Math. Ann. 320, 149-165 (2001) Mathematische Annalen
Digital Object Identifier (DOI) 10.1007/s002080100189

Detection of essential surfaces
in 3-manifolds with SL,-trees

S. Schanuel X. Zhang*

Received April 18, 2000 / Accepted July 28, 2000 /
Published online February 5, 208 © Springer-Verlag 2001

1. Introduction

According to Bass-Serre theory [Se], given a fiéldvith a discrete valuation
v : F*—7Z, there is a canonical way to construct a simplicial tiee= T;,

on which SL,(F) acts simplicially without inversion. When a grouphas a
representation into the grod{d.»(F), then there is an induced actionobn the
tree via the representation. If furtheris the fundamental group of a compact
3-manifoldM and the action of onthe tred is nontrivial (meaning that there is
no point onT fixed by every element of), then the action induces a splitting of

M along an essential surface in the foIIowingAyvayﬁIEt—% M be the universal

covering, there is a1 (M)-equivariant magf : M— T which is transverse to the

setE of midpoints of edges iff’ such thatp(f~1(E)) is an essential surface in

M . We say such an essential surface is associated to (or detecteddiyy)-tee.

A natural question is: which essential surfaces in a compact 3-manifold can be

associated t¢ L,-trees and how do they depend on the choice of the field and

discrete valuation? This is the main issue we are going to address in this paper.
Any 3-manifold mentioned in this paper is automatically assumed orientable

and connected. By an essential surface in a compact 3-mamifolee mean

an orientable, properly embedded, incompressible surface each component of

which is neither boundary parallel i nor bounds a 3-ball (when it is a 2-

sphere). Also recall that a discrete valuation on a fiélid a homomorphisn

from the multiplicative grougF* onto the group of integefs such that

v(a + b) = min(v(a), v(b))

foranya,b € F* witha + b # 0. Letv : F*—7Z be a discrete valuation. The
set
0, ={0}U{a € F*;v(a) = 0}

S. SCHANUEL - X. ZHANG
Department of Mathematics, SUNY at Buffalo, Buffalo, NY 14260-2900, USA
(e-mail: schanuel@buffalo.edu / xinzhang@math.buffalo.edu)

* Partially supported by NSF grant DMS9971561.



150 S. Schanuel, X. Zhang

forms a subring of, called the valuation ring af. If T is theSL,-tree defined
by (F, v), then the action of an element € SL,(F) has a fixed point if and
only if A is conjugate irGL,(F)to anelementisL,(0,) (see [Se]for details).
The latter condition is equivalent to the condition that the tracé bélongs to
0,. We summarize the above discussion in the following lemma.

Lemma 1l Letv be a discrete valuation on a field and letT be the associated
SL,-tree. Suppose tha¥ is a compact 3-manifold with a representatign:
m1(M)—SLy(F) such thatv((¢(y))) < 0 for somey € m1(M). ThenM
contains an essential surface associated tothe-treeT.

Lemma 1 exhibits an attractive connection between the topology of 3-mani-
folds and the theory of L,-trees. This connection was first explored in the proof
of the Smith conjecture [MB] and further developed in work of Culler-Shalen and
others [CS 1-2] [CGLS] [CCGLS]. In particular the following lemma follows
from [CS1] (although they only considered a special case there).

Lemma 2 Let M be a compact 3-manifold with nonempty boundary such that
m1(M) acts nontrivially on theS L,-tree T defined by a discrete valuatianof a
field F via a representatiowp : w1(M)— SL(F).

(1) LetC c aM be a connected complex such thaty (y)) € O, for every
loop in C, then there exists an essential surfa&te M associated to the tree
such thats is disjoint fromcC.

(2) Ify ¢ Misaloop suchthatr(¢(y)) ¢ O,,theny intersects every essential
surface associated to the tree.

Note that in Lemma 2, any loop in M can be considered as an element in
1(M) up to conjugation and taking inverse, and thu@ (y)) is well defined.

Proof. (1) Leti* : m1(C)—m1(M) be the inclusion induced homomorphism.
Theni*(71(C)) is a finitely generated subgroup of(M) (well defined up to
conjugation). The condition of (1) implies that every element in this subgroup
has a fixed pointiff". Hence by [Se, Corollary 3 to Proposition 26], the subgroup
i*(m1(C))iscontainedin avertex stabilizer. Now one can apply [CS1, Proposition
2.3.1] to get the conclusion of (1).

(2) Let S be an essential surface Mi associated to the action. Then for each
componentD of M — S, i*(w1(D)) C w1 (M) is contained in a vertex stabilizer.
Hence the given loop cannot be contained in such compon®nsincey does
not fix any vertex off . Soy must intersect the surface O

A compact 3-manifold is called a knot exterior if it has boundary which
is a torus. Recall that for a knot exteridf, a slope in the torudM is called a
boundary slope if there is an essential surtsgeM such thad S is a non-empty
set of parallel simple essential loopsain of the given slope.
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Corollary 3 Let M be an irreducible knot exterior such that(M) acts non-
trivially on the SL,-tree defined by a discrete valuatianof a field F via a
representationp : w1 (M)— SLy(F).

Q) If tr(p(y)) € O, for two different slopes in dM, then M contains an
essential closed surface associated to the tree.

(2) Iftr (¢ (8)) € O, for one slopé in aM andtr (¢ (y)) ¢ O, for another slope
y in M, thenM contains an essential surfadeassociated to the tree such that
the boundary of is nonempty and is of the slopei.e.§ is a boundary slope.

