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Abstract

We prove that Dehn filling a small link exterior with a non-degenerate boundary slope row
produces a 3-manifold which is either Haken and∂-irreducible or one of very restricted typies of
reducible manifolds (Theorem 2), generalizing a result of Culler, Gordon, Luecke and Shalen in the
case of a knot exterior (Theorem 1). The result provides some interesting applications on exceptional
Dehn fillings (Corollaries 3 and 4) and on telling if a link is small (Corollaries 5 and 6). 1999
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Throughout this paper when a manifold is mentioned, it is assumed to be orientable,
compact and smooth, and when a 3-manifold is mentioned, it is also assumed to be
connected. By a surface we mean a 2-manifold. For a surface in a 3-manifold, it is assumed
to be properly embedded unless otherwise specified. A surface in a 3-manifold is said to be
essential if each component of it is incompressible and non-boundary parallel. Recall that
a slope in a 2-torusT is the isotopy class of an unoriented simple closed essential curve
in T . We use∆(r, s) to denote the minimal geometric intersection number between two
slopesr ands in T . Now consider an irreducible 3-manifoldM whose boundary is a torus.
For each sloper in ∂M, one can construct a closed 3-manifoldM(r) by the so called Dehn
filling operation, i.e., one attaches a solid torusV to M by a gluing homeomorphism of
their boundary tori so that a curve of sloper in ∂M bounds a meridian disk ofV . A slope
r in the torus∂M is called aboundary slopeif there exists an essential surfaceF in M
such that∂F is a non-empty set of parallel essential simple closed curves in∂M of the
sloper. Concerning Dehn fillingM with a boundary slope, the following important result
was obtained in [2, Theorem 2.0.3].
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Theorem 1. LetM be an irreducible3-manifoldM whose boundary is a torus and whose
first Betti number is one. Ifr is a boundary slope ofM, then

(i) M(r) is a Haken manifold; or
(ii) M(r) is a connected sum of two nontrivial lens spaces; or
(iii) M contains an essential closed surface which remains essential inM(s) whenever

∆(r, s) > 1; or
(iv) M fibers overS1 with fiber an essential planar surface having boundary sloper.

In particular,M(r)= S2× S1.

In item (i), by aHaken3-manifold, we mean an irreducible 3-manifold which contains
an essential surface. In item (ii), by anontrivial lens space we mean a lens space which
is neitherS3 nor S2 × S1. In item (iv), by aplanar surface, we mean a 2-sphere with
punctures. We remark that one of useful consequences of Theorem 1 is that under the
assumptions of Theorem 1, ifM(r) is an irreducible 3-manifold which is not Haken, then
M contains an essential closed surface. For instance, ifM is the exterior of a knot inS3

whose meridian slope is a boundary slope, thenM contains an essential closed surface.
The purpose of this paper is to generalize the above theorem to the situation where

M may have more than one torus boundary components. LetM be an irreducible 3-
manifold such that∂M = T1 ∪ · · · ∪ Tn is a set ofn > 1 tori. Let (Ti1, . . . , Tik ), 16
i1 < · · · < ik 6 n, be a sub-collection of(T1, . . . , Tn). Let rij be a slope onTij . A slope
row (ri1, . . . , rik ) is called aboundary slope rowof M if there exists an essential surface
(F, ∂F )⊂ (M,Ti1 ∪ · · · ∪ Tik ) such that∂F ∩ Tij is a non-empty set of parallel curves in
Tij of the given sloperij for each ofj = 1, . . . , k. Here we call the numberk the lengthof
the slope row. A boundary slope row(ri1, . . . , rik ) ofM is said to benon-degenerateif any
proper sub-row of(ri1, . . . , rik ) is not a boundary slope row ofM. Note that by definition,
a boundary slope row of length one (i.e.,k = 1) is automatically non-degenerate.

For a slope row(ri1, . . . , rik ), we shall useM(ri1, . . . , rik ) to denote the manifold
obtained by Dehn fillingM alongTij with sloperij , j = 1, . . . , k and leave the rest of
torus components of∂M untouched. SoM(ri1, . . . , rik ) is a 3-manifold withn− k torus
boundary components{Ti; i = 1, . . . , n} − {Tij ; j = 1, . . . , k}. The main result of this
paper is the following theorem.

