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A PROOF OF THE FINITE FILLING CONJECTURE

STEVEN BOYER & XINGRU ZHANG

Abstract
Let M be a compact, connected, orientable, hyperbolic 3-manifold whose
boundary is a torus. We show that there are at most five slopes on ∂M
whose associated Dehn fillings have either a finite or an infinite cyclic fun-
damental group. Furthermore, the distance between two slopes yielding
such manifolds is no more than three, and there is at most one pair of
slopes which realize the distance three. Each of these bounds is realized
when M is taken to be the exterior of the figure-8 sister knot.

1. Introduction

Let M be a compact connected orientable 3-manifold whose bound-
ary is a torus. We call such 3-manifold a knot exterior. We shall assume
throughout this paper that knot exteriors are hyperbolic, that is, their
interiors admit a complete hyperbolic metric of finite volume. A slope r
on ∂M is the ∂M -isotopy class of an unoriented essential simple closed
curve it contains. The set of slopes on ∂M can be identified with the ±-
pairs of primitive homology classes in H1(∂M) — a slope r determines
a primitive homology class H1(∂M), well-defined up to sign, obtained
by orienting a representative curve for r and considering the homol-
ogy class it carries. As usual, we use ∆(r1, r2) to denote the distance
between two slopes r1 and r2 on ∂M , i.e., their minimal geometric in-
tersection number on ∂M . The distance between two slopes coincides
with the absolute value of the algebraic intersection number between
the corresponding homology classes.
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The Dehn filling of M with slope r is the manifold M(r) obtained
by attaching a solid torus V to M by a homeomorphism of ∂V → ∂M
which sends a meridian curve of V to a simple closed curve in ∂M of the
given slope r. W. Thurston has shown [34] that all but finitely many
fillings of M are hyperbolic manifolds and a fundamental problem is
to determine constraints on the set of slopes r on ∂M for which M(r)
is not hyperbolic. This occurs, for instance, if π1(M(r)) is either a
finite or an infinite cyclic group. The Cyclic Filling Theorem, due to
M. Culler, C. McA. Gordon, J. Luecke and P. Shalen [11], provides the
model for the type of result which can be expected. If C denotes the
set of slopes r on ∂M such that π1(M(r)) is cyclic, then it states that
C contains no more than three slopes and the distance between any two
slopes in C is at most 1. One can visualize this result as follows: the
cyclic filling theorem is equivalent to the statement that there is a basis
α, β of H1(∂M) such that the pairs of classes corresponding to C are
contained in ±{α, β, α+ β}.

Next consider the set F of slopes r on ∂M such that π1(M(r)) is
either finite or infinite cyclic. In his address to the 1990 ICM in Kyoto
[16], Cameron Gordon conjectured that the distance between any two
slopes in F is no more than 3. Since that time his conjecture has
taken on the more definitive form below (see Conjecture B of Gordon’s
problem 1.77 in [21]).

The Finite Filling Conjecture [C. McA. Gordon]. For a hyper-
bolic knot exterior M , there are at most 5 finite or infinite cyclic filling
slopes on ∂M and the distance between any two such slopes is at most
3. Further the distance 3 is realized by at most one pair of slopes.

The number 5 and the distance 3 in the statement of the finite
filling conjecture are the best upper bounds that one can expect —
they are realized on an example due to Jeff Weeks (see Example 11.7).
An elementary argument shows that the conjecture is equivalent to
the statement that there is a basis α, β of H1(∂M) such that ±-pairs
of primitive classes in H1(∂M) corresponding to F are contained in
±{α, β, α+ β, α+ 2β, α+ 3β}.

