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Abstract

We derive, from theA-polynomial of a knot, a single variable polynomial for the knot, called
C-polynomial, and explore topological and geometrical information about the knot encoded in the
C-polynomial.

0 2003 Elsevier B.V. All rights reserved.

MSC:57N10; 57M25; 57M27; 57M40

Keywords:Character varietyA-polynomial; C-polynomial; 3-manifolds; Knots; Dehn surgery

1. Introduction

Throughout this papeW will denote a connected oriented closed 3-manif&dy knot
in W, Wk the exterior of an open regular neighborhoodkbfin W with the induced
orientation from that of¥. We give the boundary torus¥ the induced orientation from
that of Wg. We shall always usg to denote an oriented essential simple closed curve
in dWg which is a meridian of the knak'. Fix another oriented essential simple closed
curve A in dWx such that the algebraic intersection numbepcnd A in 0Wx is +1
with respect to the given orientation of the toral®x. ThenB = {u, A} is a basis of
H1(dWk; Z) = n1(dWx). ObviouslyB = {1, A} is also a basis of1(d Wx) satisfying the
same conditions a8 given above, wherg andx areu anda with the opposite orientation.
WhenW is a homology 3-sphere, we shall always assumeithkaO in H1(Wk; Z), i.e.,
A is the canonical longitude.

With the above conventions, a two variable polynomaial x z(x, y) € Z[x, y] can be
uniquely determined (up to sign) for the trip{®, K, B). This polynomial, introduced
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by Culler et al. in [4], is called theA-polynomial of the triple(W, K, B). Note that
Aw,k,B(x,y) = Ay g p(x,y), up to sign. Hence wheW is an oriented homology 3-
sphere, we may drop the subscrpfrom the A-polynomial and consider the polynomial

as a topological invariant for knots iw. When W = $3, we simply writeAg (x, y) for
Ags k (x,y). The A-polynomial is a simplified version of th8L,(C)-character variety of

the knot exterior, yet it retains a great deal of topological and geometrical information
about the knoK, its exteriorWg and the manifolds obtained by Dehn surgerydralong

K [2,4-6,10,19,21].

In this paper we further explore information encoded in #hpolynomial. We derive
from the A-polynomial a single variable polynomidly x g(¢) in Z[¢] in a canonical
way. We callCw, k. g (¢) the C-polynomialof the triple (W, K, B). Similarly whenW is
an oriented homology 3-sphel@y . x (t) = Cw k. z(t) can be considered as a polynomial
invariant for knots inW, and whenW = $3, we write Ck (¢) for the C-polynomial. When
Cw.k.p(t) is not identically zero, we sa¥ C W has nontrivialC-polynomial. Note that
as we will see, the nontriviality of th€-polynomial is independent of the choice of the
basisB. We shall show that th€-polynomialCw x p(¢) reflects in its own way certain
topological and geometrical properties of the underlying knot.

By an essential surface in a compact orientable 3-manifold, we mean an orientable prop-
erly embedded 2-dimensional submanifeleich component of which is incompressible,
nonboundary parallel, and does not bound a 3-vethen the component is a 2-sphere).
Note that we consider a reducing 2-sphere as an essential surface.

Theorem 1.1. If Cw g p(¢) is not a monic polynomidi.e., if its leading coefficient is not
oné, then eitherW is not a homotopg-sphere orWk contains a closed essential surface
or Wk is a solid torus.

Theorem 1.1 suggests that thiepolynomial might be able to detect closed essential
surfaces in knot exteriors in homotopy 3-spheres. But we have not been able to produce an
example of a nontrivial knot i6® whoseC-polynomial is not monic.

Recall that a slope i Wk is an isotopy class of unoriented essential simple closed
curves in the torus. The set of slopesiiWx will be parameterized with respect to the
fixed basis3 = {u, A} as{m/n; m,n € Z, (m,n) = 1} such thatm is the-coordinate and
n theA-coordinate. Given a slopg/n, we useWg (m/n) to denote the manifold obtained
by Dehn surgery ofiv alongK (Dehn filling onWx alongo Wx ) with the slope. Note that
each slopen/n ond W corresponds to the pair of primitive elemept¥A" andp =" A~"
in w1(dM). Later on for a primitive elemertt € 71(dWg), we shall also uséVk (§) to
denote the surgered manifold with the slope correspondidg to

Actually when theC-polynomial Cw x p(¢) is nontrivial, it is a product of some
factors Cw kB, (e1,60) (1) € Z[t], Where (e, e2) €{(1,1),(-1,-1),(1,-1),(-1, D} is a
solution of the equatiod w x p(x, y) = 0. We call these factors thmain factorsof the
C-polynomial (see Section 2). Note that a main factor may not be anirreducible polynomial
overZ. Of course there are at most four main factors in@hpolynomial of a knot.

Theorem 1.2. Let W be an oriented homotop$-sphere andk ¢ W a knot whose
exterior Wk contains no closed essential surface but is not a solid torus. Ther (¢)
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is nontrivial and is of positive degree. L€y g (s,.¢,)(¢) be a main factor oCw g (1).
If Cw, K, (e1.60)(—€1828) # £1, Wheree € {£1}, then Wk (¢) has non-trivial fundamental

group.