Theorem 2. LetM be an irreducible3-manifold with∂M = T1 ∪ · · · ∪ Tn a set ofn tori,
n> 1. Suppose thatM does not contain any closed essential surface. Let(ri1, . . . , rik ) (16
i1< · · ·< ik 6 n) be a non-degenerate boundary slope row ofM. ThenM(ri1, . . . , rik ) is
either

(1) a Haken3-manifold and∂-irreducible, or
(2) a connected sum of two nontrivial lens spaces(thusk = n), or
(3) a connected sum of a nontrivial lens space and a solid torus(thusk = n− 1), or
(4) a connected sum of two solid tori(thusk = n− 2), or
(5) S2× S1 (thusk = n).

The following two corollaries of Theorem 2 are somewhat surprising.
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Fig. 1.

Corollary 3. Let M be an irreducible3-manifold with ∂M consisting ofn > 4 tori.
Suppose thatM does not contain any closed essential surface. Then Dehn fillingM along
any one of the boundary components ofM with any slope produces an irreducible and
∂-irreducible3-manifold.

Proof. Let Ti be any boundary component ofM and ri a slope inTi . We first show
thatM(ri) is irreducible. Suppose otherwise thatM(ri) is reducible. Then(ri ) is a non-
degenerate boundary slope row ofM (of length one) since there is at least an essential
planar surfaceP in M such that all boundary components ofP are contained inTi . Now
applying Theorem 2 (withk = 1), we see that we must haven 6 3 to obtain a reducible
3-manifoldM(ri). This contradicts to our assumption thatn> 4.

Now if M(ri) is ∂-reducible, then since we have proved thatM(ri) is irreducible,M(ri)
must be a solid torus. Thusn = 2. Again we get a contradiction to our assumption that
n> 4. 2

We remark that Corollary 3 is no longer true ifn6 3. For example, letM be the exterior
of the Borromean ring inS3. ThenM has no closed essential surfaces but Dehn fillingM

along any one of the three components of∂M with the meridian slope produces a reducible
manifold (here is an argument thatM does not contain any closed essential surfaces).
Suppose otherwise thatS is a closed essential surface inM. Since the Borromean ring
is an alternating link inS3, there is an embedded annulus inM such that the interior of
A is disjoint fromS and that one component of∂A is an essential curve inS and the
other component of∂A is a meridian curve in one of the boundary components, sayT1, of
M [10]. LetM(p/q,∅,∅) denotes the manifold obtained by Dehn fillingM alongT1 with
the slopep/q , wherep/q is respect to the standard meridian-longitude coordinates onT1

such thatp is the meridian coordinate andq the longitude coordinate. The symbol∅ here
denotes the empty set which means leave the corresponding torus component untouched.
By [2, Theorem 2.3.4] ifS is compressible inM(p/q,∅,∅) thenq = 1 or −1. But on
the other hand we have, by Rolfsen’s surgery formula [12, p. 267], that for any integer
q 6= 0, M(1/q,∅,∅) is the exterior of a 2-bridge link inS3 (see Fig. 1). Therefore



102 X. Zhang / Topology and its Applications 99 (1999) 99–110

M(1/q,∅,∅) does not contain any closed essential surfaces [4, Corollary 1.2] and thus
S must be compressible inM(1/q,∅,∅). This contradiction completes the argument. For
n= 2 or 1, one can easily find many examples against Corollary 3.

Corollary 4. Let M be an irreducible3-manifold with ∂M consisting ofn > 6 tori.
Suppose thatM does not contain any closed essential surface. Then Dehn fillingM along
any one of the boundary components ofM with any slope produces an irreducible,∂-
irreducible and non-Seifert fibred3-manifold.

Since the proof of Corollary 4 needs some notations and machinery used in the proof of
Theorem 2, it will be postponed until Theorem 2 is proved.