We call aboundary slope which arises as in part (2) of Corollary 3 strongly as-
sociated to (or strongly detected by)&h,-tree, following Cooper-Long [CL2].

Often used fields with discrete valuations for detecting essential surfaces in
3-manifolds are the following two types:

Type 1 (froman AN I-representation). Suppose thal is a compact 3-manifold
which has arepresentatipn w1 (M)— SL,(F), whereF is an algebraic number
field, i.e. a finite extension field d®, such thattr(p(8)) is not an algebraic
integer for some element in 71(M). We shall call such representatigpnan
AN I-representation of;(M) in SL(2, C) (hereAN I stands for algebraic non-
integral). Now letZ. be the integral closure & in F. ThenZ, is the ring of
algebraic integers it and it is well known that

Z. = N{0,; v discrete valuation of'}.

Sincerr(p(y)) is not an algebraic integer, there is a discrete valuatiof F
such thatr(p(y)) ¢ O,. Hence by Lemma 1M contains an essential surface
associated to th&L,-tree defined by the paf#, v). Henceforth we shall call an
essential surface which arises this way associated to (or detected AW Bn
representation o1 (M) in SL(2, C). The interplay between essential surfaces
andAN I-representations played a crucial role in the final resolution of the Smith
conjecture [MB]. Note also that every discrete valuatioof a number fieldF

is a P-adic valuation defined by a prime ide®lof Z.. So we may also say that
an essential surface associated ta\@f/ -representation is detected byaadic
valuation.

Type 2 (from an ideal point): Let M be a compact 3-manifold. Now instead

of considering a single representationm{M) into SL(2, C), we consider a
certain family of them. LetR(M) be the set of allSL(2, C)-representations

and letX (M) be the set of the characters of elementRid/) (see [CS1] for
definitions). Then bott® (M) andX (M) have naturally the structure of algebraic

set and are thus usually called the(2, C) representation variety and character
variety of M respectively. Note that the natural surjective maR (M)— X (M)

which sends a representation to its character is a regular map between the two
algebraic sets. Suppose now th&tM) is positive dimensional as an algebraic
setand leX, C X (M) be any algebraic curve. L&, be the smooth projective
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completion ofX,. Any ideal pointx € X, defines a discrete valuatian on
the function fieldk = C(Xq) = C(X,) as follows: for any rational function
f € K = C(Xo), v(f) = n if x azero off of ordern, andv(f) = —n if x
is a pole off of ordern. Let Ry be an irreducible component of'(Xg) such
thatr(Rg) = Xo and letF = C(Rg) be the function field onRy. Then F is
a finitely generated extension @&f and the valuatiorv, extends to a discrete
valuation, which we still denote by, for simplicity, on F ([MS]). On the other
hand there is a tautological representation,(M)— SL,(F), which induces
a nontrivial action ofr, (M) on theS L,-tree defined by the paiF, v,). In fact
the non-triviality is guaranteed by the existence of an elemeatr, (M) with
v, (tr (P(y))) < 0 (see [CS1] [CGLS] for details). Thus by Lemmai has an
essential surface associated to the tree definad'by, ). Henceforth we shall
call an essential surface which arises this way associated to (or detected by)
an ideal point of a curve of the character varietyMf The interplay between
essential surfaces in 3-manifolds and ideal points of character varieties has led
to significant progresses in understanding 3-manifold topology (see [Sh] for a
comprehensive exposition).

Ouir first result says that in strongly detecting boundary slop@&!l-repre-
sentations are at least as effective as ideal points.

Theorem 4 Let M be an irreducible knot exterior. If a boundary slope Mf
is strongly detected by an ideal point of a curveXniM), then it is strongly
detected by ad N I-representation ofr; (M) into SL(2, C).

In most cases, the converse of Theorem 4 also holds, which has been discussed
and proved in [CL3]. We note that [CL3, Corollary 10] did not give the whole
converse of Theorem 4; there was a condition implicitly assumed in its proof.
See Remark 15 for more detailed explanation.

Actually something more general is true. Our next result indicates that in
strongly detecting boundary slopes wili ,-trees, we only need to usen /-
representations, provided that the relevant figlavith discrete valuation has
characteristic zero.

Theorem 5 Let M be an irreducible knot exterior. If a boundary slopeMfis
strongly detected by 8L, (F)-tree where the field” has characteristic zero,
then the boundary slope is also strongly detected byl & -representation.

There are closed graph manifolds with only finite cydic(2, C)-represen-
tations [Mi]. Hence an essential torus in such a manifold can not be detected by
either anideal pointorafN I-representation. In [BZ1] closed hyperbolic Haken
3-manifolds were found whos#. (2, C) character varieties are zero dimensional
and thus essential surfaces in such manifolds can not be detected by ideal points
of SL(2, C)-character varieties. The following theorem seems to suggest that
AN I-representations are better detectors of essential surfaces than ideal points.
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Theorem 6 There exist closed hyperbolic 3-manifolds which have essential sur-
faces associated tA N /-representations but not associated to ideal points.

The first effort to answer the question of whether every boundary slope of a
knot exterior is strongly detected by an ideal point was made in [CL1], unfortu-
nately with an error found later, as mentioned in [CL2]. Here we give a hegative
answer to this question by proving the following theorem.

Theorem 7 There exist infinitely many irreducible knot exteriavs each of
which has a boundary slope which cannot be strongly detected by either an ideal
point of a curve ofX (M) or an AN I-representation ofry(M).