Recall that the Property- conjecture states th#or any nontrivial knotk in S3,
S,% (m/n) has nontrivial fundamental group for every slopgn # 1/0. The conjecture
is an interesting special case of the Poigceonjecture and remains a challenging open
problem in knot theory and 3-manifold topology. See [15, Introduction] for a summary of
the current status of what is known about the conjecture.

Corollary 1.3. Let K be a nontrivial knot in th&-spheres® whose exterionSf; contains
no essential closed surfaces. If for some main factgr, ., (¢) of the C-polynomial of
K we haveCk (g6, (1) # £l andCk (¢,.¢,)(—1) # £1, thenkK has Property P.

Proof. By [9], among all nontrivial surgeries only one 8} (1) andS3 (—1) can possibly
have trivial fundamental group. Now apply Theorem 1.21

The proofs of Theorems 1.1 and 1.2 make use ofGhe(C) subgroup theorem of
Bass [1] and the main ideas in the part of the proof of the Smith conjecture given by
Shalen [20]. These pieces of work [1,4,20¢ @monnected together through the use of the
Puiseux expansion which is a classical tovolstudying singularities of plane algebraic
curves (see, e.g., [3,14]). In fact each nonzero root of the main faGEQF g (¢y,s,) (1) IS
the first coefficient of a Puiseux expansion at the p&inte2) of the plane curve defined
by the A-polynomial.

This paper is also related to and inspired by two other papers: [13] and [5]. We call
a representatiop of 71(Wk) into SLo(C) peripheral unipotentf for every peripheral
elements of w1 (Wg) (i.e., § can be conjugate intar1(0Wkg)), p(8) is a unipotent
element inSLp(C) (i.e., a trace 2 o2 matrix). In [13], Kuga introduced a polynomial
Nk, o(t) € Z[t] for every knotK in $3 which has an irreducible peripheral unipotent
representatiop : nl(Sf,”() — Slp(C) whichis also integral, i.e., the image pfs contained
in SLp(A) whereA is the ring of algebraic integers of a number field. One can show that
each irreducible factor of' Ng ,(1/¢) is a factor of theC-polynomialCk (¢), wheren is
the degree ok , (1).

WhenWrg is hyperbolic, i.e., when the interior & x has a complete hyperbolic metric
of finite volume,r1(Wx) has discrete faithful representations it8t»(C). Note that by
the Mostow—Prasad rigidity, there are precisglfd W, Z2)| such representations up to
conjugation. Lep be such a representation. Thers irreducible and peripheral unipotent.

It also follows from the Mostow—Prasad rigidity and the Hilbert Nullstellensatz that the
image ofr1(Wg) underp can be assumed to be containedSip(F) for some number
field F andp(p) = (¢ 511), p(A) = (¢ ;’2) whereeq, g2 € {£1}. The numbet is uniquely
determined, up to sign and the complex conjugation, for the hyperbolic tip)& , B),

and is called the cusp constant of the triple. Note ¢hatO. Letc(¢) € Z[¢] be the minimal
polynomial of ¢, which is called the cusp polynomial @f One can show that(z) is a
factor of some main factor of th€-polynomial of the triple. The argument of this fact is
contained in a paper of Cooper and Long [5] (although they only considered kn$is in
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This result can be interpreted as geometric information contained i@-{belynomial. It
also follows that wheWg is hyperbolic, itsC-polynomial has positive degree.

Obviously the above notions of cusp constant and cusp polynomial can be similarly
defined for any peripheral unipotent representagioof 71(Wx) into SLy(C) so long as
p(u) # 1 or —I, wherel denotes the identity matrix, and the imagepofs contained
in Slp(F) for some algebraic number field. As we will see that in many cases
the C-polynomial is a product of the cusp polynomials of certain peripheral unipotent
representations of;(Wx), and that every root of th€-polynomial is the cusp constant
of some peripheral unipotent representationafWx ). For instance, this happens for any
nontrivial knot in$2 whose exterior contains rosed essential surface.

The rest of the paper is organized as follows. After the definition oCthmolynomial
is given in Section 2, Theorems 1.1 and 1.2 are proved in Section 3. Along the way some
other properties of th€'-polynomial are also discussed. The paper is closed in Section 4
with some illustrating examples @f-polynomials.

The author would like to thank the referee for pointing out a gap in the early version of
this paper.

2. Thedefinition of the C-polynomial and some nontriviality

We need to recall the definition of the-polynomial first. For a compact manifold,
we useR (M) andX (M) denote théSLy(C) representation variety and character variety of
M, respectively, and lej: R(M) — X (M) be the quotient map sending a representation
p to its charactery, (see [7] for detailed definitions). Note thatis a regular map
between the two complex affine algebraic varieties. For a given knot ext&goand a
basisB = {u, A} of m1(dWk), leti*: X (Wg) — X (0Wk) be the regular map induced by
the inclusion induced homomorphisim: 71 (8 Wg) — m1(Wg), and letA be the set of
diagonal representations 0 (0 Wg), i.e.,

A={peROWk) | p(u), p(») are diagonal matricés

Then A is a subvariety oR(0Wg) andg|4: A — X (dWk) is a degree 2 surjective map.

