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Abstract

We prove that Dehn filling a small link exterior with a non-degenerate boundary slope row
produces a 3-manifold which is either Haken andreducible or one of very restricted typies of
reducible manifolds (Theorem 2), generalizing a result of Culler, Gordon, Luecke and Shalen in the
case of a knot exterior (Theorem 1). The result provides some interesting applications on exceptional
Dehn fillings (Corollaries 3 and 4) and on telling if a link is small (Corollaries 5 andi61999
Published by Elsevier Science B.V. All rights reserved.
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Throughout this paper when a manifold is mentioned, it is assumed to be orientable,
compact and smooth, and when a 3-manifold is mentioned, it is also assumed to be
connected. By a surface we mean a 2-manifold. For a surface in a 3-manifold, it is assumed
to be properly embedded unless otherwise specified. A surface in a 3-manifold is said to be
essential if each component of it is incompressible and non-boundary parallel. Recall that
a slope in a 2-torug’ is the isotopy class of an unoriented simple closed essential curve
in T. We useA(r, s) to denote the minimal geometric intersection number between two
slopes ands in T. Now consider an irreducible 3-manifod whose boundary is a torus.

For each slope in 9 M, one can construct a closed 3-maniféfdr) by the so called Dehn
filling operation, i.e., one attaches a solid tofigo M by a gluing homeomorphism of
their boundary tori so that a curve of slop@ 9 M bounds a meridian disk df. A slope

r in the toruso M is called aboundary slopeéf there exists an essential surfagein M
such thatd F is a non-empty set of parallel essential simple closed curvédfrof the
sloper. Concerning Dehn filling/ with a boundary slope, the following important result
was obtained in [2, Theorem 2.0.3].
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Theorem 1. Let M be an irreducibleé3-manifoldM whose boundary is a torus and whose
first Betti number is one. if is a boundary slope o¥/, then
(i) M(r) is a Haken manifolgor
(iiy M(r)is a connected sum of two nontrivial lens spaaes
(i) M contains an essential closed surface which remains essentldl it whenever
A(r,s)>1; or
(iv) M fibers overS?! with fiber an essential planar surface having boundary slope
In particular, M (r) = §? x St.

In item (i), by aHaken3-manifold, we mean an irreducible 3-manifold which contains
an essential surface. In item (ii), byn@ntrivial lens space we mean a lens space which
is neithers® nor 2 x S1. In item (iv), by aplanar surface, we mean a 2-sphere with
punctures. We remark that one of useful consequences of Theorem 1 is that under the
assumptions of Theorem 1,M (r) is an irreducible 3-manifold which is not Haken, then
M contains an essential closed surface. For instandé, i the exterior of a knot irs3
whose meridian slope is a boundary slope, thenontains an essential closed surface.

The purpose of this paper is to generalize the above theorem to the situation where
M may have more than one torus boundary componentsM.die an irreducible 3-
manifold such thabM =T, U --- U T, is a set ofn > 1 tori. Let (T;,,...,T;,), 1 <
i1 <--- < iy <n, be asub-collection ofT4, ..., T,). Let ri; be a slope or;;. A slope
row (r,, ..., ri,) is called aboundary slope rovef M if there exists an essential surface
(F,0F) C (M, T, U---UT,) such tha® F N T;; is a non-empty set of parallel curves in
T;; of the given slope;, for each ofj =1,..., k. Here we call the numbérthelengthof
the slope row. A boundary slope raw, ..., ;) of M is said to benon-degenerati any
proper sub-row ofr;,, ..., r; ) is not a boundary slope row @f. Note that by definition,

a boundary slope row of length one (i.e~= 1) is automatically non-degenerate.

For a slope row(ry,, ..., r;), we shall useM(r;,...,r;) to denote the manifold
obtained by Dehn fillingV along 7;; with sloper;;, j=1,...,k and leave the rest of
torus components afM untouched. S (r;,, ..., r;,) is a 3-manifold withn — k torus
boundary components¥;; i =1,...,n} — {Ti;; j=1,....k} The main result of this
paper is the following theorem.