Note that if T is a SL,-tree defined by a field with discrete valuation,
the identity element and its negative $ii,(F) act trivially on T. Hence the
SL,(F) action onT factors through & SL,(F) action onT. We remark that
all our above results still hold if we consider everything in the more general
setting of P S L-representations. For simplicity we do not pursue this generality
here, except that at a few convenient occasions we make some relevant notes.
For instance, our Example 18 shows that there are closed Haken 3-manifolds
(non-hyperbolic) which have nd N I-representations int§L(2, C) but have
AN I-representations intBSL (2, C), which means that such manifolds contain
essential surfaces which are not detected by-trees but byP S L,-trees.

The following questions remain open.

Question 8Let M be a hyperbolic knot exterior. Is every boundary slopa/of
strongly detected by an ideal point of a curveXofM)?

Question 9ls there a closed hyperbolic Haken 3-manifold which hasital
representation int@® SL(2, C)?

We remark that very often, for a Haken hyperbolic 3-manifold, a discrete
faithful representation of its fundamental group ifto(2, C) or PSL(2, C) may
notbe am N I-representation. For instance, this occurs for any finite Haken cover
(if such exists) of a non-Haken hyperbolic 3-manifold. The following question is
more difficult but more attractive; a positive answer would imply the well known
virtual Haken conjecture.

Question 10Let 7 be the fundamental group of an irreducible 3-manifold. If
r is not a finite group, does it have a finite index subgraughich has an
AN I-representation int@ SL(2, C)?

The main tool used in proving Theorems 4-6 is #fx@olynomial introduced
in [CCGLS]. Several feature properties of thegpolynomial found in [CCGLS]
[CL3] [BZ2] will be applied. Theorem 7 is proved by a careful gluing technique
of representations along an essential torus. After some preparation in Sect. 2,
Theorems 4-7 will be proven in Sect. 3-6, which constitute the rest of the paper.
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2. Some preparation

Let Z denote the ring of all algebraic integers a@dhe field of all algebraic
numbers. We first recall the following form of the Hilbert Nullstellensatz in
algebraic geometry.

Theorem 11 Suppose thaV C C" is a nonempty affine algebraic set defined
by polynomials with coefficients @. ThenV contains at least one point whose
coordinates are all irQ.

In particular ifv is an isolated point iV, then all coordinates af are inQ.
For a finitely generated group, we useR(rr) and X () to denote the
SL(2, C) representation variety and character variety of

Lemma 12 Letx be a finitely generated group and lgt, ..., y, be some given
elements int. If 7 has a representatiopy € R(xr) such thatrr(po(y;)) € Q
fori =1, ..., k, thenz has a representatiop, € R(r) such thatr(p.1(y;)) =
tr(po(y;)) fori =1, ..., k and such thap, (;r) is contained inSL,(F) for some
number fieldF.

Proof. It is well known that the affine varietR () is the zero set of the set

of polynomials ovef) coming from a presentation af; (M). We may assume
thaty;,i = 1, ..., k, are among the generators of the presentation. Now add the
equationsr(p(y;)) = tr(po(v:)), i = 1, ..., k, to the set of defining equations

of R(M), we get a subvariety which is non-empty (since at lpg$$ contained

in it) and is certainly defined oved. Now we apply Hilbert Nullstelensatz to
this subvariety. O

Lemma 13 Suppose thati(X,Y) = Ag(X) + A1(X)Y + ... + A,(X)Y" €
Z[X, Y] is a two variable polynomial such that > 0, A,(X) = eX* f(X)
wheree = 1or —1, k > 0, f(X) is monic of positive degre¢,(0) # 0, and no
root of f(X) is also a root of allA; (X). Then apart from finitely many primes
p, for everyp-th root of unityé - 1 and every rootr of f(X), the polynomial
Ak, Y) in Y has arooty in Q but not inZ.

Proof. First note that if £ 1 is ap-th root of unity, theré — 1 is a root of

X+1Dr-1 1 5
- = X7 X’ ,
X+1—1 AT At
which is irreducible by Eisenstein’s criterion. From this we only need two facts:
thaté — 1 dividesp in Z, and that — 1 is not a unit ofZ.
We say thatc dividesy in a commutative ring if there existsin that ring
with xz = y; note that ifx andy are inZ andx dividesy in Z, thenx dividesy
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in Z. Now sincef (X) is monic andf (0) # 0, each rook of f(X) is a non-zero
algebraic integer. Choose soinguch thatr is not a root ofA; (X), and sinceZ
is a ring, we may write

Ai(X) = (X —a)g(X) +¢

with g(X) € Z[X] and 0+ ¢ € Z. Letd be the product of all the conjugates of
c. If p does not dividel, then

AiGa) = Ga —a)ga) +¢

is not divisible byt — 1 in Z. For otherwise& — 1 would dividec, hence divide
d; buté — 1 dividesp, hencet — 1 would divide 1, contradicting the fact that
& — 1is notaunit.

