperbolic and not of the form

S2(p, q, r), XM (C) is positive dimensional and we may choose a curve X
0
LXM (C)LXM (M(r

0
))LXM (M)

which contains the character of a discrete faithful representation o
0
: CPPS¸

2
(R)LPS¸

2
(C). Note

that o
0

is an irreducible representation and its image in PS¸
2
(C) has no "nite-index abelian

subgroup. By construction, f
rÒ

is constantly zero on X
0

and so by (2.2) above, the smallness of
M implies that f

r
blows up at each ideal point of X

0
for each slope rOr

0
. In particular f

r
is

non-constant if rOr
0
. By (2.3), r

0
is a strict boundary slope.

If c3C is of "nite order and o3Hom(C, PS¸
2
(C)), then trace(o(c)

'C
) is of the form

$2 cos(2nj/2n) for some integers j, n*1. In particular, the functions fc
i

are constant on X
0

for
i"1,2 , m. Since we have chosen X

0
to contain the character of o

0
, it can be shown that,

fc
i

,4((cos(2nj
i
/2p

i
))2!1) on X

0
for some integer j

i
relatively prime to 2p

i
. Thus o(c

i
) is of order

p
i
for each o3tN ~1(X

0
) and for each of i"1,2 , m.

Let n*2 be "xed and consider a slope r on LM such that *(r, r
0
)"n. Fix a dual slope r

1
to r

0
,

i.e. a slope which satis"es *(r
1
, r

0
)"1. Since f

rÇ
is non-constant on X

0
and blows up at each ideal

point of X
0
, there is some point x

1
3X

0
such that f

rÇ
(x

1
)"4((cos(2n/2n))2!1). It follows that if

o
1
3tN ~1(x

1
), then o

1
(r
1
) has order n in PS¸

2
(C).

Now by construction, o
1

factors as

n
1
(M)Pn

1
(M(r

0
))P( C[ oPS¸

2
(C)

where o is a representation of C. If we let c be any element of C obtained by orienting
a representative loop for r

1
and attaching the result to the base point by some path, then o(c) has
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order n in PS¸
2
(C). In the previous paragraph we observed that o (c

i
) is of order p

i
for each of

i"1,2 , m. Applying Corollary 1.4 to o implies that C/@cnA is virtually Z (respectively Z *Z)-
representable as long as n'5 (respectively n'6).

The identity *(r, r
0
)"n implies that orientations for the slopes may be chosen so that

a(r)"sa(r
0
)#na(r

1
) for some s3Z. It follows that the composition n

1
(M)Pn

1
(M(r

0
))P( C

induces a surjection t : n
1
(M(r))PC/@cnA. Thus n

1
(M(r)) is virtually Z (respectively, Z *Z)-

representable as long as n*6 (respectively, n'7). This completes the proof of Theorem 0.5. If we
apply Corollary 1.3 instead of Corollary 1.4, we see that the Addendum of Theorem 0.5 holds. K

Proof of Theorem 0.6. If the "rst Betti number of M is larger than 1, then M(r) has a positive "rst
Betti number for each slope r on LM. According to [14, Corollary], M(r) is irreducible for any
rOr

0
and by [37, Theorem 4.1] we may assume that M (r) does not contain an incompressible

torus when *(r, r
0
) '1. Hence if *(r, r

0
)'1 then M (r) is Haken and contains an incompressible

surface of genus larger than 1. It therefore contains a free subgroup of rank 2.
Assume now that the "rst Betti number of M is 1. The reducibility theorem of Gordon and

Luecke [18] implies that M(r) is irreducible as long as *(r, r
0
)*2. Since r

0
is a boundary slope, it

follows from [11, Theorem 2.0.3] that one of the following three possibilities occurs:

(1) M (r
0
) is a connected sum of two non-trivial lens spaces (here non-trivial means

di!erent from S2]S1 and S3); or
(2) M contains a closed essential surface S (of genus larger than 1 since M is hyperbolic) which

remains incompressible in M (r) whenever *(r
0
, r)'1; or

(3) M (r)"S2]S1.

By the hypotheses of Theorem 0.6 we may assume that the "rst possibility arises, though with at
least one of the two non-trivial lens spaces di!erent from the projective 3-space RP3. Therefore
n
1
(M(r

0
)):Z/p * Z/q with maxMp, qN'2. Let / denote any isomorphism n

1
(M(r

0
)):Z/p * Z/q

and observe that Z/p *Z/q:C"n03"
1

(D2(p, q)). Further s03"(D2(p, q))"!1#(1/p#1/q)
)!1#(1

2
#1

3
)"!1

6
(0.