Theorem 2. Let M be an irreducible3-manifold withoM =T, U --- U T,, a set ofa tori,
n > 1. Suppose tha¥/ does not contain any closed essential surface(t:gt. .., r;,) (1<
i1 < --- < i <n) be a non-degenerate boundary slope rombf ThenM (r;,, ..., r;) IS
either

(1) a Haken3-manifold anda-irreducible, or

(2) a connected sum of two nontrivial lens spagbsisk = n), or

(3) a connected sum of a nontrivial lens space and a solid t(ftussk =n — 1), or

(4) a connected sum of two solid tdthusk =n — 2), or

(5) §? x St (thusk =n).

The following two corollaries of Theorem 2 are somewhat surprising.
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Corollary 3. Let M be an irreducible3-manifold with dM consisting ofn > 4 tori.
Suppose tha¥ does not contain any closed essential surface. Then Dehn fMimdong
any one of the boundary componentsMfwith any slope produces an irreducible and
d-irreducible 3-manifold.

Proof. Let 7; be any boundary component 8f andr; a slope inT;. We first show
that M (r;) is irreducible. Suppose otherwise thlt(r;) is reducible. Thenr;) is a non-
degenerate boundary slope row Mf (of length one) since there is at least an essential
planar surface® in M such that all boundary components®fare contained iff;. Now
applying Theorem 2 (withkt = 1), we see that we must hawe< 3 to obtain a reducible
3-manifoldM (r;). This contradicts to our assumption that 4.

Now if M (r;) is 9-reducible, then since we have proved th&t;) is irreducible M (r;)
must be a solid torus. Thus= 2. Again we get a contradiction to our assumption that
n=>4. 0O

We remark that Corollary 3 is no longer true:ifl 3. For example, leM be the exterior
of the Borromean ring ir53. ThenM has no closed essential surfaces but Dehn filkhg
along any one of the three component$ of with the meridian slope produces a reducible
manifold (here is an argument thA does not contain any closed essential surfaces).
Suppose otherwise thatis a closed essential surface Mi. Since the Borromean ring
is an alternating link ins3, there is an embedded annulushifh such that the interior of
A is disjoint from S and that one component 6fA is an essential curve i and the
other component af A is a meridian curve in one of the boundary components7sagf
M [10]. Let M (p/q, ¥, ¥) denotes the manifold obtained by Dehn fillidyalong 7y with
the slopep/q, wherep/q is respect to the standard meridian-longitude coordinatgg on
such thatp is the meridian coordinate ardthe longitude coordinate. The symhbhere
denotes the empty set which means leave the corresponding torus component untouched.
By [2, Theorem 2.3.4] ifS is compressible il (p/q, %, ?#) theng = 1 or —1. But on
the other hand we have, by Rolfsen’s surgery formula [12, p. 267], that for any integer
g #0, M(1/q,9,9) is the exterior of a 2-bridge link irs® (see Fig. 1). Therefore



102 X. Zhang / Topology and its Applications 99 (1999) 99-110

M((1/q,9,9) does not contain any closed essential surfaces [4, Corollary 1.2] and thus
S must be compressible i (1/q, ¥, ¥). This contradiction completes the argument. For
n =2 or 1, one can easily find many examples against Corollary 3.

Corollary 4. Let M be an irreducible3-manifold with 9M consisting ofn > 6 tori.
Suppose thatf does not contain any closed essential surface. Then Dehn fMirmdong
any one of the boundary componentsaéfwith any slope produces an irreducibla;
irreducible and non-Seifert fibre8tmanifold.

Since the proof of Corollary 4 needs some notations and machinery used in the proof of
Theorem 2, it will be postponed until Theorem 2 is proved.

We shall call a 3-manifoltbig if it is irreducible and contains a closed essential surface.
In general, it is a hard problem to determine whether a torally bounded 3-manifold is
big. Theorem 2 and Corollary 3 have some interesting applications on this problem. For
instance, we have

Corollary 5. Let L be a non-split link ins® of more than three components with the
property that there is a componekitin L such thatl. — K is a split link. Then the exterior
M of L in $2 is a big3-manifold.

Proof. SinceL is non-split,M is irreducible. LetT; be the torus boundary component
of M corresponding t& . Then the Dehn fillingf alongT with the meridian slope of’
gives the link exterior of. — K in $2 and thus is a reducible 3-manifold by our assumption.
Hence by Corollary 3 must contain a closed essential surface.