Suppose in addition th#tx is not a root ofA,(X) = X* f(X); this gives
finitely many additional primes to avoid. Now sindg (X) = X*(X — a)h(X)
with #(X) € Z[X],

AGa) = Ga)(a — a)h(Ew)

is divisible byg — 1. It follows thatA,, () does not divided, (£«) in Z and thus
Aa,Y)=A,E)II(Y — y;)

has a root; which is not inZ.
Each rootx of f(X) thus gives only finitely many primes to avoid, so the
lemma is proved. O

Corollary 14 Suppose thatt (X, Y) = Ap(X) + A1(X)Y + ... + A, (X)Y" €
7Z[X, Y] is a two variable polynomial such that > 0, A,(X) = eX* f(X)
wheree = 1or —1, k > 0, f(X) is monic of positive degre¢,(0) = 1 or —1.
Then we have either

(1) A(X, Y) = 0 has infinitely many solution&:, y) such thatx is an alge-
braic unit andy is an algebraic number but is not an algebraic integer; or

(2) £ (X) has anirreducible non-constant factb(X) overZ such that: (X)
dividesA(X,Y)inZ[X, Y].

Proof.Sincef (X) is monic andf (0) = +1, every rootx of f(X) is an algebraic
unit. If « is not a root ofA; (X) for somei, then by Lemma 13A(X,Y) =0
has infinitely many solutions of the for(§«, y) where¢ is root of unity andy
is not an algebraic integer. Thus we have part (1) of the corollary.

So suppose that a roetof f(X) is also a root ofd; (X) for all i. Let h(X)
be the minimal polynomial af overZ. Thenh(X) is not a constant and divides
f(X) and everyA,; (X). This gives part (2) of the corollary. ]

We now recall and establish some notations. For a compact maiifolde
already use® (W) andX (W) to denote the L (2, C) representation variety and
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character variety ofr1 (W) respectively, and : R(W)— X (W) the canonical
map. We shall us&® (W) and X(W) to denote thePSL(2, C) representation
variety and character variety af; (W) respectively (cf. [BZ1] for discussion
regardingP SL(2, C) representation theory of 3-manifolds). Recall that each
elementy,, is the character of an elememic R(W), which is a complex valued
function defined onry (W) asy,(y) = tr(p(y)) for eachy € 71(W) and that
similarly each elemenyg ; is the character of an elemepte R(W), which is
a complex valued function defined an(W) asx;(y) = [tr(B)]? for each
y € m (W), whereB € SL(2, C) is an inverse op(y) € PSL(2, C) under the
canonical map fron§ L (2, C) to PSL(2, C). Obviouslyy ; is well defined. Also
recall that each elememt € 71(W) defines a regular function, on X (W) as
7,(x,) = x,(y) for eachy, € X (W) (called the trace function gf on X (W))
and also defines a regular functién on X(W) ast,(x;) = x;(y) for each
X; € X(W) (called the trace function of on X (W)).

With respect to a fixed meridian-longitude bagis A} in a torusT, the set
of slopes inT" can be parameterized tijyU {1/0}. By convention, we usg/qg to
denote the slope whose meridian coordinate &nd longitude coordinaig. If
M is a 3-manifold with a torus boundary compon&nthenM (T, p/q) denotes
the manifold obtained by Dehn fillinyf alongT with slopep/q. If M is a knot
exterior, then we simply us# (p/q) to denoteM (0 M, p/q).

For a knot exterioM and a fixed basi§u, A} for 71(0 M), we useA(X,Y)
to denote theA-polynomial of M with respect to the basis. For convenience of
arguments in later sections, we briefly recall the constructioa(@f, Y). We
refer the reader to [CCGLS] for details. Liét: X (M)— X (0 M) be the regular
map induced by the inclusion induced homomorphism 71 (3 M)—m(M).
Let A be the set of diagonal representationggfo M), i.e.

A={pe ROM)| p(u), p(r) are diagonal matricés

ThenA is a subvariety oR(dM) andt|, : A — X (dM) is adegree 2 surjective
map. We may identifyd with C* x C* through the eigenvalue map: A—C* x

C*, whichsende € Ato(x,y) € C* x C*if p(u) = ()(C)x(—)l) andp(A) =

y O

0 yl)'
known thatV is at most one dimensional. L&j be the set of one dimensional
components iV, let Z be the algebraic curwzl(vl) in A, and letD to be the
Zariski closure ofP(Z) in C x C. ThenA(X, Y) is the defining polynomial of
the plane curved with no repeated factors. Note that as in [CCGL&{X, Y)

is normalized so that it is iZ[ X, Y], well defined up to sign.

Let V be the Zariski closure of*(X(M)) in X(@M). Then it is
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3. Proof of Theorem 4

The main tool we shall use in proving this theorem and next two isAhe
polynomial introduced in [CCGLS]. The proof involves some applications of
some powerful results found in [CCGLS], [CL3] and [BZ2], together with the
number theoretical results given in the previous section.

Let u be a boundary slope strongly detected by an ideal padfisome curve
Xo C X(M).This means, by definition, thatthere is a sequence of representations
pj € t~1(Xo) such that{tr(p; (1))} are bounded i, but {tr(p;(1))} are not
for some elemenk in w1(dM). We may assume by Corollary 3 that, A)
form a basis fotr (0 M). Let A(X, Y) be theA-polynomial of M defined with
respect to this basis as recalled in Sect.2. Sincéo;(1))} are not bounded,
Xo will contribute a component in the plane curve defined byAkgolynomial
of M. Obviously the trace functiom, is not constant orX,. By [BZ1], X is
a curve which provides a Culler-Shalen semi-norm or norm on the real 2-plane
Hy(dM; R), according as,, is a constant or not oXy.