We shall call a 3-manifoldbig if it is irreducible and contains a closed essential surface.
In general, it is a hard problem to determine whether a torally bounded 3-manifold is
big. Theorem 2 and Corollary 3 have some interesting applications on this problem. For
instance, we have

Corollary 5. Let L be a non-split link inS3 of more than three components with the
property that there is a componentK in L such thatL−K is a split link. Then the exterior
M ofL in S3 is a big3-manifold.

Proof. SinceL is non-split,M is irreducible. LetTi be the torus boundary component
of M corresponding toK. Then the Dehn fillingM alongT with the meridian slope ofT
gives the link exterior ofL−K in S3 and thus is a reducible 3-manifold by our assumption.
Hence by Corollary 3,M must contain a closed essential surface.2

In particular, any Brunnian link inS3 of more than three components has a big exterior.
As Corollary 3, Corollary 5 does not hold ifn6 3 (for example, the Borromean ring).

Corollary 6. Let L = K1 ∪K2 ∪K3 be a non-split link inS3 of three components such
thatK2 ∪K3 is a split link andK2 is a nontrivial knot inS3. Then the link exteriorM of
L in S3 is big.

Proof. CertainlyM is irreducible. LetT1 be the torus boundary ofM corresponding toK1

andµ1 be the meridian slope onT1. ThenM(µ1) is the exterior ofK2∪K3 in S3 and thus
is a reducible 3-manifold. SinceK2 is a nontrivial knot,M(µ1) is not a connected sum
of two solid tori. Note that(µ1) is a non-degenerate boundary slope row ofM. Hence by
Theorem 2, we see thatM must contain a closed essential surface.2

The proof of Theorem 2 follows essentially the approach used in [2] for proving
Theorem 1, making use of compression bodies and the Handle Addition Lemma (Lemma 9
below). Here is a rough outline of the proof. We start with an essential separating surface
F in M realizing the non-degenerate boundary slope row(ri1, . . . , rik ) and having the
minimal number of boundary components. By studying the handle decompositions of
certain associated submanifolds ofM and ofM(ri1, . . . , rik ), we prove that
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(a) if F is a non-planar surface then Theorem 2(1) holds;
(b) if F is a connected planar surface, then one of (2)–(4) of Theorem 2 holds;
(c) if F is a disconnected planar surface, then Theorem 2(5) holds.
Note that it follows from a result of Hatcher [5] that a torally bounded 3-manifoldM

with n> 1 boundary tori can have only finite many length one boundary slope rows. But
in general,M may have infinitely many non-degenerate boundary slope rows of length
k, 1< k 6 n.

Example 7. Let M be the exterior of the Whitehead link inS3. ThenM has infinitely
many non-degenerated boundary slope rows of length 2.

Proof. Let T1 and T2 be the two torus boundary components ofM with the standard
meridian-longitude coordinates. Note thatM(1/n,∅) is the exterior of the twisted knot
in S3 shown by Fig. 2. Note that by Rolfsen’s link surgery formula, the standard meridian-
longitude coordinates forM(1/n,∅) as a knot exterior inS3 is the same meridian-longitude
coordinates onT2 of M as a link exterior inS3. Now according to [6], the slope 4n when
n6 1 or the slope−4n− 2 whenn> 1, is a boundary slope ofM(1/n,∅).

By [5], there are infinite many choices forn such that none of(1/n,∅), (∅,4n) and
(∅,−4n−2) are boundary slope rows ofM (of length one). For suchn, any incompressible
surfaceSn inM(1/n,∅)with the slope 4n (whenn6−1) or with the slope−4n−2 (when
n > 1) must intersectT1 as well. Now arrangeSn by isotopy so that the number of the
components ofSn ∩ T1 is minimal. Then the surfaceFn =M ∩ Sn is essential surface in
M with boundary slope row(1/n,4n) (whenn 6−1) or (1/n,−4n− 2) (whenn > 1),
by standard cut-paste argument. Thus all but finitely many of the slope rows of the form
(1/n,4n) (n6 −1) and(1/n,−4n− 2)(n> 1) are non-degenerate boundary slope rows
ofM of length two. 2

Fig. 2.
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Obviously each of(0,∅) and(∅,0) is a non-degenerate boundary slope (row) ofM of
length one.

