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1. Introduction

According to Bass-Serre theory [Se], given a fieldF with a discrete valuation
v : F ∗→Z, there is a canonical way to construct a simplicial treeT = TF,v

on whichSL2(F ) acts simplicially without inversion. When a groupπ has a
representation into the groupSL2(F ), then there is an induced action ofπ on the
tree via the representation. If furtherπ is the fundamental group of a compact
3-manifoldM and the action ofπ on the treeT is nontrivial (meaning that there is
no point onT fixed by every element ofπ ), then the action induces a splitting of

M along an essential surface in the following way: letM̃
p−→ M be the universal

covering, there is aπ1(M)-equivariant mapf : M̃→T which is transverse to the
setE of midpoints of edges inT such thatp(f −1(E)) is an essential surface in
M. We say such an essential surface is associated to (or detected by) anSL2-tree.
A natural question is: which essential surfaces in a compact 3-manifold can be
associated toSL2-trees and how do they depend on the choice of the field and
discrete valuation? This is the main issue we are going to address in this paper.

Any 3-manifold mentioned in this paper is automatically assumed orientable
and connected. By an essential surface in a compact 3-manifoldM we mean
an orientable, properly embedded, incompressible surface each component of
which is neither boundary parallel inM nor bounds a 3-ball (when it is a 2-
sphere). Also recall that a discrete valuation on a fieldF is a homomorphismv
from the multiplicative groupF ∗ onto the group of integersZ such that

v(a + b) ≥ min(v(a), v(b))

for anya, b ∈ F ∗ with a + b 	= 0. Letv : F ∗→Z be a discrete valuation. The
set

Ov = {0} ∪ {a ∈ F ∗; v(a) ≥ 0}
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forms a subring ofF , called the valuation ring ofv. If T is theSL2-tree defined
by (F, v), then the action of an elementA ∈ SL2(F ) has a fixed point if and
only if A is conjugate inGL2(F ) to an element inSL2(Ov) (see [Se] for details).
The latter condition is equivalent to the condition that the trace ofA belongs to
Ov. We summarize the above discussion in the following lemma.

Lemma 1 Letv be a discrete valuation on a fieldF and letT be the associated
SL2-tree. Suppose thatM is a compact 3-manifold with a representationφ :
π1(M)→SL2(F ) such thatv((φ(γ ))) < 0 for someγ ∈ π1(M). ThenM

contains an essential surface associated to theSL2-treeT .

Lemma 1 exhibits an attractive connection between the topology of 3-mani-
folds and the theory ofSL2-trees. This connection was first explored in the proof
of the Smith conjecture [MB] and further developed in work of Culler-Shalen and
others [CS 1-2] [CGLS] [CCGLS]. In particular the following lemma follows
from [CS1] (although they only considered a special case there).

Lemma 2 LetM be a compact 3-manifold with nonempty boundary such that
π1(M) acts nontrivially on theSL2-treeT defined by a discrete valuationv of a
fieldF via a representationφ : π1(M)→SL2(F ).
(1) LetC ⊂ ∂M be a connected complex such thattr(φ(γ )) ∈ Ov for every
loop in C, then there exists an essential surfaceS in M associated to the tree
such thatS is disjoint fromC.
(2) If γ ⊂ M is a loop such thattr(φ(γ )) /∈ Ov, thenγ intersects every essential
surface associated to the tree.

Note that in Lemma 2, any loopγ in M can be considered as an element in
π1(M) up to conjugation and taking inverse, and thustr(φ(γ )) is well defined.

Proof. (1) Let i∗ : π1(C)→π1(M) be the inclusion induced homomorphism.
Theni∗(π1(C)) is a finitely generated subgroup ofπ1(M) (well defined up to
conjugation). The condition of (1) implies that every element in this subgroup
has a fixed point inT . Hence by [Se, Corollary 3 to Proposition 26], the subgroup
i∗(π1(C)) is contained in a vertex stabilizer. Now one can apply [CS1, Proposition
2.3.1] to get the conclusion of (1).

(2) LetS be an essential surface inM associated to the action. Then for each
componentD of M − S, i∗(π1(D)) ⊂ π1(M) is contained in a vertex stabilizer.
Hence the given loopγ cannot be contained in such componentD sinceγ does
not fix any vertex ofT . Soγ must intersect the surfaceS. ��

A compact 3-manifold is called a knot exterior if it has boundary which
is a torus. Recall that for a knot exteriorM, a slope in the torus∂M is called a
boundary slope if there is an essential surfaceS in M such that∂S is a non-empty
set of parallel simple essential loops in∂M of the given slope.
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Corollary 3 Let M be an irreducible knot exterior such thatπ1(M) acts non-
trivially on the SL2-tree defined by a discrete valuationv of a fieldF via a
representationφ : π1(M)→SL2(F ).
(1) If tr(φ(γ )) ∈ Ov for two different slopesγ in ∂M, thenM contains an
essential closed surface associated to the tree.
(2) If tr(φ(δ)) ∈ Ov for one slopeδ in ∂M andtr(φ(γ )) /∈ Ov for another slope
γ in ∂M, thenM contains an essential surfaceS associated to the tree such that
the boundary ofS is nonempty and is of the slopeδ, i.e.δ is a boundary slope.

We call a boundary slope which arises as in part (2) of Corollary 3 strongly as-
sociated to (or strongly detected by) anSL2-tree, following Cooper-Long [CL2].