We may identifyA with C* x C* through the eigenvalue map: A — C* x C*, which

sendsp € A to (x,y) e C* x C*if p(n) = ( xﬂ)l) andp(A) = (g vfl). A component of

X (Wg) is called trivial if it consists of only characters of reducible representations. Let

X*(Wg) be the subset ok (W) consisting of all nontrivial components &f(Wg ) each

of which has one-dimensional image (0 W) under the map*. Let V be the Zariski

closure ofi*(X*(Wg)) in X(0Wk), let Z be the algebraic curvﬁ;l(V) in A, and letD

be the Zariski closure of(Z) in C x C. ThenAw g g(x,y) is the defining polynomial

of the plane curveD with no repeated factors, normalized so that it i<Zix, y], which

is well defined up to sign. Whek™*(Wg) is an empty set, we definéw x p(x, y) to be

the constant one and say théthas the trivialA-polynomial. Note that the nontriviality of

Aw .k p(t) is independent of the choice Bf (If the reader needs more details, see [4].)
Note that the present definition dfy x g(x,y) is a slight modification of that given

in [4], that is, our X*(Wg) does not contain nontrivial components, and thus when

Aw .k B(x,y) is nontrivial, every irreducible component of the plane curve defined by the
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polynomial corresponds to a nontrivial componen&sfiWg) c X (Wg). So the present
definition is slightly more general when nontriviality is concerned.

Now we proceed to define th€-polynomial. Suppose thdki, €2) is a solution of
Aw k. B(x,y) =0,wherezsq, 2 € {1, —1}. Consider the Taylor expansion &fy x p(x, y)
at the point(e, &2):

Zk: b(k, i) 3FA(x, y)

oy (x — e (y —e2),

(e1,€2)

d

Awkpx.y) =)

k=n i=0

whereb(k, i) denotes the binomial coefficient, and the integer 1 is the lowest total

degree in(x — ¢1) and (y — ¢2) in the expansion, i.e., there is at least orip partial
derivative ofAw_k g (x, y) which is nonzero valued &t1, ¢2). Let

n

bn, i) 9" A(x,

| n—i i
e ax" "ty

from which we get a single variable polynomial

(x—e)" "' (y —e2)',
(e1,€2)

n

b(n,i)3"A(x, y)
Plnen =0 = = gy
i=0 ’

Obviously p,.¢,)(t) has integer coefficients sinceAw x g(x,y) does. Then
Cw.K.B.(e1,60)(t) is defined to be the polynomial, ,) (¢) divided by the greatest com-
mon divisor of the coefficients ip(., ¢, (t), and we also assume th@iy kg, (e;.e,) () has
positive leading coefficient, which can béviously achieved by multiplying the polyno-
mial by —1 if needed. We note tha@ly x g (¢,,¢,) () May not be of degree, in particular,
it may be a constant. It may also be a reducible polynomial dy@&xample 4.4). Now the
C-polynomial of the tripleg W, K, B) is defined to be the product Gy k g, s;.¢,) (t) OVEr
all different root pairde1, €2) of Aw k. (x, y) (at most four of them), i.e.,

Cw.k ()= H{CW,K,B,(sl,az) (t): e1,e2 € {1} andAw k p(e1, £2) =0}.

If Aw k. p(x,y) =0 has no solution of the forre, €2), then we defin&w g () to be
the constant zero, and say thathas trivial C-polynomial in such case.

In the rest of this section, we stiuss the nontriviality of theA-polynomial and
C-polynomial under certain conditionRecall from [7] that each elemempt e 71 (W)
defines a regular functior), on X (W) such thatr, (x,) = trac€p(y)) for each character
Xp In X(Wg). We call 7, the trace function orX (Wg) defined byy. We note that a
nontrivial componeniXg in X (Wg) belongs toX*(Wg) if and only if at least one of
Ty andrt, is not a constant function when restricted &p. It is known that wherWg
is hyperbolic, any componerifo of X (Wg) which contains the character of a discrete
faithful representation is a one-dimensional componeititWy ); in fact on such¥Xg, the
trace functionrs defined by any nontrivial peripheral elemenaf 1 (Wg) is nonconstant
[8]. Hence if Wk is hyperbolic, it has nontriviad-polynomial.

If the character of a peripheral unipotent representatioof 71 (Wg) (later on we
shall call such character peripheral unipotent) is contained in a compongfit(dfx ),
thenAw k. g(x,y) = 0 has a solution of the forrtes, ¢2), where 21 = tracep(u)) and

l‘i

(e1,62)
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2e2 = tracdp (1)), and thus theC-polynomial is nontrivial. Hence iWx is hyperbolic,
thenCw k. g () is nontrivial.