Let #F denote the number of slopes in F and ∆(F) the maxi-
mum distance between a pair of its slopes. Shortly after Gordon an-
nounced his conjecture, S. Bleiler and C. Hodgson obtained the in-
equalities #F ≤ 24 and ∆(F) ≤ 23 [1] through an analysis of when
the manifolds M(r) admit a Riemannian metric of strictly negative sec-
tional curvature. More recently, S. Boyer and X. Zhang obtained the
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bounds #F ≤ 6 and ∆(F) ≤ 5 in work which should be thought of as
a continuation of [11]. This line of thought is further developed here,
leading to a proof of the conjecture.

Theorem 1.1. The Finite Filling Conjecture is true.

Of particular significance is the case where M is the exterior MK

of a hyperbolic knot K in the 3-sphere. Let µK denote the meridinal
slope of K. This is the slope on ∂M represented by an essential curve
which bounds a disk in a tubular neighbourhood of K. It is conjectured
(see Conjecture A in problem 1.77 [21]) that if r is a slope on ∂MK for
which π1(MK(r)) is a finite group, then ∆(r, µK) ≤ 1.

Theorem 1.2. Let K be a hyperbolic knot in S3 and let MK

denote its exterior. There is at most one finite filling slope r on ∂MK

satisfying ∆(r, µK) ≥ 2, and if there is one, ∆(r, µK) = 2.

Proof. It was proved in [2] that ∆(r, µK) ≤ 2 for any finite filling
slope r. Since the distance between any two slopes r1 �= r2 on ∂MK

for which ∆(rj , µK) = 2 is divisible by 4, Theorem 1.1 implies that not
both of r1, r2 can be finite filling slopes. q.e.d.

Specializing further, suppose that MK is the exterior of an am-
phicheiral hyperbolic knot K in the 3-sphere. If µ, λ ∈ H1(∂MK)
are the primitive classes corresponding to a meridian-longitude pair
for K, then the slopes on ∂MK are in bijective correspondence with
Q ∪ {1

0} via “slope r ↔ ±(pµ + qλ) ↔ p
q”. We remind the reader that

H1(MK(pq ))
∼= Zp.

Theorem 1.3. If K ⊂ S3 is an amphicheiral hyperbolic knot, then
the only fillings, other than the trivial one, which can possibly yield a
manifold with a finite fundamental group, are those corresponding to 1
and −1. In particular, only the binary icosahedral group can occur as
the fundamental group of a manifold with a finite fundamental group
obtained by a nontrivial filling of an amphicheiral knot exterior.

Proof. Note that as K is amphicheiral, MK

(
p
q

)
is homeomorphic

to MK

(
−p
q

)
for all slopes p

q ∈ Q∪ {1
0}. Hence if p

q is a nontrivial finite

filling slope of MK , then −p
q is as well, yielding a manifold with the

same fundamental group. Note that q �= 0 as the slope is nontrivial,
while p �= 0 because otherwise, H1

(
MK

(
p
q

))
would be infinite. Thus

|pq| ≥ 1. On the other hand, the finite filling conjecture implies that 3 ≥
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∆
(
p
q ,

−p
q

)
= 2|pq| and therefore |pq| ≤ 1. Hence p

q = ±1. Consideration
of the abelianizations of the seven types of finite groups which can be
isomorphic to the fundamental group of a 3-manifold (§2) shows that
the fundamental group ofM(±1) is either the trivial group or the binary
icosahedral group. But since ∆(1,−1) = 2, the cyclic filling theorem
implies that the first possibility cannot arise. The proof of the theorem
is therefore complete. q.e.d.

We will sketch our proof of the finite filling conjecture in what re-
mains of the introduction, and then describe the organization of the
paper.

Let π denote the fundamental group of M . The set of characters of
representations of π with values in SL(2,C) may be identified with the
points of a complex affine algebraic set X(M) [12]. Since M is hyper-
bolic, X(M) contains the character χ of a discrete faithful representa-
tion of π in SL(2,C). It turns out that any algebraic component X0 of
X(M) containing χ is a curve [13] and Culler and Shalen have shown
how such a curve determines a Culler-Shalen norm ‖ · ‖ : H1(∂M ; R) →
[0,∞) (see Chapter 1 of [11]). Roughly speaking, if r is the slope as-
sociated to a primitive element α ∈ H1(∂M), then ‖α‖ measures the
number of characters of representations π1(M(r)) → SL(2,C).