Often used fields with discrete valuations for detecting essential surfaces in
3-manifolds are the following two types:

Type1 (fromanANI -representation): Suppose thatM is a compact 3-manifold
which has a representationρ : π1(M)→SL2(F ), whereF is an algebraic number
field, i.e. a finite extension field ofQ, such thattr(ρ(δ)) is not an algebraic
integer for some elementγ in π1(M). We shall call such representationρ an
ANI -representation ofπ1(M) in SL(2,C) (hereANI stands for algebraic non-
integral). Now letZF be the integral closure ofZ in F . ThenZF is the ring of
algebraic integers inF and it is well known that

ZF = ∩{Ov; v discrete valuation ofF }.
Sincetr(ρ(γ )) is not an algebraic integer, there is a discrete valuationv of F
such thattr(ρ(γ )) /∈ Ov. Hence by Lemma 1,M contains an essential surface
associated to theSL2-tree defined by the pair(F, v). Henceforth we shall call an
essential surface which arises this way associated to (or detected by) anANI -
representation ofπ1(M) in SL(2,C). The interplay between essential surfaces
andANI -representations played a crucial role in the final resolution of the Smith
conjecture [MB]. Note also that every discrete valuationv of a number fieldF
is aP -adic valuation defined by a prime idealP of ZF. So we may also say that
an essential surface associated to anANI -representation is detected by aP -adic
valuation.

Type 2 (from an ideal point): Let M be a compact 3-manifold. Now instead
of considering a single representation ofπ1(M) into SL(2,C), we consider a
certain family of them. LetR(M) be the set of allSL(2,C)-representations
and letX(M) be the set of the characters of elements inR(M) (see [CS1] for
definitions). Then bothR(M) andX(M) have naturally the structure of algebraic
set and are thus usually called theSL(2,C) representation variety and character
variety ofM respectively. Note that the natural surjective mapt : R(M)→X(M)

which sends a representation to its character is a regular map between the two
algebraic sets. Suppose now thatX(M) is positive dimensional as an algebraic
set and letX0 ⊂ X(M) be any algebraic curve. Let̃X0 be the smooth projective
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completion ofX0. Any ideal pointx ∈ X̃0 defines a discrete valuationvx on
the function fieldK = C(X̃0) ∼= C(X0) as follows: for any rational function
f ∈ K = C(X̃0), v(f ) = n if x a zero off of ordern, andv(f ) = −n if x

is a pole off of ordern. Let R0 be an irreducible component oft−1(X0) such
that t (R0) = X0 and letF = C(R0) be the function field onR0. ThenF is
a finitely generated extension ofK and the valuationvx extends to a discrete
valuation, which we still denote byvx for simplicity, onF ([MS]). On the other
hand there is a tautological representationP : π1(M)→SL2(F ), which induces
a nontrivial action ofπ1(M) on theSL2-tree defined by the pair(F, vx). In fact
the non-triviality is guaranteed by the existence of an elementγ ∈ π1(M) with
vx(tr(P (γ ))) < 0 (see [CS1] [CGLS] for details). Thus by Lemma 1,M has an
essential surface associated to the tree defined by(F, vx). Henceforth we shall
call an essential surface which arises this way associated to (or detected by)
an ideal point of a curve of the character variety ofM. The interplay between
essential surfaces in 3-manifolds and ideal points of character varieties has led
to significant progresses in understanding 3-manifold topology (see [Sh] for a
comprehensive exposition).

Our first result says that in strongly detecting boundary slopes,ANI -repre-
sentations are at least as effective as ideal points.

Theorem 4 Let M be an irreducible knot exterior. If a boundary slope ofM

is strongly detected by an ideal point of a curve inX(M), then it is strongly
detected by anANI -representation ofπ1(M) into SL(2,C).

In most cases, the converse ofTheorem 4 also holds, which has been discussed
and proved in [CL3]. We note that [CL3, Corollary 10] did not give the whole
converse of Theorem 4; there was a condition implicitly assumed in its proof.
See Remark 15 for more detailed explanation.

Actually something more general is true. Our next result indicates that in
strongly detecting boundary slopes withSL2-trees, we only need to useANI -
representations, provided that the relevant fieldF with discrete valuation has
characteristic zero.

Theorem 5 LetM be an irreducible knot exterior. If a boundary slope ofM is
strongly detected by aSL2(F )-tree where the fieldF has characteristic zero,
then the boundary slope is also strongly detected by anANI -representation.

There are closed graph manifolds with only finite cyclicSL(2,C)-represen-
tations [Mi]. Hence an essential torus in such a manifold can not be detected by
either an ideal point or anANI -representation. In [BZ1] closed hyperbolic Haken
3-manifolds were found whoseSL(2,C) character varieties are zero dimensional
and thus essential surfaces in such manifolds can not be detected by ideal points
of SL(2,C)-character varieties. The following theorem seems to suggest that
ANI -representations are better detectors of essential surfaces than ideal points.
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Theorem 6 There exist closed hyperbolic 3-manifolds which have essential sur-
faces associated toANI -representations but not associated to ideal points.

The first effort to answer the question of whether every boundary slope of a
knot exterior is strongly detected by an ideal point was made in [CL1], unfortu-
nately with an error found later, as mentioned in [CL2]. Here we give a negative
answer to this question by proving the following theorem.

Theorem 7 There exist infinitely many irreducible knot exteriorsM each of
which has a boundary slope which cannot be strongly detected by either an ideal
point of a curve ofX(M) or anANI -representation ofπ1(M).

Note that ifT is aSL2-tree defined by a fieldF with discrete valuationv,
the identity element and its negative inSL2(F ) act trivially on T . Hence the
SL2(F ) action onT factors through aPSL2(F ) action onT . We remark that
all our above results still hold if we consider everything in the more general
setting ofPSL-representations. For simplicity we do not pursue this generality
here, except that at a few convenient occasions we make some relevant notes.
For instance, our Example 18 shows that there are closed Haken 3-manifolds
(non-hyperbolic) which have noANI -representations intoSL(2,C) but have
ANI -representations intoPSL(2,C), which means that such manifolds contain
essential surfaces which are not detected bySL2-trees but byPSL2-trees.

The following questions remain open.

Question 8Let M be a hyperbolic knot exterior. Is every boundary slope ofM

strongly detected by an ideal point of a curve ofX(M)?

Question 9Is there a closed hyperbolic Haken 3-manifold which has noANI

representation intoPSL(2,C)?