If 7, is constant, say, = &, on Xy, then by the construction oA(X, 1),
we see thalX — £ is a factor ofA(X, Y) andé must be a root of unity. Since
the trace function oh is not constant, there exist plenty of representations
in t=1(Xo) with tr(p (1)) in Q but not inZ. Hence by Lemma 12, we may find
suchp € R(M) which is anANI-representation ot (M) with tr(p(n)) = &
andrr(p(r)) ¢ Z. Sou is a boundary slope strongly detected by an ANI-
representation.

If 7, is not constant onXo, then X, provides a Culler-Shalen norm on
Hi(0M; R) whose norm polygon, denoteRh, has a pair of corners of slope
0 in the XY -plane (corresponding to the slopg [BZ1]. Let Ap(X, Y) be the
factor of A(X, Y) corresponding to the cun, and letN, be the Newton poly-
gon of Ag(X, Y). Then it is proved in [BZ2] that the norm polygdy and the
Newton polygonV, are dual to each other, meaning that the norm polyBgn
has a pair of corners of slope/g if and only if the Newton polygomVy has a
pair of sides of the same slope, and vice versa. So in partidiglaas a pair of
sides of slope 0 in théXY)-plane. This implies that the Newton polygdhof
the wholeA-polynomial A(X, Y) must have a pair of sides of slope 0. Note that
any coefficient ofA (X, Y)) which corresponds to a corner of its Newton polygon
N is equal to 1 o1 [CL3]. Hence the polynomiall (X, Y) € Z[X, Y] must
have the form

AX,Y)=A(X) + A1(X)Y + ... + A, (X)Y"

such thatd; (X) € Z[X, Y], Ap = e1 X’ f(X) andA,(X) = e2X* f(X), where
n>0,eg=10r—1,¢, = 1o0r—-1, j andk are non-negative integerg(X) is
monic with positive degreeg/,(0) = 1 or—1. Infact f (X) is the edge polynomial
of the pair of sides oV with the slope 0. Hence by Corollary 14, we either have
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thatA(X, Y) = 0 has infinitely many solution&, y) such that is an algebraic
unit, y is not an algebraic integer but is an algebraic number; orAliat, Y)
contains an irreducible factor of the forgX) € Z[X] which dividesf (X).

We first consider the former case. Note that except for finitely many points
in the plane curve defined by(X, Y), a solution(x, y) of A(X,Y) = O cor-
responds to a representatipre R(M) such thatr andx~—! are eigenvalues of
o(n), andy andy~* are the eigenvalue gf(1). It follows that we have a repre-
sentationpg € R(M) such thatr(po(w)) is an algebraic integer and(oo(2))
is not an algebraic integer but is an algebraic number. Here we used the fact that
a numberc is an algebraic unit if and only if + ¢~ is an algebraic integer.
Now applying Lemma 12, we get atw I -representatiop; € R(M) such that
tr(p1(w)) is an algebraic integer but(p1 (1)) is not. Thusu is a boundary slope
also strongly detected by an ANI-representation.

We now consider the latter case whefX, Y) has anirreducible non-constant
factor(X) € Z[X]. Note that the plane curve defined bgX) corresponds to
some curve o (M), on each irreducible component of which the trace function
of u is constant. Thus we may simply dividgX) from A(X,Y) and apply
the above argument to the remaining polynondalX, Y) since Xq will still
contribute a nontrivial factor i’ (X, Y) € Z[X, Y]. That is, we may assume
that £ (X) is irreducible and does not divide(X, Y). This completes the proof
of Theorem 4.

4. Proof of Theorem 5

Suppose thaF is a field whose characteristic is zetois a discrete valuation
on F, and i is a boundary slope strongly detected by tie,-tree defined
by the pair(F, v) via some representatiap : 71(M)— SL,(F). SO we have
v(tr(¢(n))) > 0 butv(tr(p (1)) < 0 for another slope in dM (cf. Corollary
3 (2)). Note thaj is the unique slope ohM whose image under the maghas
trace with non-negative valuation underSo we may assume thgt, A} form
a basis ofr, (0 M).

Now let K be the subfield off generated over the ground fiel@ by all
the entries ofp(y) for all y € m1(M). Sincerr1(M) is finitely generatedk
is a finitely generated extension @. We may also assume th&t contains a
uniformizero of the valuation ringD,, i.e.o is an element of” with v(o) = 1.
Hencev restricts to a discrete valuation &h which we still denote by. Sou
is a boundary slope strongly detected by $tig-tree defined by the paiK, v)
via the representatiop : 71(M)— SL2(K). On the other hand we may now
embedK in C as a subfield. Therefoge may be considered as a representation
of m1(M) into SL,(C). Recall from Sect. 2, the Zariski closuveof i * (X (M))
in X(0M) is at most one dimensional and is defined c@eiNow consider the
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image of the charactey, € X (M) under the map* in V. We divide the proof
into two cases, depending on whether the poiak,) is isolated or not irv/.

Case 1 Suppose that'(x,) is an isolated point o¥.

Then by the Hilbert Nullstellensatz, both(¢ (1)) andzr (¢ (1)) are algebraic
numbers. Hence by Lemma 12, there isAa¥i/ -representatiop; € R(M) such
thattr (p1(w)) = tr(¢ () ander (p1(1)) = tr(¢(A)). Sincep, iISAN I, thereisa
number field/ such thap, (w1 (M)) C SLo(J). Letw = tr(p1(n)) = tr(¢p(n))
andz = tr(p1(2)) = tr(¢(1)). Since we have(w) > 0 andv(z) < 0,z cannot
be integral over the subring[w] of J. Now by a theorem of Krull ([Jn, Page
255, Theorem 14]), the integral closure @fw] in J is the intersection of all
valuation rings in/ which containZ[w]. It follows that the integral closure of
Z[w] is contained in some valuation ring éfwhich misseg. But for a number
field J, any valuation ring of/, different from J, is the valuation ring of a
discrete valuation of . HenceJ has a discrete valuatiari such thatw € O,
butz ¢ O,. This means that is also a boundary slope strongly detected by the
ANI-representatiom, : m1(M)—SLy(J).