We proceed now as in the proof of Theorem 0.5. Choose a curve X
0
LXM (C)L

XM (M(r
0
))LXM (M) which contains the character of a discrete faithful representation

o
0
:Z/p * Z/qPPS¸

2
(C). By construction f

rÒ
(x)"0 for each ideal point x of X

0
. If for any slope

rOr
0

we have f
r
(x)"R for each ideal point x of X

0
, then we continue as in the proof of Theorem

0.5 to see that the parts (i) and (ii) of Theorem 0.6 hold. Further if 1/p#1/q(1/2 then
s03"(D2(p, q))#1/*(r, r

0
)(0 as long as *(r, r

0
)*2. Hence Corollary 1.3 implies that part (iii) of the

theorem also holds.
Assume now that there is some ideal point x of X

0
and slope rOr

0
such that f

r
has a "nite

limiting value at x. Then by (2.4), there is a closed essential surface S in M such that if r is any slope
on LM for which *(r, r

0
) '1, then S remains incompressible in one of M(r

0
) or M(r). But clearly

S must compress in M(r
0
), a connected sum of non-trivial lens spaces, and therefore S remains

incompressible in M(r) as long as *(r, r
0
)*2. Thus Theorem 0.6 holds in this "nal case. K

Proof of Theorem 0.7. Let / denote the natural surjection from n
1
(M(r

0
)) to C"n03"

1
(B) and

choose a curve X
0
LXM (C)LXM (M(r

0
))LXM (M) which contains the character of a discrete faithful
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representation o
0
: CPPS¸

2
(C). By construction f

rÒ
(x)"0 for each ideal point x of X

0
. If for any

slope rOr
0

we have f
r
(x)"R at each ideal point x of X

0
, then we continue as in the proof of

Theorem 0.5 to see that Theorem 0.7 holds.
Assume now that there is some ideal point x of X

0
and slope rOr

0
such that f

r
(x)3C. By (2.4)

there is a closed, connected, essential surface S in M such that if S compresses in both M (r
0
) and

M(r), then *(r, r
0
))1. Note that n

1
(S) lies in an edge stabilizer of the action of n

1
(M) on some tree

associated to the ideal point x (see [8, Section 4]). We claim that S must compress in M(r
0
). To see

this, suppose otherwise. Since M(r
0
) is Seifert "bred, the surface S is isotopic in M(r

0
) to a vertical

surface (i.e. consists of "bres) or a horizontal surface (i.e. intersects transversely to each "bre). But
S cannot be vertical, as in this case it would be an essential torus in M, contradicting the fact that
M is hyperbolic. Thus, S must be horizontal and so is either the "bre of a realization of M (r

0
) as the

total space of locally trivial bundle over the circle, or it splits M(r
0
) into two twisted I-bundles ([22,

Lemma VI.34]). Hence n
1
(S) is a normal subgroup of n

1
(M(r

0
)) and n

1
(M(r

0
))/n

1
(S) is either Z or

Z/2 *Z/2. Let P : n
1
(M)PPS¸

2
(C(R

0
)) be the tautological representation ([8, Section 4]) where

R
0
-tN ~1(X

0
) is the unique four-dimensional variety satisfying tN (R

0
)"X

0
([8, Lemma 4.1]) and

C(R
0
) is the function "eld over R

0
. By construction P factors through C.

Now according to Proposition 4.4 of [8], either P(n
1
(S))"M$IN or there is an index 2 subgroup

n
0

of n
1
(M) such that oDn

0
is reducible for each o3tN ~1(X

0
). Notice that even if the "rst case arises,

we can still "nd such a n
0
Ln

1
(M). This is because P would factor through n

1
(M) /n

1
(S):Z or

Z/2*Z/2 and so there is an index 2 subgroup n
0
Ln

1
(M) for which P Dn

0
is reducible. That oDn

0
is

reducible for each o3tN ~1(X
0
) now follows from Lemma 4.6(3) of [8]. In either case we see that

o
0

restricts to a reducible representation on some subgroup of index 2 in n
1
(M), which is clearly

impossible as B is assumed to be a two-dimensional hyperbolic orbifold. Thus S must compress in
M(r

0
). Then by choice of S, it is incompressible in M (r) for each slope r for which *(r, r

0
) '1.

Furthermore, observe that as r
0

is a toral boundary slope, the work of Wu [36] and Oh [29]
implies that M (r) is irreducible as long as *(r, r

0
)*4. Thus M(r) is Haken when *(r, r

0
)*4, and so

Theorem 0.7 holds in this "nal case. K

3. Example

We present several families of examples of virtual Haken Dehn surgery in this section.