We remark that very often, for a Haken hyperbolic 3-manifold, a discrete
faithful representation of its fundamental group intoSL(2,C)orPSL(2,C)may
not be anANI -representation. For instance, this occurs for any finite Haken cover
(if such exists) of a non-Haken hyperbolic 3-manifold. The following question is
more difficult but more attractive; a positive answer would imply the well known
virtual Haken conjecture.

Question 10Let π be the fundamental group of an irreducible 3-manifold. If
π is not a finite group, does it have a finite index subgroupπ̃ which has an
ANI -representation intoPSL(2,C)?

The main tool used in proving Theorems 4-6 is theA-polynomial introduced
in [CCGLS]. Several feature properties of theA-polynomial found in [CCGLS]
[CL3] [BZ2] will be applied. Theorem 7 is proved by a careful gluing technique
of representations along an essential torus. After some preparation in Sect.2,
Theorems 4-7 will be proven in Sect.3-6, which constitute the rest of the paper.
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2. Some preparation

Let Z denote the ring of all algebraic integers andQ the field of all algebraic
numbers. We first recall the following form of the Hilbert Nullstellensatz in
algebraic geometry.

Theorem 11 Suppose thatV ⊂ Cn is a nonempty affine algebraic set defined
by polynomials with coefficients inQ. ThenV contains at least one point whose
coordinates are all inQ.

In particular ifv is an isolated point inV , then all coordinates ofv are inQ.
For a finitely generated groupπ , we useR(π) and X(π) to denote the

SL(2,C) representation variety and character variety ofπ .

Lemma 12 Letπ be a finitely generated group and letγ1, ..., γk be some given
elements inπ . If π has a representationρ0 ∈ R(π) such thattr(ρ0(γi)) ∈ Q

for i = 1, ..., k, thenπ has a representationρ1 ∈ R(π) such thattr(ρ1(γi)) =
tr(ρ0(γi)) for i = 1, ..., k and such thatρ1(π) is contained inSL2(F ) for some
number fieldF .

Proof. It is well known that the affine varietyR(π) is the zero set of the set
of polynomials overQ coming from a presentation ofπ1(M). We may assume
thatγi , i = 1, ..., k, are among the generators of the presentation. Now add the
equationstr(ρ(γi)) = tr(ρ0(γi)), i = 1, ..., k, to the set of defining equations
of R(M), we get a subvariety which is non-empty (since at leastρ0 is contained
in it) and is certainly defined overQ. Now we apply Hilbert Nullstelensatz to
this subvariety. ��
Lemma 13 Suppose thatA(X, Y ) = A0(X) + A1(X)Y + ... + An(X)Y n ∈
Z[X, Y ] is a two variable polynomial such thatn > 0, An(X) = εXkf (X)

whereε = 1 or −1, k ≥ 0, f (X) is monic of positive degree,f (0) 	= 0, and no
root of f (X) is also a root of allAi(X). Then apart from finitely many primes
p, for everyp-th root of unityξ 	= 1 and every rootα of f (X), the polynomial
A(ξα, Y ) in Y has a rooty in Q but not inZ.

Proof.First note that ifξ 	= 1 is ap-th root of unity, thenξ − 1 is a root of

(X + 1)p − 1

(X + 1) − 1
= Xp−1 + pXp−2 + ... + p,

which is irreducible by Eisenstein’s criterion. From this we only need two facts:
thatξ − 1 dividesp in Z, and thatξ − 1 is not a unit ofZ.

We say thatx dividesy in a commutative ring if there existsz in that ring
with xz = y; note that ifx andy are inZ andx dividesy in Z, thenx dividesy
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in Z. Now sincef (X) is monic andf (0) 	= 0, each rootα of f (X) is a non-zero
algebraic integer. Choose somei such thatα is not a root ofAi(X), and sinceZ
is a ring, we may write

Ai(X) = (X − α)g(X) + c

with g(X) ∈ Z[X] and 0 	= c ∈ Z. Let d be the product of all the conjugates of
c. If p does not divided, then

Ai(ξα) = (ξα − α)g(ξα) + c

is not divisible byξ − 1 in Z. For otherwiseξ − 1 would dividec, hence divide
d; but ξ − 1 dividesp, henceξ − 1 would divide 1, contradicting the fact that
ξ − 1 is not a unit.

Suppose in addition thatξα is not a root ofAn(X) = Xkf (X); this gives
finitely many additional primes to avoid. Now sinceAn(X) = Xk(X − α)h(X)

with h(X) ∈ Z[X],
An(ξα) = (ξα)k(ξα − α)h(ξα)

is divisible byξ −1. It follows thatAn(ξα) does not divideAi(ξα) in Z and thus

A(ξα, Y ) = An(ξα)Π(Y − yj )

has a rootyj which is not inZ.
Each rootα of f (X) thus gives only finitely many primesp to avoid, so the

lemma is proved. ��
Corollary 14 Suppose thatA(X, Y ) = A0(X) + A1(X)Y + ... + An(X)Y n ∈
Z[X, Y ] is a two variable polynomial such thatn > 0, An(X) = εXkf (X)

whereε = 1 or −1, k ≥ 0, f (X) is monic of positive degree,f (0) = 1 or −1.
Then we have either

(1) A(X, Y ) = 0 has infinitely many solutions(x, y) such thatx is an alge-
braic unit andy is an algebraic number but is not an algebraic integer; or

(2)f (X) has an irreducible non-constant factorh(X) overZ such thath(X)

dividesA(X, Y ) in Z[X, Y ].

Proof.Sincef (X) is monic andf (0) = ±1, every rootα of f (X) is an algebraic
unit. If α is not a root ofAi(X) for somei, then by Lemma 13,A(X, Y ) = 0
has infinitely many solutions of the form(ξα, y) whereξ is root of unity andy
is not an algebraic integer. Thus we have part (1) of the corollary.