Case 2 Suppose that'(x,) is not an isolated point of .

Therefore we may assume thiagy,) is contained in a one dimensional compo-
nent of V. This implies that ifA (X, Y) is the A-polynomial of M with respect to
the basigu, A}, thenA(X, Y) has a solutiorixg, yo) such thakg is an eigenvalue
of ¢ (1) andyy is the eigenvalue ap (1). Now by Theorem 4, it is sufficient to
show thatu is also detected by some ideal point of some cutyen X (M).
Suppose otherwise. Then tAepolynomial must have the form

AX,Y) =X + A1(X)Y + ...+ A1 (XY L+ Xk Yy € 71X, Y],

wheree; = 1 or—1,¢; =1 or—1 (i.e. the Newton polygon ok (X, Y) cannot
have sides of slope 0). Singg X, Y) = 0 has the solutioiixg, yg) such thateg

is anv-unit but yg is not (again we used the fact that a numbés anv-unit if
and only ifc + ¢! is av-integer; i.ew(c) = 0 if and only ifv(c 4+ ¢~1) > 0).
But obviously wherxg is av-unit, all the roots ofA (xg, ) for the variableY are
v-units. This gives a contradiction. The proof of Theorem 5 is now complete.

Remark 15From the proof above we see thatifis a boundary slope of an
irreducible knot exterioM strongly detected by an representationm, (M)—
SL,(K) whereK is a subfield ofC with a discrete valuation, then is also
strongly detected by an ideal point of a curveXiiM) provided that*(x,) is
not an isolated point in*(X (M)). In the proof of [CL3, Corollary 10] it was
implicitly assumed that for ak N I-representatiop € R(M), i*(x4) is not an
isolated point of *(X (M)) C X(dM). But that seems not to be known. It does
not follow directly from the proof of [T1, Theorem 5.6].
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5. Proof of Theorem 6

Recall that a knot exterioris called small if it contains no closed essential surfaces.
We have noted that if(X, Y) is the A-polynomial of a knot exterioM with
respect to a basifu, A} of (0 M), then except for finitely many, a solution
(x,y) of A(X,Y) = 0 corresponds to a representatiore R(M) such thatx

is an eigenvalue gf (1) andy an eigenvalue op (1). We can be more specific
about this in cas#/ is a small knot exterior, as explained in the following lemma.

Lemma 16 Let M be a small knot exterior. Let (X, Y) be theA-polynomial of
M with respectto abasigt, A} of 11 (M). If (x, y) isasolutionofA(X, Y) =
such thatr # 0andy £ 0, then there is a representatigne R(M) such that
tr(p(w) = x +x"tandir (o) =y +y .

Proof. Let Dy be a component of the plane curlledefined byA (X, Y) which
contains the pointx, y). From the construction of th&-polynomial (recalled in
Sect. 2), we see that there is an irreducible cufyén X (M) and an irreducible
curve Zp in A (notations from Sect. 2) such tha, is the Zariski closure of
P(Zp) inC x C, that the Zariski closur&, of i*(Xg) in X (0 M) is an irreducible
curve, and that the regular méy, : Xo— Yo andthe regular mag, : Zo— Yo
are dominating_ maps Passing to smooth projective completion, we get rational
mapsP Zo— Do, i* : Xo— Yo andf : Zo— Yo, all surjective. Letd be a point
in Dy which maps to the pointx, y) in Do under the birational isomorphism
Do— D, letz be a point inZy such thatP (z) = d, letv = 7(z) € Y, and finally
letu be a point inX, such thai*(z) = v. We clalm thaiz is not an ideal point of
Xo. Suppose it were, then sinég(u) = x +x~*and,(u) = y + y~* are both
finite, it follows from Corollary 3 (1) that/ contains a closed essential surface.
But this contradicts our assumption thitis small. Therefore: is mapped to
apointy, in Xo under the birational isomorphisiy— Xo. It follows from the
construction ofDg thatx is an eigenvalue gf () andy an eigenvalue ob (1).

]

For a knot exterion in the 3-spheres®, {1, 1} will always be the standard
meridian-longitude basis af; (0 M) and slopes oA M will be parameterized by
rational numbers with respect to this basis.

Example 17Let M be the exterior of thegknot in $3. Then the manifold/ (10)

is a hyperbolic Haken 3-manifold with O-dimensiodl (2, C) character variety
but with anANI-representation. Hencd (10) has an essential closed surface
which cannot be detected by ideal pointsXfa (10)) but can be detected by
an AN [-representation.

Proof. By [HT], we know that the knot exteria¥f is small and hyperbolic, the
slope 10 is a boundary slope but is not a boundary slope of a punctured essential
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torus or a punctured 2-spherei. HenceM (10) is irreducible and contains no
essential torus. Now applying [CGLS,Theorem 2.0.3], we seeM@0) must
be a Haken 3-manifold. Hence according to Thurston [#2]10) is a hyperbolic
3-manifold.