The unit ‖ · ‖-ball B is a finited-sided, convex, balanced polygon
which encodes topological information about M in a striking way - the
vertices of B are rational multiples of primitive elements in H1(∂M)
whose associated slopes are the slopes of the boundaries of certain es-
sential surfaces inM . It turns out that amongst all the nontrivial classes
in H1(∂M ; Z), the norm ‖ · ‖ takes on relatively small values on those
classes which correspond to finite or cyclic filling slopes, but which are
not boundary slopes ([11] and [2]). This suggests that not only are there
few such classes, but that they are “close” to each other. In fact this
idea was one of the essential ingredients used in [2] to deduce the in-
equalities #F ≤ 6 and ∆(F) ≤ 5. More can be said though. It follows
from [2] and [4] that the conjecture holds except perhaps for a finite
number of explicitly given norms. The new element we introduce in
this paper to deal with the remaining open cases is the A-polynomial,
due to D. Cooper, M. Culler, H. Gillet, D. Long and P. Shalen [8]. We
describe it now.

Fix a basis µ, λ of π1(∂M) ∼= Z2 and letD0 be the closure in C2 of the
set of all pairs (u, v) where there is some representation ρ : π → SL(2,C)
satisfying:
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• χρ ∈ X0.

• ρ|π1(∂M) is upper-triangular.

• ρ(µ) =
(
u ∗
0 u−1

)
, ρ(λ) =

(
v ∗
0 v−1

)
.

It turns out that D0 is a plane algebraic curve and is thus defined by
a polynomial, called the A-polynomial of X0. In order to exploit this
construction to our best advantage, it is essential for us to work with
a polynomial having integer coefficients. One way to achieve this is
to replace X0 by its orbit CM under the natural Aut(C) ×H1(M ; Z2)-
action on the components of X(M) (§5). The curve CM has various
useful properties, but in particular the plane curve DM it determines
(as above) is defined over the rationals. Hence it is the zero set of a
primitive polynomial p ∈ Z[u, v] without repeated factors. We take the
A-polynomial of CM, written

AM(u, v) =
∑

(m,n)

bm,nu
mvn ∈ Z[u, v],

to be a certain power of p (§6), the power being chosen to better reflect
the close relationship between AM and the Culler-Shalen norm ‖ · ‖M

determined by CM. This definition is a natural consequence of the ap-
plications we have in mind, but we warn the reader that following the
original definitions ([8]), the A-polynomial of CM would have been taken
to be p(u, v).

The Newton polygon NM of AM is the convex hull of {(m,n) | bm,n �=
0}. The notion of width, due to P. Shanahan [31], is introduced in §7 and
is used to show how the geometry of NM determines the Culler-Shalen
norm ‖ · ‖M of CM (§8). One consequence of this relationship is that NM

and BM, the ‖ · ‖M-ball of radius sM = min{‖α‖M | α ∈ H1(∂M) \ {0}}
determine each other in a very nice way.

Theorem 1.4. The Newton polygon NM is dual to BM in the fol-
lowing sense. The line through any pair of antipodal vertices of BM is
parallel to a side of NM. Conversely the line through any pair of antipo-
dal vertices of NM is parallel to a side of BM.