So suppose that a rootα of f (X) is also a root ofAi(X) for all i. Let h(X)

be the minimal polynomial ofα overZ. Thenh(X) is not a constant and divides
f (X) and everyAi(X). This gives part (2) of the corollary. ��

We now recall and establish some notations. For a compact manifoldW , we
already usedR(W) andX(W) to denote theSL(2,C) representation variety and
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character variety ofπ1(W) respectively, andt : R(W)→X(W) the canonical
map. We shall useR(W) andX(W) to denote thePSL(2,C) representation
variety and character variety ofπ1(W) respectively (cf. [BZ1] for discussion
regardingPSL(2,C) representation theory of 3-manifolds). Recall that each
elementχρ is the character of an elementρ ∈ R(W), which is a complex valued
function defined onπ1(W) asχρ(γ ) = tr(ρ(γ )) for eachγ ∈ π1(W) and that
similarly each elementχρ̄ is the character of an elementρ̄ ∈ R(W), which is
a complex valued function defined onπ1(W) asχρ̄(γ ) = [tr(B)]2 for each
γ ∈ π1(W), whereB ∈ SL(2,C) is an inverse of̄ρ(γ ) ∈ PSL(2,C) under the
canonical map fromSL(2,C) toPSL(2,C). Obviouslyχρ̄ is well defined. Also
recall that each elementγ ∈ π1(W) defines a regular functionτγ on X(W) as
τγ (χρ) = χρ(γ ) for eachχρ ∈ X(W) (called the trace function ofγ onX(W))
and also defines a regular functionτ̄γ on X(W) as τ̄γ (χ ρ̄) = χρ̄(γ ) for each
χρ̄ ∈ X(W) (called the trace function ofγ onX(W)).

With respect to a fixed meridian-longitude basis{µ, λ} in a torusT , the set
of slopes inT can be parameterized byQ∪{1/0}. By convention, we usep/q to
denote the slope whose meridian coordinate isp and longitude coordinateq. If
M is a 3-manifold with a torus boundary componentT , thenM(T, p/q) denotes
the manifold obtained by Dehn fillingM alongT with slopep/q. If M is a knot
exterior, then we simply useM(p/q) to denoteM(∂M,p/q).

For a knot exteriorM and a fixed basis{µ, λ} for π1(∂M), we useA(X, Y )

to denote theA-polynomial ofM with respect to the basis. For convenience of
arguments in later sections, we briefly recall the construction ofA(X, Y ). We
refer the reader to [CCGLS] for details. Leti∗ : X(M)→X(∂M) be the regular
map induced by the inclusion induced homomorphismi∗ : π1(∂M)→π1(M).
Let Λ be the set of diagonal representations ofπ1(∂M), i.e.

Λ = {ρ ∈ R(∂M) | ρ(µ), ρ(λ) are diagonal matrices}.

ThenΛ is a subvariety ofR(∂M) andt |Λ : Λ → X(∂M) is a degree 2 surjective
map. We may identifyΛ with C∗×C∗ through the eigenvalue mapP : Λ→C∗×
C∗, which sendsρ ∈ Λ to (x, y) ∈ C∗ × C∗ if ρ(µ) =

(
x 0
0 x−1

)
andρ(λ) =(

y 0
0 y−1

)
. Let V be the Zariski closure ofi∗(X(M)) in X(∂M). Then it is

known thatV is at most one dimensional. LetV1 be the set of one dimensional
components inV , letZ be the algebraic curvet |−1

Λ (V1) in Λ, and letD to be the
Zariski closure ofP(Z) in C × C. ThenA(X, Y ) is the defining polynomial of
the plane curveD with no repeated factors. Note that as in [CCGLS],A(X, Y )

is normalized so that it is inZ[X, Y ], well defined up to sign.
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3. Proof of Theorem 4

The main tool we shall use in proving this theorem and next two is theA-
polynomial introduced in [CCGLS]. The proof involves some applications of
some powerful results found in [CCGLS], [CL3] and [BZ2], together with the
number theoretical results given in the previous section.

Letµ be a boundary slope strongly detected by an ideal pointx of some curve
X0 ⊂ X(M).This means, by definition, that there is a sequence of representations
ρj ∈ t−1(X0) such that{tr(ρj (µ))} are bounded inC, but {tr(ρj (λ))} are not
for some elementλ in π1(∂M). We may assume by Corollary 3 that(µ, λ)

form a basis forπ1(∂M). Let A(X, Y ) be theA-polynomial ofM defined with
respect to this basis as recalled in Sect.2. Since{tr(ρj (λ))} are not bounded,
X0 will contribute a component in the plane curve defined by theA-polynomial
of M. Obviously the trace functionτλ is not constant onX0. By [BZ1], X0 is
a curve which provides a Culler-Shalen semi-norm or norm on the real 2-plane
H1(∂M; R), according asτµ is a constant or not onX0.

If τµ is constant, sayτµ ≡ ξ , onX0, then by the construction ofA(X, Y ),
we see thatX − ξ is a factor ofA(X, Y ) andξ must be a root of unity. Since
the trace function ofλ is not constant, there exist plenty of representationsρ

in t−1(X0) with tr(ρ(λ)) in Q but not inZ. Hence by Lemma 12, we may find
suchρ ∈ R(M) which is anANI -representation ofπ1(M) with tr(ρ(µ)) = ξ

and tr(ρ(λ)) /∈ Z. So µ is a boundary slope strongly detected by an ANI-
representation.