In particular, any Brunnian link i of more than three components has a big exterior.
As Corollary 3, Corollary 5 does not holdif< 3 (for example, the Borromean ring).

Corollary 6. Let L = K1 U K» U K3 be a non-split link ins® of three components such
that K> U K3 is a split link andK> is a nontrivial knot inS3. Then the link exterioM of
L in $%is big.

Proof. CertainlyM is irreducible. LetT; be the torus boundary aff corresponding t& 1
andpu1 be the meridian slope ofy. ThenM (1) is the exterior ofk> U K3 in $3 and thus
is a reducible 3-manifold. Sinck2 is a nontrivial knot,M (1) is not a connected sum
of two solid tori. Note tha{u1) is a non-degenerate boundary slope rowhfHence by
Theorem 2, we see thaf must contain a closed essential surface.

The proof of Theorem 2 follows essentially the approach used in [2] for proving
Theorem 1, making use of compression bodies and the Handle Addition Lemma (Lemma 9
below). Here is a rough outline of the proof. We start with an essential separating surface
F in M realizing the non-degenerate boundary slope ey ..., r;,) and having the
minimal number of boundary components. By studying the handle decompositions of
certain associated submanifoldsdfand of M (r;,, ..., r; ), we prove that
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(a) if F is a non-planar surface then Theorem 2(1) holds;

(b) if F is a connected planar surface, then one of (2)—(4) of Theorem 2 holds;

(c) if Fis a disconnected planar surface, then Theorem 2(5) holds.

Note that it follows from a result of Hatcher [5] that a torally bounded 3-manifsid
with n > 1 boundary tori can have only finite many length one boundary slope rows. But
in general,M may have infinitely many non-degenerate boundary slope rows of length
k, 1<k<n.

Example 7. Let M be the exterior of the Whitehead link i§°. Then M has infinitely
many non-degenerated boundary slope rows of length 2.

Proof. Let Ty and T> be the two torus boundary componentsMfwith the standard
meridian-longitude coordinates. Note thet(1/#, @) is the exterior of the twisted knot
in $2 shown by Fig. 2. Note that by Rolfsen’s link surgery formula, the standard meridian-
longitude coordinates fa¥f (1/n, ¥) as a knot exterior i5® is the same meridian-longitude
coordinates orT» of M as a link exterior inS2. Now according to [6], the sloperdvhen
n < 1 orthe slope-4n — 2 whenn > 1, is a boundary slope @ (1/n, 9).

By [5], there are infinite many choices farsuch that none ofl/n, #), (¢, 4n) and
(9, —4n — 2) are boundary slope rows &1 (of length one). For such, any incompressible
surfacesS,, in M (1/n, ¢) with the slope 4 (whenn < —1) or with the slope-4n — 2 (when
n > 1) must intersecf; as well. Now arrangses, by isotopy so that the number of the
components of, N 71 is minimal. Then the surfacg, = M N S, is essential surface in
M with boundary slope rowl/n, 4n) (whenn < —1) or (1/n, —4n — 2) (whenn > 1),
by standard cut-paste argument. Thus all but finitely many of the slope rows of the form
(1/n,4n) (n < —1) and(1/n, —4n — 2)(n > 1) are non-degenerate boundary slope rows
of M of lengthtwo. O

S|—

r\ )\
U n full twist E

AN

Whitehead link a twisted knot

Fig. 2.
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Obviously each of0, ) and (@, 0) is a non-degenerate boundary slope (row)obf
length one.

Question 8. Let M be an irreducible 3-manifold whose boundary is a set f1 tori and
whose interior admits a complete hyperbolic structure of finite volume. Is it true that for
eachk, 1 < k < n, M has infinitely many non-degenerate boundary slope rows of ldfgth

Proof of Theorem 2. If S is a surface and, ..., c, are disjoint simple closed curves
in S, theno (S; | J¢;) will denote the surface resulting from surgery alang. .., cp. If

Y is a 3-manifold andy, ... ., ¢, are disjoint simple closed curvesay, thent(Y; [ Jc;)
will denote the 3-manifold obtained by attaching 2-handled talong disjoint regular
neighborhood oty, ..., cp, in Y. Note that ifcy,...,c, C S C 8Y, theno(S; Uci) C

ot (Y Jei).