Question 8. LetM be an irreducible 3-manifold whose boundary is a set ofn > 1 tori and
whose interior admits a complete hyperbolic structure of finite volume. Is it true that for
eachk, 1< k 6 n,M has infinitely many non-degenerate boundary slope rows of lengthk?

Proof of Theorem 2. If S is a surface andc1, . . . , cp are disjoint simple closed curves
in S, thenσ(S;⋃ci) will denote the surface resulting from surgery alongc1, . . . , cp . If
Y is a 3-manifold andc1, . . . , cp are disjoint simple closed curves in∂Y , thenτ (Y ;⋃ci)

will denote the 3-manifold obtained by attaching 2-handles toY along disjoint regular
neighborhood ofc1, . . . , cp in ∂Y . Note that ifc1, . . . , cp ⊂ S ⊂ ∂Y , thenσ(S;⋃ci) ⊂
∂τ(Y ;⋃ci).

Lemma 9 (Handle Addition Lemma).Let Y be an irreducible3-manifold,S a surface
(may not be connected) in ∂Y which is compressible inY , andc a simple closed curve inS
such thatS − c is incompressible inY . Suppose thatσ(S; c) has no2-sphere components.
Thenτ (Y ; c) is irreducible andσ(S; c) is incompressible inτ (Y ; c).

There are several versions of Handle Addition Lemma. The first one was due to
Przytycki [11] and subsequently generalized and used in various forms in [1,3,7–9,13,14].
The version stated above is from [1].

A compression bodyis a cobordismW (rel ∂) between surfaces∂+W and∂−W such that
W ∼= ∂+W × I ∪ 2-handles∪ 3-handles and∂−W has no 2-sphere components. It follows
thatW is irreducible and∂−W is incompressible inW . If Y is an irreducible 3-manifold
and S ⊂ ∂Y is a surface, then there exists a maximal compression bodyW ⊂ Y with
∂+W = S, which is unique up to isotopy. Theinner boundaryofW isS− = ∂−W ∪∂S×I .
Thus∂S− = ∂S andS− is incompressible inY (sinceW is maximal). Note that the 2-
handles may be assumed to be disjoint.

SinceM does not contain, in particular, non-separating closed surfaces, we have that
H1(M;Q) = Qn andH2(M;Q) = 0. It follows that if (S, ∂S) ⊂ (M,∂M) is a non-
separating surface, then[∂S] 6= 0 in H1(∂M), where each component of∂S is given the
induced orientation from some orientation ofS. Hence, by successively tubing adjacent
oppositely oriented components of∂S ∩ Ti in each ofTi and then compressing, we obtain
an essential non-separating surface(S′, ∂S′)⊂ (M,∂M) such that∂S′ is not empty and its
components in each torusTi are homologous when given the orientation induced by some
orientation ofS′.

For the given non-degenerate boundary slope row(ri1, . . . , rik ), we may assume,
without loss of generality, thatij = j , j = 1, . . . , k (after possibly re-ordering the
components of∂M). Among all essential separating, not necessarily connected, surfaces
in (M,T1 ∪ · · · ∪ Tk) with slope row(r1, . . . , rk), letF be one such that|∂F | (the number
of components of∂F ) is minimal. Since the boundary slope row is non-degenerate of
lengthk, each component ofF has non-empty intersection with each ofTi, i = 1, . . . , k.
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By the minimality of|∂F |, F is either connected or has exactly two components each of
which is non-separating. In the latter case, we may assume thatF consists of two parallel
copies of a non-separating surfaceG which has all its boundary components oriented
coherently on each component ofTi , i = 1, . . . , k. WhenF is disconnected, we denote
its two parallel components byG andG′. SinceF is separating, it may be oriented so that
[(F, ∂F )] = 0 in H2(M,T1 ∪ · · · ∪ Tk) and|∂F ∩ Ti | is a positive even integer which we
denote by 2mi for i = 1, . . . , k. Letm=m1+ · · · +mk .