If τµ is not constant onX0, then X0 provides a Culler-Shalen norm on
H1(∂M; R) whose norm polygon, denotedB0, has a pair of corners of slope
0 in theXY -plane (corresponding to the slopeµ) [BZ1]. Let A0(X, Y ) be the
factor ofA(X, Y ) corresponding to the curveX0 and letN0 be the Newton poly-
gon ofA0(X, Y ). Then it is proved in [BZ2] that the norm polygonB0 and the
Newton polygonN0 are dual to each other, meaning that the norm polygonB0

has a pair of corners of slopep/q if and only if the Newton polygonN0 has a
pair of sides of the same slope, and vice versa. So in particularN0 has a pair of
sides of slope 0 in the(XY)-plane. This implies that the Newton polygonN of
the wholeA-polynomialA(X, Y ) must have a pair of sides of slope 0. Note that
any coefficient ofA(X, Y ) which corresponds to a corner of its Newton polygon
N is equal to 1 or−1 [CL3]. Hence the polynomialA(X, Y ) ∈ Z[X, Y ] must
have the form

A(X, Y ) = A0(X) + A1(X)Y + ... + An(X)Y n

such thatAi(X) ∈ Z[X, Y ], A0 = ε1X
jf (X) andAn(X) = ε2X

kf (X), where
n > 0, ε1 = 1 or−1, ε2 = 1 or−1, j andk are non-negative integers,f (X) is
monic with positive degree,f (0) = 1 or−1. In factf (X) is the edge polynomial
of the pair of sides ofN with the slope 0. Hence by Corollary 14, we either have
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thatA(X, Y ) = 0 has infinitely many solutions(x, y) such thatx is an algebraic
unit, y is not an algebraic integer but is an algebraic number; or thatA(X, Y )

contains an irreducible factor of the formh(X) ∈ Z[X] which dividesf (X).
We first consider the former case. Note that except for finitely many points

in the plane curve defined byA(X, Y ), a solution(x, y) of A(X, Y ) = 0 cor-
responds to a representationρ ∈ R(M) such thatx andx−1 are eigenvalues of
ρ(µ), andy andy−1 are the eigenvalue ofρ(λ). It follows that we have a repre-
sentationρ0 ∈ R(M) such thattr(ρ0(µ)) is an algebraic integer andtr(ρ0(λ))

is not an algebraic integer but is an algebraic number. Here we used the fact that
a numberc is an algebraic unit if and only ifc + c−1 is an algebraic integer.
Now applying Lemma 12, we get anANI -representationρ1 ∈ R(M) such that
tr(ρ1(µ)) is an algebraic integer buttr(ρ1(λ)) is not. Thusµ is a boundary slope
also strongly detected by an ANI-representation.

We now consider the latter case whenA(X, Y )has an irreducible non-constant
factorh(X) ∈ Z[X]. Note that the plane curve defined byh(X) corresponds to
some curve ofX(M), on each irreducible component of which the trace function
of µ is constant. Thus we may simply divideh(X) from A(X, Y ) and apply
the above argument to the remaining polynomialA′(X, Y ) sinceX0 will still
contribute a nontrivial factor inA′(X, Y ) ∈ Z[X, Y ]. That is, we may assume
thatf (X) is irreducible and does not divideA(X, Y ). This completes the proof
of Theorem 4.

4. Proof of Theorem 5

Suppose thatF is a field whose characteristic is zero,v is a discrete valuation
on F , andµ is a boundary slope strongly detected by theSL2-tree defined
by the pair(F, v) via some representationφ : π1(M)→SL2(F ). So we have
v(tr(φ(µ))) ≥ 0 butv(tr(φ(λ))) < 0 for another slopeλ in ∂M (cf. Corollary
3 (2)). Note thatµ is the unique slope on∂M whose image under the mapφ has
trace with non-negative valuation underv. So we may assume that{µ, λ} form
a basis ofπ1(∂M).

Now let K be the subfield ofF generated over the ground fieldQ by all
the entries ofφ(γ ) for all γ ∈ π1(M). Sinceπ1(M) is finitely generated,K
is a finitely generated extension ofQ. We may also assume thatK contains a
uniformizerσ of the valuation ringOv, i.e.σ is an element ofF with v(σ ) = 1.
Hencev restricts to a discrete valuation onK, which we still denote byv. Soµ

is a boundary slope strongly detected by theSL2-tree defined by the pair(K, v)

via the representationφ : π1(M)→SL2(K). On the other hand we may now
embedK in C as a subfield. Thereforeφ may be considered as a representation
of π1(M) into SL2(C). Recall from Sect.2, the Zariski closureV of i∗(X(M))

in X(∂M) is at most one dimensional and is defined overQ. Now consider the
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image of the characterχφ ∈ X(M) under the mapi∗ in V . We divide the proof
into two cases, depending on whether the pointi∗(χφ) is isolated or not inV .

Case 1. Suppose thati∗(χφ) is an isolated point ofV .
Then by the Hilbert Nullstellensatz, bothtr(φ(µ)) andtr(φ(λ)) are algebraic
numbers. Hence by Lemma 12, there is anANI -representationρ1 ∈ R(M) such
thattr(ρ1(µ)) = tr(φ(µ))andtr(ρ1(λ)) = tr(φ(λ)). Sinceρ1 isANI , there is a
number fieldJ such thatρ1(π1(M)) ⊂ SL2(J ). Letw = tr(ρ1(µ)) = tr(φ(µ))

andz = tr(ρ1(λ)) = tr(φ(λ)). Since we havev(w) ≥ 0 andv(z) < 0, z cannot
be integral over the subringZ[w] of J . Now by a theorem of Krull ([Jn, Page
255, Theorem 14]), the integral closure ofZ[w] in J is the intersection of all
valuation rings inJ which containZ[w]. It follows that the integral closure of
Z[w] is contained in some valuation ring ofJ which missesz. But for a number
field J , any valuation ring ofJ , different fromJ , is the valuation ring of a
discrete valuation ofJ . HenceJ has a discrete valuationv′ such thatw ∈ Ov′
butz /∈ Ov′ . This means thatµ is also a boundary slope strongly detected by the
ANI-representationρ1 : π1(M)→SL2(J ).