Lemma 9 (Handle Addition Lemma)Let Y be an irreducible3-manifold, S a surface
(may not be connectgth Y which is compressible ii, andc a simple closed curve ifi
such thatS — ¢ is incompressible irY. Suppose thai (S; ¢) has no2-sphere components.
Thent (Y; ¢) is irreducible ands (S; ¢) is incompressible in (Y; ¢).

There are several versions of Handle Addition Lemma. The first one was due to
Przytycki [11] and subsequently generalized and used in various forms in [1,3,7-9,13,14].
The version stated above is from [1].

A compression bodyg a cobordisnW (rel 9) between surfacels. W andd_ W such that
W =94 W x IU 2-handlesJ 3-handles and_ W has no 2-sphere components. It follows
that W is irreducible andb_ W is incompressible itW. If Y is an irreducible 3-manifold
and S c dY is a surface, then there exists a maximal compression Bdy Y with
a4+ W = S, which is unique up to isotopy. Thener boundanof W is S~ =9_WUadS x I.
ThusaS— = aS and S~ is incompressible ir¥ (since W is maximal). Note that the 2-
handles may be assumed to be disjoint.

Since M does not contain, in particular, non-separating closed surfaces, we have that
H1(M; Q) = Q" and Hx(M; Q) = 0. It follows that if (S,9S) C (M,9M) is a non-
separating surface, théaS] # 0 in H1(dM), where each component 88 is given the
induced orientation from some orientation $f Hence, by successively tubing adjacent
oppositely oriented components@$ N T; in each of7; and then compressing, we obtain
an essential non-separating surfaée 95") c (M, dM) such thabv S’ is not empty and its
components in each tords are homologous when given the orientation induced by some
orientation ofs’.

For the given non-degenerate boundary slope Kewm,...,r;), we may assume,
without loss of generality, that; = j, j = 1,...,k (after possibly re-ordering the
components ob M). Among all essential separating, not necessarily connected, surfaces
in (M, Ty U ---U Ty) with slope row(r1, ..., r¢), let F be one such thgd F'| (the number
of components ob F) is minimal. Since the boundary slope row is hon-degenerate of
lengthk, each component af has non-empty intersection with each®f i =1, ..., k.
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By the minimality of|d F|, F is either connected or has exactly two components each of
which is non-separating. In the latter case, we may assuméthansists of two parallel
copies of a non-separating surfaGewhich has all its boundary components oriented
coherently on each component §f, i =1, ..., k. When F is disconnected, we denote
its two parallel components b§ andG’. SinceF is separating, it may be oriented so that
[(F,0F)]=0in Hx(M,T1U---UTy) and|dF N T;| is a positive even integer which we
denote by &; fori=1,..., k. Letm =mq + - - - + my.

Let X and X’ be the two components into which separated/. SoM = X Ur X'.
In the case that# is disconnected, we may assume tidtis the componenG x I.
Let S=0X — (Tx4+1 U ---UTy) and S’ = X’ — (Tr+1 U --- U T;). The boundary of

F cuts each torud;, i =1,...,k, into 2n; annuli, m; each contained irs and S’.
We order all these annuli as;, A, j=1,2,....,m,sothatd; C S, A, C S Th=
ALUALU - UAp UA,  To=Ap 1 UA, U UApmy UAL e, Ti =

! I
Ayt 41 U Am1+~~~+mk,1+l Ue U Ayt YAy o, - SO WE have

S:FU(UAJ) and S’:FU(UA;).
j=1

j=1

WhenF is connected, each ¢fandS’ has genus
k
f4+Y mi=f+m,
i=1

wheref is the genus of’. WhenF is disconnected, each 6fandS’ has genus

k
2g+ <Zml> —1=2¢g+m -1,

i=1
whereg is the genus ofG. Note that in the latter case, each 4f (and each ofA’j)
connects; andG’.