Note that each elememtof the groupHX(Wx, Z) = Hom(rr1(Wx), {£1}) induces
an isomorphisne, : R(Wg) — R(Wg) and an isomorphisma™: X (Wx) — X (Wg) as
follows: s4(p)(y) = e(y)p(y) for everyy e mi(Wg) ands™(x,) = xe.(p)- Note that by
Lefschetz duality, at least one pfand, sayu, is a nontrivial element irHy(Wx, Z2),
and thus there is a corresponding elemert HY(W, Z5) such thate(u) = —1 and
e(A) =1 or —1 depending on whethex is trivial or not in H1(Wg, Z3), respectively.
Now if p € R(Wk) is a peripheral unipotent representation such that) has trace 2;
and p(A) has trace &, thenp’ = ¢*(p) is another (nonconjugate) peripheral unipotent
representation such thaf(u) has trace—2¢; and p(1) has trace 2(1)s2. Hence if
Cw.k.p(t) is nontrivial, it has either two or four main factors. In summary, we have proved

Proposition 2.1. If Wk is hyperbolic, therCw kg (¢) is nontrivial of positive degree and
contains either two or four main factors.

Examples 4.2 and 4.4 give-polynomials with two main factors, and Example 4.5 gives
a C-polynomial with four main factors.

According to Thurston [22], iWk is nonhyperbolic, then it is either Seifert fibered or
contains an essential torus. Due to the simple group structure of the fundamental group
of a Seifert fibered knot exteridVx, it is not hard to determine exactly when sudty
has nontrivialC-polynomial. As an illustration, we caltate explicitly in Example 4.1 the
C-polynomials for all torus knots isi3 (their exteriors are Seifert fibered). Itis conceivable
that every nontrivial knot ir§® has a nontrivial’-polynomial.

3. Proofsof Theorems1.1and 1.2
We retain all the notations established in the previous sections.

Lemma 3.1. Let K be a knot in a homotop§-sphereW. Suppose thakg is a nontrivial
component inX (Wg). Then for any peripheral unipotent charactgs in Xo, p(u) is not
I or —I, wherel is the identity matrix.

Proof. Suppose otherwise. Thep is one of the two trivial representations, i.e.,
p(m1(Wg)) C {I,—1}, since m1(Wg) is normally generated by:. Since Xg is a
nontrivial component, it@ntains an irreducible @racter by definition. ThuXg is positive
dimensional by [7, Propition 3.2.1]. Suppose thao has dimension. Theng~1(Xo) is

an (n 4+ 3)-dimensional subvariety a® (Wg), andq‘l(xp) is a 3-dimensional subvariety
of ¢~1(Xo), consisting of reducible representations [7, 1.5.3 and 1.5.2]. H@‘n?:e(p)
contains a non-Abelian reducible representagibsince the set of Abelian representations
of m1(Wg) with a given character is at most two-dimensional (cf. the proof of [9, 1.5.10]).
But a reducible representation with the samerabter as a trivial representation must be
an Abelian representation. This gives a contradiction.
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Lemma 3.2. Let W be a homotopg-sphere. Suppose tha is a component irk™* (Wg).
Then any peripheral unipotent charactgg in Xg is irreducible.

Proof. Suppose otherwise that, € Xo is a character which is peripheral unipotent and
reducible. We first claim that the trace functigndefined by the meridiap is not constant
on Xg. For otherwise it would be constantly equal to 2-e2. Hence any character iXig
would be peripheral unipotent by Lemma 3.1. Therefgrevould be a constant function
on Xo for any§ € w1(d M). This contradicts the assumption th& is in X*(Wk).

On the other handy, is also the character of a diagonal representagioof 771(Wx)
[7]. Thereforep’(A) = I, and thuso (1) has trace equal to 2. Note thiy corresponds to
a factor in theA-polynomial of (W, K). It follows that (1, 1) or (—1, 1) is a solution of
the equatiomw k (x, y) = 0. So by [4, Proposition 6.2] 1 o+1 is a root of the Alexander
polynomial of the knotk. But this is impossible by [18, Section 8.C, Proposition 7 and
Section 8.D, Corollary 3]. Note that although the above results in [18] are only stated for
knots inS3, they are still valid for knots in any homology 3-spherex

Lemma 3.3. Suppose thaWx contains no closed essential surface and tha R(Wg)
is an irreducible peripheral unipotent representation. Theis conjugate in Si(C) to a
representatiorp’ € R(Wg) such that the image qf is contained in Sk(A), whereA is
the ring of algebraic integers in some number field.

Proof. The lemma essentially follows from th@eL,(C) subgroup theorem of Bass [1].
Recall that his theorem states thatfifis a finitely generated subgroup 6iL,(C), then
one of the following cases occurs:

(a) There is an epimorphisnfi: I' — Z such thatf (z) = 0 for all unipotent elements
uel.

(b) I is an amalgamated free produtj x4 I'1 with I'p # A # It and such that every
finitely generated unipotent subgroupofis contained in a conjugate @ or of I'7.

(c) I is conjugate to a group of triangular matriqés’, ) with a andd roots of unity.

(d) I' is conjugate iNGLz(C) to a subgroup o6GL(A), whereA is a ring of algebraic
integers.