Case 2. Suppose thati∗(χφ) is not an isolated point ofV .
Therefore we may assume thati∗(χφ) is contained in a one dimensional compo-
nent ofV . This implies that ifA(X, Y ) is theA-polynomial ofM with respect to
the basis{µ, λ}, thenA(X, Y ) has a solution(x0, y0) such thatx0 is an eigenvalue
of φ(µ) andy0 is the eigenvalue ofφ(λ). Now by Theorem 4, it is sufficient to
show thatµ is also detected by some ideal point of some curveX0 in X(M).
Suppose otherwise. Then theA-polynomial must have the form

A(X, Y ) = ε1X
j + A1(X)Y + ... + An−1(X)Y n−1 + ε2X

kY n ∈ Z[X, Y ],

whereε1 = 1 or−1, ε2 = 1 or−1 (i.e. the Newton polygon ofA(X, Y ) cannot
have sides of slope 0). SinceA(X, Y ) = 0 has the solution(x0, y0) such thatx0

is anv-unit buty0 is not (again we used the fact that a numberc is anv-unit if
and only ifc + c−1 is av-integer; i.e.v(c) = 0 if and only if v(c + c−1) ≥ 0).
But obviously whenx0 is av-unit, all the roots ofA(x0, Y ) for the variableY are
v-units. This gives a contradiction. The proof of Theorem 5 is now complete.

Remark 15From the proof above we see that ifµ is a boundary slope of an
irreducible knot exteriorM strongly detected by an representationφ : π1(M)→
SL2(K) whereK is a subfield ofC with a discrete valuation, thenµ is also
strongly detected by an ideal point of a curve inX(M) provided thati∗(χφ) is
not an isolated point ini∗(X(M)). In the proof of [CL3, Corollary 10] it was
implicitly assumed that for anANI -representationφ ∈ R(M), i∗(χφ) is not an
isolated point ofi∗(X(M)) ⊂ X(∂M). But that seems not to be known. It does
not follow directly from the proof of [T1, Theorem 5.6].
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5. Proof of Theorem 6

Recall that a knot exterior is called small if it contains no closed essential surfaces.
We have noted that ifA(X, Y ) is theA-polynomial of a knot exteriorM with
respect to a basis{µ, λ} of π1(∂M), then except for finitely many, a solution
(x, y) of A(X, Y ) = 0 corresponds to a representationρ ∈ R(M) such thatx
is an eigenvalue ofρ(µ) andy an eigenvalue ofρ(λ). We can be more specific
about this in caseM is a small knot exterior, as explained in the following lemma.

Lemma 16 LetM be a small knot exterior. LetA(X, Y ) be theA-polynomial of
M with respect to a basis{µ, λ} ofπ1(∂M). If (x, y) is a solution ofA(X, Y ) = 0
such thatx 	= 0 andy 	= 0, then there is a representationρ ∈ R(M) such that
tr(ρ(µ)) = x + x−1 andtr(ρ(λ)) = y + y−1.

Proof.Let D0 be a component of the plane curveD defined byA(X, Y ) which
contains the point(x, y). From the construction of theA-polynomial (recalled in
Sect.2), we see that there is an irreducible curveX0 in X(M) and an irreducible
curveZ0 in Λ (notations from Sect.2) such thatD0 is the Zariski closure of
P(Z0) in C×C, that the Zariski closureY0 of i∗(X0) in X(∂M) is an irreducible
curve, and that the regular mapi∗|X0 : X0→Y0 and the regular mapt |Z0 : Z0→Y0

are dominating maps. Passing to smooth projective completion, we get rational
mapsP̃ : Z̃0→D̃0, ĩ∗ : X̃0→Ỹ0 andt̃ : Z̃0→Ỹ0, all surjective. Letd be a point
in D̃0 which maps to the point(x, y) in D0 under the birational isomorphism
D̃0→D, let z be a point inZ̃0 such thatP̃ (z) = d, let v = t̃ (z) ∈ Ỹ0 and finally
letu be a point inX̃0 such that̃i∗(u) = v. We claim thatu is not an ideal point of
X̃0. Suppose it were, then sinceτ̃µ(u) = x + x−1 andτ̃λ(u) = y + y−1 are both
finite, it follows from Corollary 3 (1) thatM contains a closed essential surface.
But this contradicts our assumption thatM is small. Thereforeu is mapped to
a pointχρ in X0 under the birational isomorphism̃X0→X0. It follows from the
construction ofD0 thatx is an eigenvalue ofρ(µ) andy an eigenvalue ofρ(λ).

��
For a knot exteriorM in the 3-sphereS3, {µ, λ} will always be the standard

meridian-longitude basis ofπ1(∂M) and slopes on∂M will be parameterized by
rational numbers with respect to this basis.

Example 17LetM be the exterior of the 52 knot inS3. Then the manifoldM(10)
is a hyperbolic Haken 3-manifold with 0-dimensionalSL(2,C) character variety
but with anANI -representation. HenceM(10) has an essential closed surface
which cannot be detected by ideal points ofX(M(10)) but can be detected by
anANI -representation.

Proof.By [HT], we know that the knot exteriorM is small and hyperbolic, the
slope 10 is a boundary slope but is not a boundary slope of a punctured essential
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torus or a punctured 2-sphere inM. HenceM(10) is irreducible and contains no
essential torus. Now applying [CGLS,Theorem 2.0.3], we see thatM(10) must
be a Haken 3-manifold. Hence according to Thurston [T2],M(10) is a hyperbolic
3-manifold.

TheA-polynomial ofM with respect to the standard meridian-longitude basis
{µ, λ} is given in the appendix of [CCGLS]:

A(X, Y ) = (Y − 1)[1 + (−1 + 2X2 + 2X4 − X8 + X10)Y

+(X4 − X6 + 2X10 + 2X12 − X14)Y 2 + X14Y 3]
Now letYX10 = 1, thenA(X,X−10) has an irreducible factor

(2 − X2 + X6 + 4X8 + X10 − X14 + 2X16)/X16.