This relation gives, in particular, a different and simple proof of one
of the main results of [8] — the slope of a side of the Newton polygon
is a boundary slope of M (see Corollary 8.4).
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Our proof of the finite filling conjecture can now be described. Con-
sider one of the putative Culler-Shalen norms where the work in [2] and
[4] does not suffice to prove the conjecture, and suppose that M is a
hyperbolic knot exterior for which ‖·‖M coincides with this norm. From
the preceding discussion, we can determine precisely what the polygon
NM would have to be. Now the coefficients of AM are constrained in var-
ious ways. For instance Cooper and Long have shown that bm,n = ±1 if
(m,n) is a corner of NM [10]. Further it follows from [8] that the edge
polynomials of AM (see §6) are products of cyclotomic polynomials. We
show in §11 that the assumption that a filling of M along a given slope
yields a manifold with a finite fundamental group implies that the roots
of an associated specialization of the variables in the A-polynomial are
either ±1 or certain roots of unity. It turns out that in each of the
cases we consider, except one, we are able to use these constraints to
show that the conjecture holds. In this one bad case, the constraints
allow us to determine AM, but do not lead to a contradiction. Never-
theless, in the appendix we are able to prove that this polynomial is not
the A-polynomial of any hyperbolic knot exterior M . The idea behind
our argument goes back to [8]. There it is described how work of C.
Hodgson shows that if the given polynomial was the A-polynomial of a
hyperbolic 3-manifold M , then the real 1-form

ω = ln |u|d(arg(v)) − ln |v|d(arg(u))

is exact on the smooth part of DM = A−1
M (0). In particular the integral

of ω over any closed, piecewise-smooth loop in DM is zero. We find an
explicit closed curve in DM on which this condition fails. Arguments of
this type were first used by D. Cooper and D. Long in [9, §10]. We are
grateful to Daryl Cooper for his suggestions concerning our calculations
and for verifying them with his own computer programme.

The paper is organized as follows. In §2, 3, 4 some of the work of
[2] is recalled, refined and further developed. The action of Aut(C) ×
H1(M ; Z2) on the components of the character variety X(M) is dis-
cussed in §5. The theory of A-polynomials is broached in §6 and that
of width in §7 with an eye to deriving various relationships between
A-polynomials and Culler-Shalen norms in §8. We specialize these con-
structions to the canonical curve CM and develop its particular proper-
ties in §9 and §10. Applications to Dehn filling is the purpose of §11.
Our proof of the finite filling conjecture is outlined in §12, where we
split it into five propositions which are examined successively over the
paper’s next five sections. In the last section we make some general



a proof of the finite filling conjecture 93

remarks on finite surgery on knots in the 3-sphere and give a new proof
that hyperbolic 2-bridge knots admit no nontrivial finite surgeries (due
to Delman [14] and independently to Tanguay [32]). Finally, there is
an appendix which provides a proof that a certain polynomial in Z[u, v]
cannot be the A-polynomial of a hyperbolic knot exterior.

2. Preliminaries

Our references for the basic notions, terminology and notation relat-
ing to the topology of 3-manifolds are [19] and [20], for knot theory [29],
for algebraic geometry [30], and for the SL(2,C)-character varieties of
3-manifolds [12].

All manifolds are assumed to be orientable and smooth, unless oth-
erwise specified. By a surface we mean a compact 2-manifold. By an
essential surface in a compact 3-manifold we mean a properly embed-
ded, incompressible surface no component of which is ∂-parallel and no
2-sphere component of which bounds a 3-ball. A 3-manifold is called
irreducible if it does not contain an essential 2-sphere, and reducible
otherwise.

Throughout the paper, M will denote a hyperbolic knot exterior. A
slope r on ∂M is called a boundary slope if there is an essential surface
F in M such that ∂F ∩ ∂M is a nonempty set of parallel simple closed
curves on ∂M of slope r. A boundary slope r on ∂M is said to be strict
if there is an essential surface F in M such that F is not the fiber in
any representation of M as a fiber bundle over the circle and such that
∂F ∩ ∂M is a nonempty set of parallel simple closed curves on ∂M of
slope r.

The finite groups which can arise as the fundamental groups of
closed, orientable 3-manifolds are contained among the seven following
families [25]:

C-type: Cyclic groups Zj = Z/jZ for j ≥ 1.