In our current situation, lel’ = p(r1(Wk)) C SLp(C) C GL2(C). Then case (a) cannot
occur sincep(8) is a unipotent element i’ for everys§ € m1(dWk), and f(p(8)) =0
would imply the existence of a surjective homomorphism feerWy (8)) to Z for every
primitive element int1(d M), which would imply thatWx contains a closed essential non-
separating surface. Case (b) cannot occur. Hugravise there would be a closed essential
surface inWx sincep(mr1(8Wg)) is a unipotent subgroup df (see [20, Section 4] for
more details). Case (c) is ruled out by the assumptionghairreducible. So case (d) has
to hold. Finally one can easily verify that two representations of a groupSht¢C) are
conjugate inGLp(C) if and only if they are conjugate iBLo(C). O

Let F be a field with a discrete valuatian i.e., v is a surjective homomorphism from
the multiplicative grougF* to the group of integer such thawv (a +b) > min(v(a), v(b))
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for anya, b € F* with a 4+ b # 0. By convention, define(0) = co. An elementz in F is
called av-integer if and only ifu(a) > 0, and called a-unit if and only ifv(a) = 0. The set
of v-integers inF form a subringD, of F, called the valuation ring af in F. The valuation
ring O, is a principal ideal domain. The set of elementsdp with positive valuation
form the unigue maximal proper ideal ©f,, which is generated by any elementwith
v(r) = 1. Such element is called a uniformizer of0,. The quotient fieldO, /7 O,,
called the residue field af, will be denoted by, . Also note that every nonzero element
of 0, is of the formn" o, wheren > 0 is an integer and is av-unit.

Lemma 3.4. Suppose thap € R(Wk) is an irreducible peripheral unipotent representa-
tion such that the image qf is contained in Si(0,) where 0, is the valuation ring of a
discrete valuatiorv on some field® C C. If p(«) is an upper triangular matrix for some
primitive elemen& € 1(d W) and the upper right entry of the matrix is nobaunit, then
Wk (@) has nontrivial fundamental group.

Proof. The proof of the lemma essentiallyliimvs that of [20, Proposition 1]. Let(«) =

(5 1) wheree € {1, —1} and suppose thatis not av-unit. Hencev(n) > 0, i.e.,n belongs
to the maximal ideal oD, . Sincep is irreducible, there is an elemepnte 71(Wg) such
that p(y) is not upper triangular. Let be the minimal nonnegative integer for which
there is an element € 71(Wk) such thato(y) = (7, Z) whereo is av-unit andzx is

a uniformizer of0,. Consider the conjugaj€ of p in GLx(F), p' = (%l 2),0(”(;[ 9). One

can easily check that' (m1(Wk)) C SLe(0y), p'(y) = (¢ ”Z'), andp’(a) = (§ ﬂj’). Now
consider the composed homomorphism

w1(Wk) N SL2(0y) —> Sla(ky) —> PSla(ky).

Under this map, the image of is the trivial element inPSLy(k,) but that ofy is not.
Hence the homomorphism factors througliWk («)), yielding a nontrivial representation
of m1(Wk (@)) into PSLy(k,). ThereforeWg («) has nontrivial fundamental groupo

We now recall some basic facts about the Puiseux expansion of a complex plane
algebraic curve. We refer to [3,14] for details.
Let B(u, v) =) b;ju’v/ be atwo variable polynomial i@[u, v]. The carrier o (u, v)
is the set{(i, j) € Z2; bij # 0}. The convex hull of the carrier aB(u, v) in the realuv-
plane is called the Newton polygon @&(u, v). Of course the Newton polygon lies in
the first quadrant of thav-plane. We assume th#d, 0) is a solution of the equation
B(u, v) = 0 and that the Newton polygon &(u, v) has an edge which lies in the lower
left side of the polygon with a negative slope, sayi/n, m > 0,n > 0. Let B.(u, v) be
the polynomial whose terms are those terms3Gi, v) whose exponent pairs lie on the
edgee. That is

Be(u,v)= ) biju'v’.

(i,j)ee
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Then B, (u, v) contains at least two terms (monomials). Fr&g(u, v), one can define a
single variable polynomial, called the edge polynomiakpivhich we denote by(z),
simply by replacing a termh;;u’v/ in B (u, v) by b;;¢/. Thatis

e(t) = Z bl‘jtj.

bijuivjeBg(u,v)

Sincee(r) contains at least two terms, ibatains at least one nonzero root.
Suppose now thak(u, v) is also irreducible ove€. Then for every nonzero roetof
e(r), there is a series in'/* of the form

o0
v(u) = Zaiu’/k,
i=1

wherek is some positive integer constant, such that

(1) the first nonzero term in the series:ig/”;
(2) the series is convergent famear zero;
(3) (u, v(u)) satisfies the equatioB(«, v) = 0 for u near zero.

The algorithm for producing such a series was described by Newton, and the
convergence of the series was proved by Puiseux and the series was named after him,
called a Puiseux expansion of the plane curve defineB(ayv) at the point0, 0).

WhenB(u, v) is reducible ovefC, we factorB(u, v) into irreducible factors as

B(u,v) = B1(u, v) B2(u,v) - - Bp(u, v).