HenceA(X, Y ) = 0 has a solution(x, y) such thatx is not an algebraic unit
andyx10 = 1. By Lemma 16, there is a representationρ ∈ R(M) such that
tr(ρ(µ)) = x + x−1 andtr(ρ(λ)) = y + y−1. Hencetr(ρ(µ10λ)) = 2. It fol-
lows thatρ(µ10λ) = I (sinceρ(µ) is not parabolic). Thereforeρ ∈ R(M(10)). It
also follows thatX(M(10)) is zero dimensional. For otherwise theA-polynomial
A(X, Y ) of M would contain a factorX10Y − 1. Hence by the Hilbert Nullstel-
lensatz, the representationρ ∈ X(M(10)) is anANI -representation. ��
Example 18Let M be the exterior of the Fig. 8 knot inS3. Then the manifold
M(−4) is a Haken 3-manifold with zero dimensionalPSL(2,C) character vari-
ety, with noANI -representation intoSL(2,C), but with anANI -representation
into PSL(2,C).

Proof.Again by [HT], the knot exteriorM is small and hyperbolic, the slope−4
is a boundary slope of a punctured essential torus inM. It is also known that
M(−4) is a Haken 3-manifold with essential torus. TheA-polynomial ofM with
respect to the standard meridian-longitude basis{µ, λ} is:

A(X, Y ) = (Y − 1)[−X4 + (1 − X2 − 2X4 − X6 + X8)Y − X4Y 2].
Now let YX−4 = 1, thenA(X,X4) = −X6(X4 − 1)(1 + X2)2. Hence ev-
erySL(2,C)-representationρ ∈ R(M(−4)) hastr(ρ(µ)) an algebraic integer.
HenceR(M(−4)) ⊂ R(M) has noANI representation by Corollary 3.

But if we setYX−4 = −1, then

A(X,X4) = −X4(−X4 − 1)(X − 1)2(X + 1)2(2 + 3X2 + 2X4).

HenceA(X, Y ) = 0 has a solution(x, y) such thatx is not an algebraic unit
and yx−4 = −1. By Lemma 16, there is a representationρ ∈ R(M) such
that tr(ρ(µ)) = x + x−1 and tr(ρ(λ)) = y + y−1. Also ρ(µ−4λ) = −I .
Therefore there is anPSL(2,C)-representationρ ∈ R(M(−4)) which isANI .
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It also follows that thePSL(2,C)-character varietyX(M(−4)) of M(−4) is
zero dimensional. For everyPSL(2,C)-representation ofM lifts to aSL(2,C)-
representation ofM. So ifX(M(−4)) ⊂ X(M) were positive dimensional, then
X(M) would have a curveX0 such that for everyρ ∈ t−1(X0), ρ(µ−4λ) = I

or −I . It follows that theA-polynomialA(X, Y ) of M would contain a factor
X4Y − 1 orX4Y + 1. ��

A similar argument applies to boundary slopes of other 2-bridge knots whose
A-polynomials are given in [CCGLS]. All the cases we have checked worked
out the same way as Example 17 if the boundary slope is not a boundary slope
of an essential punctured torus. Therefore Theorem 6 follows.

6. Proof of Theorem 7

We proceed to construct the examples. Each example is obtained by gluing a torus
knot exterior and a cabled space along a torus in such a way that the resulting
knot exteriorM has the property that there are two slopesα andβ on ∂M such
that for each componentX0 of X(M), exactly one of the trace functionsτ̄α and
τ̄β is a constant function onX0 and that on the other hand there is a boundary
slopeδ on ∂M which is neitherα nor β. Hence the slopeδ cannot be strongly
detected by any ideal point of any curve inX(M). We now give the details.

Let M0 be the knot complement of the(s, t)-torus knot,s, t ≥ 2, (s, t) = 1.
Let µ0 be the meridian andλ0 the longitude in∂M0. Let Cp,q be the standard
cabled space of type(p, q), p, q ≥ 2, (p, q) = 1 ([GL]). Recall thatCp,q

is obtained as follows: letV be an unknotted trivial solid torus inS3, V1 a
concentric solid torus in the interior ofV , Kp,q a curve on∂V1 of slopep/q in
the standard meridian-longitude coordinates determined byV1,N(Kp,q)a regular
neighborhood ofKp,q in V , thenCp,q = V − intN(Kp,q). Let T1 = ∂N(Kp,q)

andT2 = ∂V . Then∂Cp,q = T1 ∪ T2, consisting of two tori. Letµ1, λ1 ⊂ T1

be the standard meridian and longitude ofKp,q (when considered as a knot in
V ⊂ S3). Let µ2, λ2 ⊂ T2 be the standard meridian and longitude determined
by the solid torusV . Slopes on each ofT0, T1 andT2 will be parametrized by
the meridian-longitude pairs mentioned above. For convenience, we shall also
consider a slope inTi as an element inπ1(Ti) or H1(Ti,Z).

Now we glueM0 andCp,q together by an orientation reversing homeomor-
phismh fromT0 toT1 satisfyingh(µ0) = µ

pq

1 λ1 andh(λ0) = µ
(1−stpq)

1 λ−st
1 . The

resulting 3-manifold is denoted byM.M is neither hyperbolic nor Seifert fibred.
There is an essential annulus inCp,q with both its boundary component inT2

with the slopep/q ([GL, Lemma 3.1]). This annulus certainly remains essential
in M. Thusp/q is a boundary slope ofM. Theorem 7 is equivalent to

Theorem 19 The boundary slopep/q in ∂M = T2 cannot be strongly detected
by an ideal point of a curve inX(M).
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Proof.We useM(m/n) to denote the manifold obtained by Dehn fillingM along
∂M with slopem/n, Cp,q(T2,m/n) the manifold obtained by Dehn fillingCp,q

alongT2 with slopem/n, andM0(m/n) similarly defined.

Claim 20 M(p/q) is the lens spaceL(q, p).