Let X andX′ be the two components into whichF separatesM. SoM = X ∪F X′.
In the case thatF is disconnected, we may assume thatX′ is the componentG × I .
Let S = ∂X − (Tk+1 ∪ · · · ∪ Tn) and S′ = ∂X′ − (Tk+1 ∪ · · · ∪ Tn). The boundary of
F cuts each torusTi, i = 1, . . . , k, into 2mi annuli,mi each contained inS and S′.
We order all these annuli asAj , A′j , j = 1,2, . . . ,m, so thatAj ⊂ S, A′j ⊂ S′, T1 =
A1 ∪ A′1 ∪ · · · ∪ Am1 ∪ A′m1

, T2 = Am1+1 ∪ A′m1+1 ∪ · · · ∪ Am1+m2 ∪ A′m1+m2
, . . . , Tk =

Am1+···+mk−1+1 ∪A′m1+···+mk−1+1 ∪ · · · ∪Am1+···+mk ∪A′m1+···+mk . So we have

S = F ∪
(

m⋃
j=1

Aj

)
and S′ = F ∪

(
m⋃
j=1

A′j

)
.

WhenF is connected, each ofS andS′ has genus

f +
k∑
i=1

mi = f +m,

wheref is the genus ofF . WhenF is disconnected, each ofS andS′ has genus

2g+
(

k∑
i=1

mi

)
− 1= 2g+m− 1,

whereg is the genus ofG. Note that in the latter case, each ofAj (and each ofA′j )
connectsG andG′.

Let Ji be the solid torus attached toTi with slope ri , i = 1, . . . , k, in forming
M(r1, . . . , rk). ThenJi can be considered as the union of 2mi 2-handles with attaching
regions

Am1+···+mi−1+1,A
′
m1+···+mi−1+1, . . . ,Am1+···+mi ,A′m1+···+mi .

Let cj be the center curve ofAj andc′j the center curve ofA′j , j = 1, . . . ,m. Then

M(r1, . . . , rk)= τ
(
X;

m⋃
j=1

cj

)
∪F̂ τ

(
X′;

m⋃
j=1

c′j

)
= X̂ ∪F̂ X̂′,

whereF̂ is a closed surface obtained by capping off the boundary components ofF in Ti
with meridian disks ofJi, i = 1, . . . , k. Note that

F̂ = ∂X̂−
(

n⋃
i=k+1

Ti

)
= ∂X̂′ −

(
n⋃

i=k+1

Ti

)
.
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We first need to consider two special cases, that is, whenF = G ∪G′ is disconnected
andG is either a disk or an annulus. IfG is a disk, thenM is boundary reducible.
SinceM is irreducible,M must be a solid torus. Thusn = k = 1 andM(r1) = S2 × S1,
i.e., Theorem 2(5) holds. IfG is an annulus, thenk = 1 or 2. In casek = 1, we have
m=m1= 2 andF ∪A1 is a separating annulus inM and thus must be boundary parallel
by the minimality assumption on|∂F |. One can now easily see thatM is a twisted interval
bundle over the Klein bottle andM(r1) = S2 × S1. So Theorem 2(5) holds in this case.
Now assumek = 2. Thenm1 = m2 = 1 andF ∪ A1 is a separating annulus inM and
thus must be boundary parallel since the boundary slope row(r1, r2) is non-degenerate
of length 2. One can now easily see thatM is a trivial interval bundle over a torus and
M(r1, r2)= S2× S1. So again Theorem 2(5) holds.

So we may assume now thatG is not a disk or an annulus. LetFj = F ∪Aj ⊂ ∂X. Note
thatFj is connected and∂Fj =⋃p 6=j ∂Ap. Also note thatFj is neither a 2-sphere nor an
annulus. Since|∂Fj | = |∂F | − 2,Fj is compressible inM (sinceM is assumed to contain
no closed essential surfaces and sinceFj is not an annulus) and thus is compressible
in X (sinceFj ⊂ X andF is incompressible inM = X ∪F X′). Let Vj be a maximal
compression body forFj in X. The inner boundary ofVj , F

−
j , is incompressible inX and

thus is also incompressible inM. SinceM does not contain closed essential surfaces, if a
component ofF−j is a closed surface, it must be a torus parallel to one ofTk+1, . . . , Tn.