Example 3.1. Let K(p, q, 2r) be a pretzel knot in S3 (thus both p and q must be odd) with
gcd(p, q)"d'1 and let M be the exterior of K in S3. By [28, Corollary 4], M is small and so by
the main result of [19], all Dehn "llings on M, except possibly for "nitely many, yield non-Haken
manifolds. The "lling on M with slope 2(p#q) yields a manifold whose fundamental group surjects
onto n03"

1
(D2(2, d)):Z

2 * Z
d

[31, pp. 41}46]. By Theorem 0.5, all slopes m/n with Dm!2(p#q)
nD'6 yield manifolds whose fundamental groups are virtually Z * Z-representable. In fact if d*7,
the addendum to Theorem 0.5 implies that this holds for all slopes m/n with Dm!2(p#q) nD'2. If
K is not "bred, then combining these observations with Theorem 0.4 implies that there are at most
"nitely many non-virtually Haken "lling slopes on LM.

To construct a more speci"c set of examples, let p*7 be an odd integer and set K"K(p, p, 2r)
where DrD*2. Then K is not "bred [15, Section 6] and so must be hyperbolic (recall from above
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that K is simple). Now pretzel knots satisfy the cabling conjecture [24, Proposition], and so all
"llings on M yield irreducible manifolds. Consider a slope r of K corresponding to the rational
fraction m/n where without loss of generality n*0. Since d"p*7, we therefore have that M(m/n)
is virtually Haken as long as

Dm!4pn D'2. (5)

The genus of K, say g, is bounded above by the genus of the spanning surface given by the Seifert
algorithm, so g)p. On the other hand, g is bounded below by 1

2
the degree of the Alexander

polynomial of K, which also evaluates to p (see [25, Proposition 14]). Thus, g"p and so Theorem
0.4 shows that K(m/n) is virtually Haken as long as

Dm D(12p!4. (6)

Inequalities (5) and (6) give 4pn#2(DmD(12p!4, and so we have 1)n)2. Now M (4p) is itself
a Haken manifold, so it follows that if M(r) is not virtually Haken, then r is contained among the
seven slopes corresponding to the fractions

M1/0, (4p!2), (4p!1), (4p#1), (4p#2), (8p!1) /2, (8p#1) /2N.

Example 3.2. Another interesting set of examples occurs for the pretzel knots K"K(p,!p, 2r)
where p*7 is an odd integer and D r D*2. These knots are "bred [15, Section 6], so we cannot
apply Theorem 0.4, the result of Cooper and Long. Nevertheless Theorem 0.5 does apply with
respect to the longitudinal slope 0"2(p#(!p)). As d"p*7, M(m/n) are virtually Z * Z-
representable as long as D m D'2. We also observe that M must be hyperbolic, for longitudinal
surgery on a torus knot does not admit a surjection onto the group Z/2 * Z/p. Therefore M(m/n) is
virtually Haken whenever D m D'2.

Example 3.3. Consider Dehn surgery on the Borromean link in S3. Let N denote the exterior of the
link and let N(m

1
/n

1
, m

2
/n

2
, m

3
/n

3
) denote the manifold obtained by Dehn "lling the three toral

boundary components ¹
i
of N with slope m

i
/n

i
, i"1, 2, 3. (Here the slopes are parameterized by

the standard meridian-longitude coordinates.) Then for all triples (m
1
/n

1
; m

2
/n

2
; m

3
/n

3
) with

Dm
1
D , D m

2
D'4, D n

1
D , D n

2
D'5 and D n

3
D'1, N(m

1
/n

1
, m

2
/n

2
, m

3
/n

3
) is virtually Haken and contains

free subgroup of rank two. Note that most of these manifolds are hyperbolic and non-Haken.
The justi"cation goes as follows. By [33], the complement of the link is hyperbolic. By [17,

Theorem 1.3], N (m
1
/n

1
; 0; 0) (where the symbol 0 means leaving the boundary torus open with

doing "lling) is hyperbolic if D n
1
D'5 since N(1/0; 0; 0) is not hyperbolic. Likewise,

N(m
1
/n

1
; m

2
/n

2
; 0) is hyperbolic if D n

2
D'5 since N(m

1
/n

1
; 1/0; 0) is not hyperbolic. Since

N(m
1
/n

1
; m

2
/n

2
; 1/0) is a connected sum of two lens spaces of orders D m

1
D and D m

2
D, we may

apply Theorem 0.6 to deduce that N(m
1
/n

1
, m

2
/n

2
, m

3
/n

3
) is virtually Haken and contains a free

subgroup of rank 2 for all triples (m
1
/n

1
; m

2
/n

2
; m

3
/n

3
) with D m

1
D, Dm

2
D'2, D n

1
D, D n

2
D'5 and

D n
3
D'1. If we further assume that D n

3
D'22, then the "llings yield hyperbolic manifolds [5]. Note

that the exterior of the Borromean link contains no closed incompressible non-boundary parallel
surface. Hence most of the manifolds N(m

1
/n

1
, m

2
/n

2
, m

3
/n

3
) are non-Haken by a result of Hatcher

[19]. One can construct many more such examples by considering Dehn surgery on Brunnian
links.
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