TheA-polynomial ofM with respect to the standard meridian-longitude basis
{, 1} is given in the appendix of [CCGLS]:

AX,Y)= (¥ —D[1+ (-1+2Xx%+2x*— x84+ xOy
+(X4 — X84+ 2x0 4 ox12_ Xl4)Y2 + X14Y3]

Now letY X10 = 1, thenA(X, X~1°) has an irreducible factor
(2— X%+ X% +4x8 4 x¥0 _ x¥ 4 2x1%)/x16,

HenceA(X,Y) = 0 has a solutiorix, y) such thatx is not an algebraic unit
andyx'® = 1. By Lemma 16, there is a representatjiore R(M) such that
tr(p(n)) = x +x~tandtr(p(A)) = y + y~ L. Hencerr (p(n°4)) = 2. It fol-
lows thato (111°1) = I (sincep(w) is not parabolic). Therefore € R(M (10)). It
also follows thafX (M (10)) is zero dimensional. For otherwise thegpolynomial
A(X,Y) of M would contain a factok'°Y — 1. Hence by the Hilbert Nullstel-
lensatz, the representatipne X (M (10)) is anAN I-representation. ]

Example 18Let M be the exterior of the Fig. 8 knot . Then the manifold
M (—4) is a Haken 3-manifold with zero dimensionab L (2, C) character vari-
ety, with noA N I-representation int§L (2, C), but with anA N I-representation
into PSL(2, C).

Proof.Again by [HT], the knot exterioM is small and hyperbolic, the slopet
is a boundary slope of a punctured essential toru¥ift is also known that
M (—4) is a Haken 3-manifold with essential torus. Thgpolynomial ofM with
respect to the standard meridian-longitude bgsis.} is:

AX,Y) = = D[-X*+ Q- x?—2x*— x®+ x®Yy — x*v?].

Now let YX~* = 1, thenA(X, X% = —X8X* — 1)(1 + X?)2. Hence ev-
ery SL(2, C)-representatiop € R(M(—4)) hastr(p(w)) an algebraic integer.
HenceR(M(—4)) C R(M) has ncAN I representation by Corollary 3.

But if we setY X4 = —1, then

AX, XY = —XH=X* — 1)(X — DAX + D22+ 3X2 + 2X9).

HenceA(X, Y) = 0 has a solutiorix, y) such thatx is not an algebraic unit
and yx* = —1. By Lemma 16, there is a representatione R(M) such
thatrr(p(n)) = x + xtandtr(p(L)) = y + y L Also p(u™%r) = —I.
Therefore there is aR SL(2, C)-representatiop € R(M(—4)) whichisANI.
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It also follows that theP SL(2, C)-character variety (M (—4)) of M(—4) is
zero dimensional. For eve®SL (2, C)-representation a¥/ liftstoaSL (2, C)-
representation af/. So if X (M (—4)) C X (M) were positive dimensional, then
X (M) would have a curve, such that for every € t~1(Xo), p(u™1) = I
or —1. It follows that theA-polynomial A(X, Y) of M would contain a factor
X4Y —lorx%y +1. o

A similar argument applies to boundary slopes of other 2-bridge knots whose
A-polynomials are given in [CCGLS]. All the cases we have checked worked
out the same way as Example 17 if the boundary slope is not a boundary slope
of an essential punctured torus. Therefore Theorem 6 follows.

6. Proof of Theorem 7

We proceed to construct the examples. Each example is obtained by gluing atorus
knot exterior and a cabled space along a torus in such a way that the resulting
knot exteriorM has the property that there are two slopeendg ondM such

that for each componeni, of X (M), exactly one of the trace functiods and

Tg is a constant function oX, and that on the other hand there is a boundary
slopeé on aM which is neitherx nor 8. Hence the slopé cannot be strongly
detected by any ideal point of any curveXiiM). We now give the details.

Let My be the knot complement of thg, ¢)-torus knot,s, r > 2, (s, t) = 1.

Let o be the meridian andy the longitude indMy. Let C, , be the standard
cabled space of typép,q), p,q = 2,(p,q) = 1 ([GL]). Recall thatC, ,

is obtained as follows: lev be an unknotted trivial solid torus i3, V; a
concentric solid torus in the interior 6f, K, , a curve om V; of slopep/q in

the standard meridian-longitude coordinates determinéd by (K, ,) aregular
neighborhood oK, , in V, thenC,, =V —intN(K, ,). LetTy = dN(K, ,)
andT, = V. ThendC,, = Ty U T, consisting of two tori. Lefus, A1 C T3

be the standard meridian and longitudekdf, (when considered as a knot in
V C §%). Let uy, Ao C T be the standard meridian and longitude determined
by the solid torusV. Slopes on each dfy, 71 and 7> will be parametrized by
the meridian-longitude pairs mentioned above. For convenience, we shall also
consider a slope iff; as an element inry(T;) or Hi(T;, Z).

Now we glueM, andC, , together by an orientation reversing homeomor-
phism#h from Ty to Ty satisfyingh(i0) = 21 andh(re) = M(ll_””q))q”. The
resulting 3-manifold is denoted by . M is neither hyperbolic nor Seifert fibred.
There is an essential annulusdy , with both its boundary component ify
with the slopep/q ([GL, Lemma 3.1]). This annulus certainly remains essential
in M. Thusp/q is a boundary slope ao¥/. Theorem 7 is equivalent to

Theorem 19 The boundary slopg/q in 9M = T, cannot be strongly detected
by an ideal point of a curve iX (M).
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Proof.We useM (m /n) to denote the manifold obtained by Dehn fillinfyalong
oM with slopem/n, C, ,(T», m/n) the manifold obtained by Dehn filling, ,
alongT; with slopem/n, andMy(m /n) similarly defined.