We now show thatF−j does not contain non-separating components. Note that

[F−j , ∂F−j ] = [Fj , ∂Fj ] = [F,∂F ] = 0 inH2(M,T1∪ · · ·∪Tn). It follows that the number

of non-separating components ofF−j is even. Also each of such components must have

boundary. Therefore ifF−j has non-separating components, it must have one, denotedG1,
with at mostm − 1 boundary components. But then the surface which consists of two
parallel copies ofG1 is an essential surface in(M,T1 ∪ · · · ∪ Tk) with at most 2m − 2
boundary components, contradicting to the minimality assumption on|∂F | = 2m.

SoF−j has no non-separating components. Therefore other than some (possibly empty)

set of boundary parallel tori,F−j contains exactlym− 1 annuli, each being parallel into
∂M. LetB be one of these annuli. SinceB separatesM and int(B) ∩ Fj = ∅, ∂B = ∂Ap
for somep 6= j . Thus we may number the annuli asBpj so that∂Bpj = ∂Ap for all p 6= j .

LetUp be the solid torus realizing the parallelism fromBpj toAp. Then sinceF cannot be

contained inUp, Up ⊂X, ∂Up = Bpj ∪Ap and all theUp ’s are mutually disjoint.

Lemma 10. For each fixedj (1 6 j 6 m), there exist mutually disjoint(properly
embedded) disksEpj in X, p 6= j , such thatEpj meetscp transversely in a single point
and is disjoint fromcq if q 6= j or p.

Proof. LetDp be a meridian disk ofUp which is a boundary compressing disk forBpj . So

∂Dp = αp ∪ βp with αp,βp being spanning arcs of the annuliAp,B
p
j , respectively. Now

Vj ∼= Fj × I ∪ 2-handles∪ 3-handles; dually,Vj ∼= ∂−Vj × I ∪ 0-handles∪ 1-handles. An
isotopy ofβp (rel ∂) in Bpj will move it off the disks that constitute the attaching regions
of the 1-handles, and then a further isotopy (rel∂) in Vj (using the product structure of
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∂−Vj ×I ) will take it to an arcβ ′p in Fj ⊂ S ⊂ ∂X. A corresponding isotopy and extension
of Dp gives a diskEpj in X with ∂Epj = αp ∪ β ′p. These disksEpj , p 6= j , satisfy the
conditions stated. 2

LetWj be the (possibly punctured) compression body inX with ∂+Wj = S defined by

Wj = S × I ∪
( ⋃
p,p 6=j

E
p
j × I

)
.

Then∂−Wj is a closed connected surface of genusf + 1 in the case thatF is connected,
and of genus 2g in the case thatF is disconnected.

Lemma 11. For 16 j 6m, τ (Wj ,
⋃
p,p 6=j cp)∼= ∂−Wj × I .

Proof. This follows by canceling the 2-handle corresponding tocp with Epj , p 6= j . 2
LetX0=X, and letXq = τ (X;⋃q

j=1 cj ) for 16 q 6m. ThusXm = X̂.

Lemma 12. If F is either non-planar or connected, then, for0 6 q 6 m − 1, Xq is
irreducible and each component of∂Xq −⋃m

j=q+1 cj is incompressible inXq .

Proof. We prove this by induction onq , using the handle addition lemma. The assertion
holds obviously forq = 0. So suppose that 16 q 6 m − 1, and that the assertion holds
for q − 1. ThusXq−1 is irreducible and each component of

∂Xq−1−
m⋃
j=q

cj =
(
∂Xq−1−

m⋃
j=q+1

cj

)
− cq

is incompressible inXq−1. Let

Sq = ∂Xq−1−
m⋃

j=q+1

cj −
n⋃

i=k+1

Ti.