Let J; be the solid torus attached tf with sloper;, i = 1,...,k, in forming
M(r1,...,rr). ThenJ; can be considered as the union a@f;22-handles with attaching
regions

Am1+~~~+m,-,1+1» A;nl+~~~+m,-,1+1’ ey Am1+~~~+m,~ s A;n1+---+m,-'

Letc; be the center curve of ; andc’; the center curve o', j=1,...,m. Then
m m
M(rl,...,rk)zr(X; Uc{;) Ufr(X/; Uc;> =XUp X,
j=1 j=1

whereF is a closed surface obtained by capping off the boundary componeht§oT;
with meridian disks of/;, i =1, ..., k. Note that

f:a;?-( LnJ n):af(’—( LnJ n).

i=k+1 i=k+1



106 X. Zhang / Topology and its Applications 99 (1999) 99-110

We first need to consider two special cases, that is, whenG U G’ is disconnected
and G is either a disk or an annulus. & is a disk, thenM is boundary reducible.
SinceM is irreducible,M must be a solid torus. Thus=k =1 andM (r1) = 2 x S1,

i.e., Theorem 2(5) holds. I is an annulus, thed = 1 or 2. In casek = 1, we have
m=mq=2andF U Aj is a separating annulus M and thus must be boundary parallel
by the minimality assumption ofd@ F|. One can now easily see thitis a twisted interval
bundle over the Klein bottle and (r;) = 2 x S*. So Theorem 2(5) holds in this case.
Now assume = 2. Thenmi =m =1 andF U A; is a separating annulus i¥ and
thus must be boundary parallel since the boundary slope(row-) is hon-degenerate
of length 2. One can now easily see thitis a trivial interval bundle over a torus and
M(r1, r2) = §2 x S1. So again Theorem 2(5) holds.

So we may assume now th@tis not a disk or an annulus. L&t = FUA; C 9X. Note
that F; is connected andF; =J,..; 3Ap. Also note thatF; is neither a 2-sphere nor an
annulus Sincgd F;| = [dF| — 2, F; is compressible i/ (sinceM is assumed to contain
no closed essential surfaces and sifGeis not an annulus) and thus is compressible
in X (sinceF; C X and F is incompressible i = X Ur X’). Let V; be a maximal
compression body fof; in X. The inner boundary of;, ", is incompressible i and
thus is also incompressible M. SinceM does not contain closed essential surfaces, if a
component oiF is a closed surface, it must be a torus parallel to or& ¢f, ..., 7,.

We now show thatF does not contain non-separating components Note that
[Fj*, BFJ 1=I[F;,0F;]= [F, 0F1=0inHx(M,TpU---UT,). It follows that the number
of non-separating components Ef is even. Also each of such components must have
boundary. Therefore iFj_ has non-separating components, it must have one, detated
with at mostm — 1 boundary components. But then the surface which consists of two
parallel copies 0iG1 is an essential surface i, Ty U - - - U Ty) with at most 2n — 2
boundary components, contradicting to the minimality assumptidd Bh= 2m.

So Fr has no non-separating components. Therefore other than some (possibly empty)
set of boundary parallel torF contains exactlyrn — 1 annuli, each being parallel into
oM. Let B be one of these annul| Sindeseparated/ and in(B) N F; =@, B =04,
for somep # j. Thus we may number the annuli B§ o) thatan’ =0A, forall p# ;.

Let U, be the solid torus realizing the parallelism frdiﬁ to A,. Then sinceF cannot be
contained inU,, U, C X, dU, = Bf’ U A, and all theU,’s are mutually disjoint.

Lemma 10. For each fixed;j (1 < j < m), there exist mutually disjoin{properly
embedde)jdlsksE” in X, p#j, such thatE” meetsc, transversely in a single point
and is disjoint fromcq if g #jorp.

Proof. Let D, be a meridian disk of/,, which is a boundary compressing disk ﬁf So
dD, =ap, U B, with «p,, B, being spanning arcs of the annlj,, Bj’, respectively. Now
V; = F; x IU 2-handles) 3-handles; duallyy; = d_V; x I U 0-handlesJ 1-handles. An
isotopy of g, (rel 9) in B” will move it off the disks that constitute the attaching regions
of the 1-handles, and then a further isotopy @gin V; (using the product structure of
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0_V; x I) will take it to an arcﬁ}, in F; C § C 3X. A corresponding isotopy and extension
of D, gives a diskE} in X with JE} = a,, U ,. These disk}, p # j, satisfy the
conditions stated. O

Let W; be the (possibly punctured) compression bod¥iwith 3, W; = S defined by

W,-:Sx]U( U Efxl).
PsP#j
Thend_W; is a closed connected surface of gerfus 1 in the case thak is connected,
and of genus 2 in the case thaF is disconnected.