Given a negative slope-m/n, the Newton polygon oBB(u, v) has an edge with that
slope if and only if the Newton polygon of some irreducible fadpfu, v) has an edge;
with that slope. Moreover the edge polynomiakaé the product of the edge polynomials
of thosee;’s. These two properties are elementary to verify, which we leave to the reader.
We now ready to prove the two theorems given in the introduction. We first prove
Theorem 1.1. To get a contradiction, suppose that the leading coeffici€ht @fp (7) is
not 1, W is a homotopy 3-sphere, aidy contains no closed essential surfaces but is not
a solid torus. By Thurston [22)Vk is either hyperbolic or Seifert fibered.Wx is Seifert
fibered, thenW is the 3-sphere and thus§ is a nontrivial torus knot. By Example 4.1,
the C-polynomial of every nontrivial torus knot is monic. Hence we may assumeétirat
is hyperbolic. By Proposition 2.1Cw g g (¢) is not trivial, i.e., is not the zero constant.
It follows that theC-polynomial has a main factor, sa&w kg, 1,6, (¢), Whose leading
coefficient is not equal to 1.
Recall the constructional definition of a main factor given in Section 2. In the Taylor
expansion ofAw g p(x,y) at the root(e1, €2), letu = x — e1 andv = y — ¢2. Then the
polynomialAw x g(x, y) can be expressed as a polynonBal, v) € Z[u, v], i.e.,

d k

. k
B(u,v)zzzb(k”)M wk=it,

—iai
k=n i=0 k! dx layl (e1,62)
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and the functiorg(x, y) given in Section 2 can be expressed as a polynoatialv) €
Zlu, v], i.e.,
n .
b(n,i) d"A(x, i
h(u,v)zzﬂﬁ u it

i=0 nt 3x"toy! (e1,62)

Observe that if the polynomiaku, v) contains at least two terms, then the Newton polygon
of B(u,v) has an edge of slope—1 andh(u, v) is the polynomialB, (u, v). Hence if
h(u, v) contains two terms, then the polynomjal, .,)(¢) given in Section 2 is the edge
polynomiale(z) of the edge: for B(u, v). Also the two polynomial€w, g, g, (e;.e,) () and
D(e1.e0) (1) have the same set of roots, including their multiplicities.

Since the leading coefficient @w kg, (e;.60)(¢) IS NOt 1,k (u, v) must have at least
two terms by the definition o€w k g, .6, (¢). Thus the main factor can be considered
as the edge polynomial of the edgeAlso the polynomial has an irreducible factf(r)
over Z whose leading coefficient is natl. Let ¢ be a root of f(¢). Note thatc is not
an algebraic integer. By the above review on Puiseux expansions, there is an irreducible
factor of B(u, v) overC, which we denote byy(u«, v), such that the Newton polygon of
Bo(u, v) has an edgeg of slope—1 and its edge polynomiab(¢) hasc as a root. Hence
the irreducible plane curvgq defined byBo(u, v) has a Puiseux expansion at the point
(0,0) € Eg of the formv = Y72, a;u’/* whose first nonzero term ist. Let {(u;,v; =
v(u;))} be a sequence of points iy \ {(0, 0)} which converges to the poir0, 0) (the
convergence of a sequence mentioned here and later is always with respect to the classical
topology of the variety involved). Note thag(x — €1, y — &2) is an irreducible factor
of Aw k. p(x,y), and the coordinate transformatioms= x — ¢1 andv = y — g2 change
the curveEy in the complex:tv-plane to an irreducible curvBg C D in the complexy y-
plane. Therefore the sequer{¢e; = u; +¢e1, yj =v; +¢e2)} C Do\ {(e1, £2)} approaches
the point(e1, £2) € Dg. By the definition of theA-polynomial recalled in Section 2, there
is a componenKg C X*(Wx) such thaty 1|4 (i*(Xo)) contains a componeri#y with
E(Zo) = Dg (notations from Section 2), where the overline denotes the Zariski closure.
Note thatXg is one-dimensional by [4, Proposition 2.4 follows that there is a sequence
of points{x;} in Xo such thatr, (x;) = x; +x;* — 2e1 and 7 (x;) = yj +y; " — 2e2.

If the sequencgy;} has no limit point in the affine curv&o (so the sequence provides
an ideal point in the projective model &fp), then by a fundamental result in [7Wx
contains an essential closed surfagbkich contradicts to our assumption @ . Suppose
then that the sequence has a limit poipt in Xo (we may assume that the sequence
has a unique accumulation point). Thgn(x,,) = 2e1 andty(x,,) = 2e2. Thusp, is a
peripheral unipotent representation. By Lemma 3,2is irreducible. By conjugation in
SLp(C), we may assume that (u) = (¢ ) by Lemma 3.1. Hence. (L) = (2 ) for

&1 0 e
some numbet,. uniquely associated to the irreducible peripheral unipotent charagter

Lemma3.5. ¢y, =c.