Then Sq is connected andSq − cq is incompressible inXq−1. Certainly each of
Tk+1, . . . , Tn is incompressible inXq−1. So the lemma will follow from the handle addition
lemma if we can show thatSq is compressible inXq−1. To do this, let(D∗q, ∂D∗q )⊂ (X,Fq)
be a disjoint union of disks such that the maximal compression bodyVq for Fq in X

can be expressed asFq × I ∪ D∗q × I ∪ 3-handles. Since∂D∗q ∩ cj = ∅ for j 6= q , we
have (D∗q, ∂D∗q ) ⊂ (Xq−1, Sq). We claim that some component of∂D∗q is essential in
∂Xq−1 − (⋃n

i=k+1Ti) and thus inSq . For if not, thenσ(∂Xq−1 − (⋃n
i=k+1Ti); ∂D∗q)

would be homeomorphic to the disjoint union of∂Xq−1 − (⋃n
i=k+1Ti) with some 2-

spheres. However∂Xq−1−⋃n
i=k+1Ti is a connected surface which has, in the case thatF

is connected, genusf +m− (q − 1)> f + 2> 2, and, in the case thatF is disconnected
(and non-planar), genus 2g+m− 1− (q − 1)> 2g + 1> 3. On the other hand,

σ

(
∂X−

(
n⋃

i=k+1

Ti

)
; ∂D∗q

)
= σ(S; ∂D∗q)
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containsm− 1 tori, corresponding to the toriAp ∪ Bpq , p 6= q , and some other (possibly
empty) components. Therefore

σ

(
∂Xq−1−

(
n⋃

i=k+1

Ti

)
; ∂D∗q

)
= σ

(
σ

(
∂X−

(
n⋃

i=k+1

Ti

)
; ∂D∗q

)
;
q−1⋃
j=1

cj

)
containsm− q > 1 tori. This contradiction completes the proof of the lemma.2
Lemma 13. Suppose thatF is non-planar. ThenM(r1, . . . , rk) is irreducible and∂-
irreducible, andF̂ is an incompressible surface inM(r1, . . . , rk).

Proof. Note that ∂−Wm is connected, closed surface of genus> 2. Hence by our
assumption,∂−Wm must be compressible inM and thus inX. But by Lemma 11,
τ (Wm;⋃m−1

j=1 cj )
∼= ∂−Wm × I . So ∂Xm−1 − (⋃n

i=k+1Ti) is compressible inXm−1. By
the previous lemma, each component of∂Xm−1 − cm is incompressible inXm−1. Hence
by the handle addition lemma,̂X = τ (Xm−1; cm) is irreducible and each component of∂X̂
is incompressible in̂X. Similar discussion works forX′. The lemma now follows since
M(r1, . . . , rk)= X̂ ∪F̂ X̂′. 2

We remark that if the genus ofF is larger than one when it is connected or if the genus
of G is larger than zero whenF is disconnected, then̂F is also essential inM(r1, . . . , rk).

Lemma 14. Suppose thatF is planar.
(a) In the case thatF is connected, we havek > n − 2. Further when k =

n − 2, M(r1, . . . , rn−2) is a connected sum of two solid tori; when k = n −
1, M(r1, . . . , rn−1) is a connected sum of a nontrivial lens space and a solid torus;
whenk = n, M(r1, . . . , rn) is a connected sum of two nontrivial lens spaces.

(b) In the case thatF is disconnected, we havek = n andM(r1, . . . , rn)∼= S2× S1.

Proof. Case(a):F is connected. In this case, the surface∂−Wm is a torus. Hence by our
assumption,∂−Wm is either compressible inX or is parallel to one of the toriTk+1, . . . , Tn.

Subcase(a1): ∂−Wm is compressible. Then∂−Wm bounds a solid torus inX since
X is irreducible. ThusX is a handlebody of genusm. If m = 1, thenk = 1 andF is
an essential annulus inM with ∂F ⊂ T1 andX is a solid torus (∂X = F ∪ A1). Since
F is not parallel toA1, the minimal geometric intersection number in∂X between a
component of∂F and the boundary of a meridian disk ofX is at least two. Therefore
X̂ is a punctured nontrivial lens space. So suppose thatm > 1. By Lemma 10,Xm−2

is a handlebody of genus two (canceling the 2-handle correspond tocp with the disk
E
p
m, p = 1, . . . ,m − 2). Consider the disjoint simple closed curvescm−1, cm ⊂ ∂Xm−2.