Lemmall. For1<j<m,t(W;,J cp) =W, x 1.

pP.P#j

Proof. This follows by canceling the 2-handle correspondingtavith E?, p#j. O
Let Xo= X, and letX, = t(X; U?:lc./') for 1< g <m. ThusX,, = X.

Lemma 12. If F is either non-planar or connected, then, for< g <m — 1, X, is
irreducible and each component@k, — J}_, 1 ¢; is incompressible ik,

Proof. We prove this by induction og, using the handle addition lemma. The assertion
holds obviously forg = 0. So suppose thatd g < m — 1, and that the assertion holds
for g — 1. ThusX,_; is irreducible and each component of

m m
0X4-1— U cj= <8Xq_1 — U Cj) —¢q
j=q j=q+1
is incompressible ik, _;. Let

m n
S=0X0—- | J ;- | 7
Jj=q+1 i=k+1
Then S, is connected andS;, — ¢, is incompressible inX,_1. Certainly each of
Tiy1, ..., Ty isincompressible iX,_1. So the lemma will follow from the handle addition
lemma if we can show thd, is compressible itX,_1. To do this, le{( D}, d D7) C (X, Fy)
be a disjoint union of disks such that the maximal compression Bgdfor F, in X
can be expressed @ x I U Dy x 1U 3-handles. SincéD; Nc; = for j # g, we
have (D#, aD;;) C (X¢4-1,54). We claim that some component GD;; is essential in
3Xg-1 — (UiZx41 T) and thus inS,. For if not, theno (0X,-1 — (Uj—x4170); 9D})
would be homeomorphic to the disjoint union ®X, 1 — (\U;_; 1 7;) with some 2-
spheres. HoweverX, 1 — | J;_;,1 T; is a connected surface which has, in the casefhat
is connected, genugs+m — (g — 1) > f + 2> 2, and, in the case that is disconnected
(and non-planar), genug2m —1— (¢ — 1) > 2g + 1 > 3. On the other hand,

a(BX—( U n);w;) =0 (S;9D))

i=k+1
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containsm — 1 tori, corresponding to the tod , U Bé’, p # q, and some other (possibly
empty) components. Therefore

n n g—1
a<axq1—( U n);aD;’;):o(a(aX—( U n);w;);uc,-)
i=k+1 i=k+1 =1

containgn — ¢ > 1 tori. This contradiction completes the proof of the lemma

Lemma 13. Suppose thatF' is non-planar. ThenM (r1, ..., r) is irreducible anda-
irreducible, andF is an incompressible surface M (r1, ..., ).

Proof. Note thatd_W,, is connected, closed surface of genms2. Hence by our
assumptiona W,, must be compressible i and thus inX. But by Lemma 11,
T(Wp; U ,) Z9_Wp x1.500Xp-1— (! 41 Ti) is compressible inX,, 1. By
the preV|ous lemma, each componenBch _1 — ¢y IS incompressible irX,,_1. Hence
by the handle addition lemmX, = t(X;n—_1; cm) isirreducible and each componenta)f
is incompressible inX. Similar discussion works fok’. The lemma now follows since
M(rl,...,rk)sz\Uff(\’. O

We remark that if the genus df is larger than one when it is connected or if the genus
of G is larger than zero whenf is disconnected, theh is also essential iM (1, ..., r¢).

Lemma 14. Suppose thafF is planar.
(a) In the case thatF is connected, we havé > n — 2. Further whenk =
n—2, M(ry,...,rm—2) is a connected sum of two solid tprivhenk =n —
1, M(r1,...,rn—1) is a connected sum of a nontrivial lens space and a solid torus
whenk =n, M(r1,...,r,) is a connected sum of two nontrivial lens spaces.
(b) In the case thaF is disconnected, we hake=n and M (r1, ..., r,) = §2 x S1.