Proof. Still consider the sequengg — x,, in Xo C X*(Wk). Let Rg be an irreducible
component inR(Wg) with ¢g(Rp) = Xp. Let Ra“ be the subvariety oRg consisting of
elementsp € Rg with p(u) = ('g _xfl). Thenp, € R(J{. Since Rg is 4-dimensional [7,
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Corollary 1.5.3], each component (Hg is at least 2-dimensional (applying Corollary
3.14 of [16]). By varying the trace of(n) for p € Ry nearp,, we see that the map
q:R$* — Xo is locally onto near the point,, € Xo, whereRj™ is a component oRj
which containsp,. It follows that we may get a sequengs } in R(J{* such thafo; — px,
Xp; = Xj» pj is irreducible and nonperipheral unipotent for glisufficiently large. In

x;p 1 )i
particular,p; () = (; 1), with x; # £1. Sincep andx commute,o; (1) = (3 1)
o J

with c; = (y; —yj_l)/(xj —xj_l). We havex; — €1, y; — g2 andc; — ¢4, whenj — oo.
It follows that(y; — e2)/(x; — e1) = ¢y @sj — oo.

On the other hand, substitute; — ¢1, y; — €2) = (1, v;) into the Puiseux expansion
v=Y a;u'/*, we see thaly; — e2)/(x; — e1) — c asj — oo (note again that the lowest
term in the series isu). The lemma is proved. O

From the above arguments, we have an irreducible peripheral unipotent representation
px € R(Wg) such thatp,(n) = (¢ 511) and p,.(A) = (¢ ;’2), wherec is an algebraic
number but is not an algebraic integer. By Lemma ».3)s conjugate inSLy(C) to a
representationp’ € R(Wg) such that the image g#’ is contained inSLy(A) for some
ring A of algebraic integers in a number fiekd We may assume thate F. As ¢ is not
an algebraic integer, there is a discrete valuatiamn F such thatv(¢) < 0. Let O, be
the valuation ring. Note that the ring of algebraic integers in a number field is contained in
each discrete valuation ring of the fieleés for instance, [12, Theorem 10.8]). 8@ O,,.
Hence the image op’ is contained inSLy(0,). Since O, is a principal ideal domain
and the trace op’(u) is 2¢1, p’ (1) can be conjugated iBLx(0,) to an upper triangular
matrix of the form(‘} jl) with n € 0,. We usep” to denote the representation after the
conjugation. By Lemma 3.4, is av-unit. Henceo” can be further conjugated Blo(0,)
to a representatiop” such thatp”' (1) = (‘¢ .}). Sincep” (1) commutes witho’ (),

P (A = (2 ‘:;/). But ¢ = ¢ sincep” is conjugate tqo,. Hencec € 0,, which gives a
contradiction. The proof of Theorem 1.1 is now complete.

We now prove Theorem 1.2. Sind€x contains no closed essential surfacéy; is
either hyperbolic or is Seifert fibered. In the latter cadeis the 3-sphere anWx is the
exterior of a torus knot. Hence the first statement of Theorem 1.2 thai-halynomial
of K has positive degree follows from Proposition 2.1 wh#g is hyperbolic and follows
from Example 4.1 (which is a direct calculation) whi is Seifert fibered.

Now we prove the second statement of Theorem 1.2. W€k (¢, (1) = tPg(1),
where p > 0 is an integer andg(t) € Z[t] is not divisible by r. Suppose that
Cw.K,(e1.60) (—€1826) # £1. Theng(—e1e2¢) # £1. Let B(u, v) andh(u, v) be defined
as in the proof of Theorem 1.1. There is an irreducible fagtoy of g(¢) overZ such that
f(—e1e2¢) # +1. Letc be aroot off (). From the proof of Theorem 1.1 we see that there
is an irreducible peripheral unipotent representati@nR (W) such thaip (u) = (¢ 511),

p(A) = (3 ;‘2), and the image of is contained irSLy(0,) for every valuation ringD, of

. . ey sfetefTlons
some fixed number fieléf. Now p (1) = (12 1 +512 ). Letn = efc+&5 T epe. Then
815

a similar proof as that of Lemma 3.4 shows thainust be av-unit. For otherwise there
will be a nontrivial homomorphism from1(Wx (¢)) into PSLy(k,), and we are done. Now
sincen must be av-unit for any discrete valuation on F, 5 is an algebraic unit. On the
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other handg = ¢fn — e1£2¢ is aroot of f(z). Soy is a root of the irreducible polynomial
f«(s) = f(els — e1e2¢) In Z[s] and f (—e1e2¢) is the constant term of.(s), up to sign.
Hencef (—e1e2¢) # 1 implies that; is not an algebraic unit, giving a contradiction. This
complete the proof of the theorem.

The arguments of Theorems 1.1 and 1.2, together with some remarks from the previous
sections, can be also used to show the following

Theorem 3.6. Let W be a homotopy-sphere andk ¢ W a knot whose exterioWx

contains no closed essential surface but is not a solid torus. TherCthelynomial
Cw .k (¢t) is nontrivial of positive degree, and every rootof the C-polynomial is the
cusp constant of some irreducible peripheral unipotent representatioi(®&x ) and vice
versa.

4. Examples

Example 4.1. Let K be a nontrivial torus knot irs® of type (p, ¢). We may assume that
|pl > q > 2. Note thaTS,:’; is a Seifert fibered space whose base orbifold is a disk with two
cone points of indicep| andg. HenceS,3< contains no closed essential surfaces. Also note
that a fiber inaS,% of the Seifert fiberation represents the elemeftti in nl(aS?{). From
these conditions, one can deduce (cf. [4, Proposition 2.7]) that whe8,

1+x2Py, if p>2,
AK(x,y)={ 2 o P
x4y, ifp<-2
and whery # 2,
[ —1+x2riy2  if p>gq,
AK<x,y>={ A
—x"PL+y,  if p<—q.