Note thatM(p/q) = Cp,q(T2, p/q) ∪h M0. Also Cp,q(T2, p/q) = L(q,

p)#V∗, whereL(q, p) is a lens space whose fundamental group has orderq andV∗
is a solid torus whose meridian slope is the slopepq onT1 = ∂Cp,q(T2, p/q) =
∂V . This follows easily by considering the natural Seifert fibration onCp,q (cf.
[GL, Lemma 3.1]). ThereforeV∗ is filled in M0 alongT0 = ∂M0 with the slope
µ0 of T0 = ∂M0 which produces the 3-sphereS3. The claim follows.

Recall thatR(W) denote thePSL(2,C) representation variety of a compact
3-manifoldW (Sect.2).

Claim 21 R(M0) = R(M0(st)) ∪ R(M0(0)).

ObviouslyR(M0) containsR(M0(st)) ∪ R(M0(0)). Let ρ̄ ∈ R(M0). We
need to show that̄ρ is either inR(M0(st)) or inR(M0(0)). SinceH1(M0,Z2) =
Z2, the representation̄ρ : π1(M0)→PSL(2,C) lifts to a representationρ :
π1(M0)→SL(2,C); i.e. if φ : SL(2,C)→PSL(2,C) is the canonical quotient
map, thenρ̄ = φ ◦ρ. Note thatM0 is a Seifert fibered space whose base orbifold
is a disk with two singular points of indicess andt [Mr]. If ρ is a non-abelian rep-
resentation, thenρ must send the fiber of the Seifert fibration ofM0 (considered
as an element ofπ1(M0)) to the identity matrixI or −I . Henceρ̄ ∈ R(M0(st)).
If ρ is an abelian representation, thenρ̄ ∈ R(M0(0)). The claim is proved.

Claim 22 R(M) = R(M(1/0)) ∪ R

(
M

(
1 − stpq

−stq2

))
.

ObviouslyR(M) containsR(M(1/0)) ∪ R(M(
1−stpq

−stq2 )). Let ρ̄ ∈ R(M). We

need to show that̄ρ is either inR(M(1/0)) or in R(M(
1−stpq

−stq2 )). Let ρ̄0 be the
restriction ofρ̄ onπ1(M0) andρ̄1 the restriction ofρ̄ onπ1(Cp,q) (note that both
π1(M0)) andπ1(Cp,q) can be considered as subgroups ofπ1(M)). By Claim 21,
ρ̄0 is either inR(M0(st)) or in R(M0(0)).

If ρ̄0 ∈ R(M0(st)), then ρ̄(µst
0 λ0) = ρ̄0(µ

st
0 λ0) = 1 and soρ̄(µ1) =

ρ̄1(µ1) = 1. Henceρ̄1 ∈ R(Cp,q(T1,1/0))). But Cp,q(T1,1/0) is a solid torus
whose meridian slope is the slope 1/0 onT2. Thereforeρ̄1(µ2) = ρ̄(µ2) = 1
and thusρ̄ ∈ R(M(1/0)).

If ρ̄0 ∈ R(M0(0)), then ρ̄(λ0) = ρ̄0(λ0) = 1 and soρ̄(µ1−stpq

1 λ−st
1 ) =

ρ̄1(µ
1−stpq

1 λ−st
1 ) = 1. Henceρ̄1 ∈ R(Cp,q(T1,

1−stpq

−st
)). But Cp,q(T1,

1−stpq

−st
)

is a solid torus whose meridian slope is the slope1−stpq

−stq2 on T2. Therefore

ρ̄1(µ
1−stpq

2 λ
−stq2

2 ) = ρ̄(µ
1−stpq

2 λ
−stq2

2 ) = 1, and thusρ̄ ∈ R(M(
1−stpq

−stq2 )). The
claim is proven.
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The first Betti number ofM is one. In factH1(M; Z) = Z with µ
p

2λ2 as a
generator. The slope(1 − stpq)/ − stq2 in ∂M = T2 is null homologous inM
(bounds a Seifert surface inM), i.e.H1(M(

1−stpq

−stq2 ),Z) = Z. It follows thatX(M)

consists of several curves, exactly one of the curves comes fromX(H1(M,Z))

which consists entirely of reducible characters, and all other curves come from
X(M(1/0)), each of which contains irreducible characters.

Now it is clear that the boundary slopep/q in ∂M can not be strongly detected
by an ideal point of thePSL(2,C)-character variety ofM since at such ideal
point, either the trace function̄τµ2 (notation from Sect.2) has limit value equal
to 4 or the trace function̄τ

µ
1−stpq
2 λ

−stq2
2

has limit value equal to 4 (cf. Corollary 3

(2)).

Remark 23Note that by [BZ1], each curve inX(M(1/0)) provides a Culler-
Shalen semi-norm onH1(∂M; R) such that the slope 1/0 has zero semi-norm
and all the integer slopesn have the same minimal nonzero semi-norm values

among all classes inH1(∂M; Z). It is proven in [BZ1] that for any knot exterior
M with a Culler-Shalen semi-norm, ifr is not a boundary slope in∂M and
M(r) is a manifold without non-cyclicPSL(2,C)-representation, thenr has the
zero semi-norm value or the minimal non-zero semi-norm values. The above
examples show that the assumption thatr is a non-boundary slope is necessary.
This is becauseM(p/q) is a lens space andp/q has non-zero semi-norm bigger
thans. It follows that ifX0 ⊂ X(M(1/0)) ⊂ X(M) is the curve which provided
the semi-norm, then the function̄τµp

2λ
q
2
− 4 must have zero limit value at some

ideal point ofX0.
It is also interesting to point out that for each integer slopen, the manifold

M(n) is obtained by gluing the(p−nq, q)-torus knot exterior and the(s, t)-torus
knot exterior together along their torus boundary such that the fiber slope of one
side is identified to the meridian slope of the other side and vice versa, and thus
M(n) has no non-cyclic representations intoPSL(2,C) [Mi] but has non-cyclic
fundamental group. By the way we record thatH1(M(n); Z) = Z|1−(p−nq)qst |.
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