Proof. Case(a): F' is connected. In this case, the surfacdV,, is a torus. Hence by our
assumptiony_ W, is either compressible i or is parallel to one of the toffiy 41, ..., T},.
Subcasqal): 9_W,, is compressible. Thed_W,, bounds a solid torus irX since
X is irreducible. ThusX is a handlebody of genus. If m = 1, thenk =1 and F is
an essential annulus i with 9 F C Tp and X is a solid torus {X = F U A1). Since
F is not parallel toA1, the minimal geometric intersection humberdX between a
component ofd F and the boundary of a meridian disk &f is at least two. Therefore
Xisa punctured nontrivial lens space. So supposesthat1. By Lemma 10,X,,_2
is a handlebody of genus two (canceling the 2-handle correspong with the disk
Eh. p=1,...,m — 2). Consider the disjoint simple closed curvgs 1, ¢,, C 3X,,_2.
Since the boundaries 0)“:“,,”}—1 and E))_, are disjoint fromey,...,cn—2, We have
E™ 1 and E}_, properly embedded irX,, . Further Em—1 (respectivelyd E}_;)
intersects,,_1 (respectively,,) transversely in a single point. AlsX,,_2 — ¢;u—1 U ¢y
is incompressible ik, _», by Lemma 12. We can now apply [2, Lemma 2.3.2] to see that
X = T(Xm—2; cm—1 U cpy) IS @ punctured nontrivial lens space.
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Subcaséa?):0_ W, is parallel to one of 1, ..., T,. ThenX = W,, and by Lemma 11,

Xm_lzr(Wm; U c,,);a_wmxl.

p,p#m

ThereforeX = X =0 (Xm—1; cm) is @ punctured solid torus.

A similar discussion works foX’. Thereforek > n — 2, andM(r1, ..., ry) is either
a connected sum of two nontrivial lens spaces (whean) or a connected sum of a
nontrivial lens space and a solid torus (wheg n — 1) or a connected sum of two solid
tori (whenk =n — 2). Hence the lemma holds in case (a).

Case(b): F is disconnected. We already knew that Lemma 14 holds wheh2. So
suppose that > 2. Recall thab_ W,, is a 2-sphere in this case and thtss a handlebody
of genusn — 1 sinceX is irreducible. Also by Lemma 11,

r(Wm; U c,,> =9 W, x 1.

p,p#m

ThereforeX,,_1 is a 3-ball andX is thus a punctured 3-ball. On the other haxdis
obviously a copy ofS? x I sinceX’ = G x I. Thereforek =n and M(rq,...,r,) =
2x st o

Theorem 2 is a combination of the last two lemmasi

Proof of Corollary 4. By Corollary 3, we only need to show that for any torus component
T; of 9M and for any slope; onT;, M (r;) is not a Seifert fibred space. Suppose otherwise
that M (r;) is a Seifert fibred space. Then singdf(r;) has at least five torus boundary
components, it contains an essential torus. Simteloes not contain closed essential
surface, any essential torus Mi(r;) must intersect and only intersett. It follows that

(r;) is a non-degenerate boundary slope rowMf(of length one). Now we adopt the
notations used in the proof of Theorem 2. Among all essential separating surfakes in
realizing the boundary slope row], let (F, 9 F) C (M, T;) be one which has the minimal
number of boundary components. By Lemma 14, we sedftli@hot a planar surface, and

by Lemma 13F is incompressible i (r;). SinceM (r;) is assumed to be Seifert fibred,
Fis isotopic to either a horizontal surface (transverse to all the fibres) or to a vertical
surface (consisting of fibres). But a8(r;) has non-empty boundary, the closed surfce
cannot be isotopic to a horizontal surface. Bds vertical and thus is an incompressible
torus. HenceF' has genus one. Now as in the proof of Lemmad.3y,, is a connected
closed surface itX which has genus 2 in our current case and which must be compressible
in X sinceM does not contain any closed essential surfaces. Compressiig in X,

we get either one or two tori iiX. Each such torus is either compressible and thus bounds
a solid torus inX or is incompressible and thus parallel to one of boundary toéiit
ThereforeX contains at most two boundary componentsfA similar discussion works

for X’. ThereforeM has at most five boundary components. But this contradicts to our
assumption that > 6, thereby completing the proof of Corollary 40
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