Even D-type: D4n × Zj with n ≥ 2 even, j ≥ 1 and gcd(n, j) = 1,
where D4n = 〈x, y | x2 = (xy)2 = yn〉 is the binary dihedral group of
order 4n.

Odd D-type: D(2k, 2l+ 1)×Zj for k ≥ 2, j ≥ 1, l ≥ 1, gcd(2(2l+
1), j) = 1, where D(2k, 2l + 1) = 〈x, y | x2k

= 1, y2l+1 = 1, xyx−1 =
y−1〉. Note that D(22, 2l+1) is isomorphic to the binary dihedral group
D4(2l+1) = 〈x, y | x2 = (xy)2 = y2l+1〉 of order 4(2l + 1).
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T-type: T (8, 3k) × Zj for k ≥ 1, j ≥ 1, gcd(6, j) = 1, where
T (8, 3k) = 〈x, y, z | x2 = (xy)2 = y2, z3k

= 1, zxz−1 = y, zyz−1 = xy〉.
Note that T (8, 3) is isomorphic to the binary tetrahedral group T24 =
〈x, y | x2 = (xy)3 = y3, x4 = 1〉.

O-type: O48 ×Zj for j ≥ 1, gcd(6, j) = 1, where O48 = 〈x, y | x2 =
(xy)3 = y4, x4 = 1〉 is the binary octahedral group.

I-type: I120 ×Zj for j ≥ 1, gcd(30, j) = 1, where I120 = 〈x, y | x2 =
(xy)3 = y5, x4 = 1〉 is the binary icosahedral group.

Q-type: Q(8n, k, l)× Zj , where Q(8n, k, l) = 〈x, y, z | x2 = (xy)2 =
y2n, zkl = 1, xzx−1 = zr, yzy−1 = z−1〉, n, k, l, j are relatively prime
odd positive integers, r ≡ −1 (mod k) and r ≡ 1 (mod l).

We call a slope r on ∂M a finite filling slope or a cyclic filling slope
if M(r) has, respectively, a finite or a cyclic fundamental group. If r is
a slope on ∂M such that the fundamental group of M(r) is of one of
the types listed above, then we shall say that r is a finite filling slope of
that type.

Lemma 2.1. If M admits a finite filling slope r, then H1(M ; Q) ∼=
Q. Further:

(1) If r is a T -type or I-type slope, then H1(M(r); Z2) ∼= 0 and
H1(M ; Z2) ∼= Z2.

(2) If r is an O-type or odd D-type slope, then H1(M(r); Z2) ∼= Z2

and H1(M ; Z2) ∼= Z2 or Z2 ⊕ Z2.

(3) If r is an even D-type or Q-type, then H1(M(r); Z2) ∼= Z2 ⊕ Z2.

Proof. The proof is a simple homological argument which can be
easily deduced from [2, Lemma 5.1]. q.e.d.

Proposition 2.2 ([11]). If r is a finite or cyclic filling slope in ∂M
and is also a boundary slope, then ∆(r, r′) ≤ 1 for any other finite or
cyclic filling slope r′.

Proof. If the first Betti number of M is 1, then the conclusion of the
lemma follows from [11, Theorem 2.0.3]. If the first Betti number of M
is larger than 1, then by Lemma 2.1, both r and r′ must be (infinite)
cyclic filling slopes. Thus ∆(r, r′) ≤ 1 by the cyclic surgery theorem of
[11]. q.e.d.
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We shall frequently use V and L to denote H1(∂M ; R) and H1(∂M ;
Z) respectively. Once we have fixed an ordered basis {µ, λ} of L, we
shall often identify the pair (V,L) with (R2,Z2) by associating µ to
(1, 0) and λ to (0, 1).

By a pair of elements in V we mean a ± pair {(a, b), (−a,−b)}.
A slope on ∂M determines, and is determined by, a pair of primitive
elements of L. We call a primitive homology class a boundary class, or
a strict boundary class, or a cyclic filling class or a finite filling class,
etc., if the corresponding slope has that property.