Sowhery =2, Ck (t) has two main factor€g (1,—1y(t) =t —2p andCg (—1,—1)(t) =t +
2p, and whery # 2, Ck (¢) has four main factor<g (1, -1)(t) =t — pq, Ck (—1,-1(t) =
t+pq, Ck,a1() =t + pg andCg (-1,1)(t) =t — pq. Wheng =2, Cx 1,-1)(1) =
1-2p#+1 andCk 1,-1(—1) = -1 — 2p # £1, and thuskK has Property P by
Corollary 3. Similarly whery #£ 2, K also has Property P.

Example4.2. Let K be the figure-eight knot is®. ThenS}’; is hyperbolic and contains no
closed essential surfaces [23]. THepolynomial of the knot isAg (x, y) = —x% + (1 —
x2 — 2x* — x84+ x8)y — x4y2 [4, Appendix]. For this knoCk (1) has two main factors:
Cx.1_1)(1) =1 +12,
Ck,(—1,-1(0) =1?+12
Now Cg (1,—1)(¢) = 12 for bothe = 1 ande = —1. Hence the knot has Property P.

Example 4.3. Let W be the manifold obtained by Dehn surgery $halong the figure-
eight knot with slope-1/2. ThenW is hyperbolic [23] and is a homology 3-sphere. Let
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K C W be the core of the sewn solid torus. Théfy is homeomorphic to the exterior of
the figure-eight knot irs3. The A-polynomial Aw k (x, y) can be obtained from that of
figure-eight knot (the previous example) and we havex (x, y) = 1 — x%y* — x%y” —
2x4y8 — x4y9 — x6y12 1 x816 |n this caseCw. x (r) has two main factors:

Ck.1.—1)(1) = 49% — 48 + 12,
Ck.(—1,-1)(1) = 492 + 48 + 12.

They are not monic polynomials.

Example 4.4. Let K be the 3 knot in $3. Then Sf{ is hyperbolic and contains no closed
essential surfaces [11]. Alsbg (x, y) = 1+ (=34 7x2+ 4x* — 6x8 + x84+ 3x10 2124
x1y + (3—10x2 + 3x? + 21x% — 3x8 — 1710 4 6x 12 10x 14 — 2416 — 318 4 3420 _
x22)y2+ (—14+3x2—3x*—2x0 4+ 10x 8+ 6x10— 17x12 - 35144 21516 4 3518 _10x20+
3x22)y3 4 (x8 — 2104 3x 12 x 14— 6x 164 4418 4 7420 3x22) 4 1 x22)5 [4, Appendix].
The A-polynomial is reducible oveZ; Ax (x,y) = [1+ (=14 x% 4+ 2x* +x% — x8)y +
x8y2[1+ (=24 6x2+ 2x* — 7x0 4+ 28 4 3x 10— 2412 4 x 14y 4 (1 — 2024 3x* — 2x6 —
7x8 + 2x10 4 6x12 — 2x1%4)y2 4 x14y3]. In this caseCk (1) has two main factors:

Ck.1,-1)(1) = (> — 8 +28) (1> — 142 + 28 — 136),
Ck (-1,-1)(t) = (t* + 8 + 28)(r® + 14> + 28 + 136),

each being reducible ové. It is easy to check thafk (1,—1)(¢) # %1 for bothe =1 and
¢ = —1. Hence the knot has Property P.

Example 4.5. Let K be the(—2, 3, 7)-pretzel knot inS3. Then S}’; is hyperbolic and
contains no closed essential surfaces [17]. Msa(x, y) = —1 + (x16 — 2x18 4 x20)y
(2036 1 x38)2 4 (L x T2 _ 2y 744 4 (901 2,92 1945 1 (1106 [4 Appendix]. In
this case(Ck (r) has four main factors:

Ck.(1.1)(t) =13 + 55t + 1006 + 6119
Ck.(—1.1)(t) =1 — 552 4+ 1006 — 6119
Ck..—1)(1) =1> — 552+ 1010 — 6193
Ck (-1,-1)(t) =12+ 55+ 1010 + 6193

It is known that each of the surgeries &nwith slopes 18 and 19 produces a manifold with
cyclic fundamental group (due to Fintushel and Stern). We have

Ck.a1(—18=-1, Ck,(-1,1)(18 =1,
Ck,1,-1(18 =-1, Ck.(-1.-1(18 =1
Ck,a1n(-19 =1, Ck.(-1.1)(19=-1,
Ck.1,-1(19 =1, Ck.(-1-1(-19=-1
The calculations of this example suggest that the following statement might be true:

Let W be an oriented homotopy 3-sphere akidc W a knot whose exterioWg
contains no closed essential surface but is not a solid torusC6¢ (s,.¢,) (*) be a main
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factor of Cw x (¢). If Cw k(1,60 (—€182n) # £1, wheren is an integer, theVg (n) has
noncyclic fundamental group.
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