Claim 20 M(p/q) is the lens spacg&(g, p).

Note thatM (p/q) = C, (T2, p/q) Un Mo. Also C,, (T2, p/q) = L(q,
p)#V,.,whereL(q, p)isalens space whose fundamental group has graledV,
is a solid torus whose meridian slope is the slpgeon T, = 0C,, , (12, p/q) =
dV. This follows easily by considering the natural Seifert fibrationtgn, (cf.
[GL, Lemma 3.1]). Therefor®, is filled in My alongTy = 0 My with the slope
o of Ty = d My which produces the 3-sphesé. The claim follows.

Recall thatkR (W) denote theP SL(2, C) representation variety of a compact
3-manifoldW (Sect. 2).

Claim 21 R(Mg) = R(Mo(st)) U R(Mq(0)).

Obviously R(Mo) contalnsR(Mo(st)) U R(MO(O)) Let 5 € R(Mp). We
need to show thai is either inR (Mo (st)) or in R(Mq(0)). SinceHy (Mo, Z,) =
Z,, the representatiop : m1(My)— PSL(2, C) lifts to a representatiop :
m1(Mo)—SL(2, C);i.e.if¢p : SL(2,C)—PSL(2, C) is the canonical quotient
map, therp = ¢ o p. Note thatMj is a Seifert fibered space whose base orbifold
is a disk with two singular points of indicesandz [Mr]. If p is anon-abelian rep-
resentation, thep must send the fiber of the Seifert fibration§ (considered
as an element of1(Mo)) to the identity matrixl or —I. Hencep € R(Mo(st)).
If p is an abelian representation, ther R(My(0)). The claim is proved.

Claim 22 R(M) = R(M(1/0)) UR (M <l_;t’;q>)
—stq

ObviouslyR (M) containsR (M (1/0)) U R(M (1=222)). Let 5 € R(M). We

stq?
need to show thaf is either inR (M (1/0)) or in R(M(l_%;’;)) Let pg be the
restriction ofp onmr1(Mp) andp; the restriction ofp onm1(C, ,) (note that both
m1(Mp)) andr1(C, ,) can be considered as subgroupsafi/)). By Claim 21,
po is either inR(Mo(st)) or in R(Mo(0)).

If po € R(Mo(st)), then p(uiro) = po(ugro) = 1 and sop(uy) =
o1(n1) = 1. Hencep; € R(CM(Tl, 1/0))). ButC, ,(T1, 1/0) is a solid torus
whose meridian slope is the slopg0lon T». Thereforeo (o) = p(u) = 1
and thuss € R(M(1/0)).

If 5o € R(Mo(0)), thenp(ho) = fo(ho) = 1 and sop(u; ""'a;") =
pr(uiPIAT) = 1. Hencepy € R(C,,(Th, F2249)). But C,,(Ty, 22004)
is a solid torus whose meridian slope is the sldgéfﬂ on T,. Therefore

Pk Py = k50 = 1, and thusp e R(M(l_””q)) The
claim is proven.
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The first Betti number oMM is one. In facti1(M; Z) = Z with ubx, as a
generator. The slop@ — stpq)/ — stq?in dM = T is null homologous in
(bounds a Seifert surface M), i.e. Hy(M(X222), 7) = 7. It follows thatX (M)

—stq

consists of several curves, exactly one of the curves comesXr@ii(M, 7))
which consists entirely of reducible characters, and all other curves come from
X (M (1/0)), each of which contains irreducible characters.

Now itis clear that the boundary slopgqg in d M can not be strongly detected
by an ideal point of theP SL(2, C)-character variety oM since at such ideal
point, either the trace functior),, (notation from Sect. 2) has limit value equal
to 4 or the trace functioﬁulﬂ,},qrmz has limit value equal to 4 (cf. Corollary 3

2 2

(2)).

Remark 23Note that by [BZ1], each curve i% (M (1/0)) provides a Culler-
Shalen semi-norm o/, (d M; R) such that the slope/D has zero semi-norm
and all the integer slopeshave the same minimal nonzero semi-norm value
among all classes iH,(0M; Z). Itis proven in [BZ1] that for any knot exterior
M with a Culler-Shalen semi-norm, if is not a boundary slope i6M and
M (r) is a manifold without non-cycli®@ S L (2, C)-representation, thenhas the
zero semi-norm value or the minimal non-zero semi-norm valukhe above
examples show that the assumption tha a non-boundary slope is necessary.
This is becaus@f (p/q) is alens space angl/q has non-zero semi-norm bigger
thans. It follows that if Xo ¢ X(M(1/0)) C X (M) is the curve which provided
the semi-norm, then the functiaf);,s — 4 must have zero limit value at some
ideal point ofXo.

It is also interesting to point out that for each integer slepthe manifold
M (n) is obtained by gluing thép —ng, ¢g)-torus knot exterior and thg, ¢)-torus
knot exterior together along their torus boundary such that the fiber slope of one
side is identified to the meridian slope of the other side and vice versa, and thus
M (n) has no non-cyclic representations iR6 L (2, C) [Mi] but has non-cyclic
fundamental group. By the way we record tHAI(M (n); Z) = Zj1—(p—ng)gst|-
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