For a primitive class α ∈ L corresponding to a slope r on ∂M , the
manifold M(r) will also be denoted by M(α).

If two slopes r1 and r2 correspond to ±(p1, q1),±(p2, q2) ∈ Z2, then
basic surface topology can be used to show that ∆(r1, r2) coincides
with the absolute value of the algebraic intersection number between
the classes in H1(∂M) corresponding to (p1, q1) and (p2, q2). Thus

∆(r1, r2) = |p1q2 − p2q1|.
Consequently, for any two elements α and β in H1(∂M ; Z), we use
∆(α, β) to denote the absolute value of their algebraic intersection num-
ber.

Any rank 2 subgroup of the homology group L will be referred to as
a sublattice.

The following lemma will prove useful later in the paper.

Lemma 2.3. Let L̃ be a sublattice of L = H1(∂M ; Z) of index
q ≥ 1. Suppose that α ∈ L̃ is primitive in L.

(1) If β ∈ L is a class such that ∆(α, β) = 1, then L̃ = {jα +
kqβ | j, k ∈ Z}.

(2) γ ∈ L̃ if and only if ∆(α, γ) ≡ 0 (mod q).

Proof. Since α and qβ are both in L̃ and span a sublattice of L
of index q, part (1) holds. To prove part (2), let γ = jα + mβ ∈ L.
Then ∆(α, γ) = |m|. In particular, ∆(α, γ) ≡ 0 (mod q) if and only if
|m| ≡ 0 (mod q). By part (1) the latter holds if and only if γ ∈ L̃.

q.e.d.

For an irreducible complex affine curve C, we denote its smooth
projective model by C̃. Note that C̃ is birationally equivalent to C and
that any birational equivalence between them induces an isomorphism
between the function fields C(C) and C(C̃). Thus any rational function
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f on C corresponds to a rational function f̃ on C̃. For f̃ ∈ C(C̃) and
point x ∈ C̃, we use Zx(f̃) to denote the multiplicity of x as a zero of
f̃ . The multiplicity of x as a pole of f̃ will be denoted by Πx(f̃).

A birational equivalence from C̃ to C is regular at all but a finite
number of points of C̃, called ideal points of C̃. Normalization [30,
Chapter II, §5] determines a surjective regular map ν : Cν→C of C
where Cν is a nonsingular affine set which can be identified with the
subset of C̃ whose complement C̃ \ Cν is the set of ideal points of C̃.

Let C be an affine curve having n irreducible components C1, . . . , Cn
and set C̃ = C̃1�· · ·� C̃n, Cν = Cν1 �· · ·�Cνn (here “�” denotes disjoint
union). An ideal point of C̃ is an ideal point of C̃i for some i, i.e., a
point of C̃ \ Cν .

A point x on a complex, affine, algebraic set X is called a simple
point if it is contained in a unique algebraic component X0 of X and
is a smooth point of X0 [30]. The point x is simple on X if and only
if the dimension of the Zariski tangent space of X at x is equal to the
dimension of some irreducible component of X which contains x.

3. The type of a finite filling slope

In order to develop the theory of finite filling classes in the most
useful way, we need to refine our notion of the type of a finite filling
slope.

Recall that a representation ρ ∈ R(G) is reducible if ρ(G) can be
conjugated into the set of upper triangular matrices. We call a repre-
sentation ρ ∈ R(G) virtually reducible if there is a finite index subgroup
G̃ of G such that the restriction of ρ to G̃ is reducible. The reducibility
of a representation in R(G) is determined by its character [12, Corollary
1.2.2] and so we call χ ∈ X(G) reducible, or virtually reducible, if it is
the character of a representation having that property. A representation
or character which is not reducible is called irreducible.