Since the boundaries ofEm−1
m and Emm−1 are disjoint from c1, . . . , cm−2, we have

Em−1
m and Emm−1 properly embedded inXm−2. Further ∂Em−1

m (respectively∂Emm−1)
intersectscm−1 (respectivelycm) transversely in a single point. Also∂Xm−2− cm−1 ∪ cm
is incompressible inXm−2, by Lemma 12. We can now apply [2, Lemma 2.3.2] to see that
X̂= τ (Xm−2; cm−1∪ cm) is a punctured nontrivial lens space.
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Subcase(a2):∂−Wm is parallel to one ofTk+1, . . . , Tn. ThenX =Wm and by Lemma 11,

Xm−1= τ
(
Wm;

⋃
p,p 6=m

cp

)
∼= ∂−Wm × I.

ThereforêX =Xm = σ(Xm−1; cm) is a punctured solid torus.
A similar discussion works forX′. Thereforek > n − 2, andM(r1, . . . , rk) is either

a connected sum of two nontrivial lens spaces (whenk = n) or a connected sum of a
nontrivial lens space and a solid torus (whenk = n− 1) or a connected sum of two solid
tori (whenk = n− 2). Hence the lemma holds in case (a).

Case(b): F is disconnected. We already knew that Lemma 14 holds whenm 6 2. So
suppose thatm> 2. Recall that∂−Wm is a 2-sphere in this case and thusX is a handlebody
of genusm− 1 sinceX is irreducible. Also by Lemma 11,

τ

(
Wm;

⋃
p,p 6=m

cp

)
∼= ∂−Wm × I.

ThereforeXm−1 is a 3-ball andX̂ is thus a punctured 3-ball. On the other handX̂′ is
obviously a copy ofS2 × I sinceX′ = G × I . Thereforek = n andM(r1, . . . , rn) =
S2× S1. 2

Theorem 2 is a combination of the last two lemmas.2
Proof of Corollary 4. By Corollary 3, we only need to show that for any torus component
Ti of ∂M and for any sloperi onTi ,M(ri) is not a Seifert fibred space. Suppose otherwise
thatM(ri) is a Seifert fibred space. Then sinceM(ri) has at least five torus boundary
components, it contains an essential torus. SinceM does not contain closed essential
surface, any essential torus inM(ri) must intersect and only intersectTi . It follows that
(ri) is a non-degenerate boundary slope row ofM (of length one). Now we adopt the
notations used in the proof of Theorem 2. Among all essential separating surfaces inM

realizing the boundary slope row (ri ), let (F, ∂F )⊂ (M,Ti) be one which has the minimal
number of boundary components. By Lemma 14, we see thatF is not a planar surface, and
by Lemma 13,̂F is incompressible inM(ri). SinceM(ri) is assumed to be Seifert fibred,
F̂ is isotopic to either a horizontal surface (transverse to all the fibres) or to a vertical
surface (consisting of fibres). But asM(ri) has non-empty boundary, the closed surfaceF̂

cannot be isotopic to a horizontal surface. SoF̂ is vertical and thus is an incompressible
torus. HenceF has genus one. Now as in the proof of Lemma 13,∂−Wm is a connected
closed surface inX which has genus 2 in our current case and which must be compressible
in X sinceM does not contain any closed essential surfaces. Compressing∂−Wm in X,
we get either one or two tori inX. Each such torus is either compressible and thus bounds
a solid torus inX or is incompressible and thus parallel to one of boundary tori of∂M.
ThereforeX contains at most two boundary components ofM. A similar discussion works
for X′. ThereforeM has at most five boundary components. But this contradicts to our
assumption thatn> 6, thereby completing the proof of Corollary 4.2
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