Suppose that α is a finite filling class and that ρ : π1(M(α)) →
PSL(2,C) is an irreducible representation. Let T12, I60, O24 and Dn

denote, respectively, the tetrahedral group, the icosahedral group, the
octahedral group, and the dihedral group of order 2n. It follows from
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[2, §5] that

image(ρ) ∼=


Dn, for some n ≥ 2 if α is D or Q-type
T12 if α is T -type
I60 if α is I-type
O24 or D3 if α is O-type.

Let ψ be the composition π1(M) → π1(M(α))
ρ→ PSL(2,C) and define

φ = ψ|π1(∂M).

Lemma 3.1. Let ρ, ψ, and φ be as above and set q = |φ(π1(∂M))|.
If α has O-type assume that image (ρ) ∼= O24. Then:

(1) q ∈ {1, 2} if α is D or Q-type and ψ can be arbitrarily closely
approximated on R(M) by non-virtually reducible representations.

(2) (a) q = 3 if α is T -type and H1(M ; Z) has no 3-torsion.

(b) q ∈ {1, 2} if α is T -type and H1(M ; Z) has nontrivial 3-
torsion.

(3) q ∈ {1, 2, 3, 5} if α is I-type.

(4) (a) q ∈ {2, 4} if α is O-type and H1(M ; Z) has no 2-torsion.

(b) q ∈ {1, 2, 3} if α is O-type and H1(M ; Z) has nontrivial 2-
torsion.

Proof. Suppose first of all that α is of type T . Since φ(π1(∂M)) is
cyclic and is a subgroup of T12, it has order q ∈ {1, 2, 3}. If H1(M ; Z)
has no 3-torsion then H1(∂M ; Z3) → H1(M ; Z3) ∼= Z3 is surjective, and
hence the composition H1(∂M ; Z3) → H1(M ; Z3) → H1(M(α); Z3)

σ→
H1(T12; Z3) is as well, where σ is the homomorphism induced by ρ.
It follows that the cyclic group φ(π1(∂M)) does not lie in [T12, T12] ∼=
Z2 ⊕ Z2, and therefore φ(π1(∂M)) ∼= Z3, i.e., q = 3.

Suppose next that α is of type T and H1(M ; Z) has nontrivial 3-
torsion. Then H1(M ; Z3) ∼= A ⊕ B where A = image(H1(∂M ; Z3) →
H1(M ; Z3)) ∼= Z3

∼= B. Since Z3
∼= H1(M(α); Z3) ∼= (A/〈image(α)〉) ⊕

B we see that the composition H1(∂M ; Z3) → H1(M(α); Z3) is zero.
This implies that φ(π1(∂M)) ⊂ [T12, T12] ∼= Z2 ⊕ Z2, and therefore
q ∈ {1, 2}.

The cases where α is of type I or O are handled in a similar fashion.
Next assume that α isD orQ-type. The argument here is necessarily

more involved as the torsion in the image of ρ has arbitrarily high order.
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Without loss of generality we may suppose that q > 1. Now ψ is
a point on R(M), the PSL(2,C)-representation variety of π1(M) ([3]).
Arguing as in Lemmas 4.3 and 4.4 of [2], it can be shown that the
dimension of the Zariski tangent space of R(M) at ψ is 4. It follows
that ψ is a simple point of R(M) (cf. §2) and henceX0, the component of
the PSL(2,C)-character variety of π1(M) which contains the character
of ψ, is a curve. The hypotheses of part (1) of this lemma imply that X0

contains non-virtually reducible characters. The argument in the proof
of [2, Theorem 2.1] can then be adapted to a PSL(2,C) setting to see
that there is an index 2 sublattice L̃ of L, which contains α, on which
φ is trivial (compare [2, Lemma 6.1(3)]). Thus q = 2. q.e.d.

Definition 3.2. Suppose that α is a T, I or O-type class and fix
an irreducible representation ρ : π1(M(α)) → PSL(2,C) whose image
is O24 if α has type O. According to [2, Lemma 5.3], ρ is well-defined
up to conjugacy, and an outer automorphism of its image when α is of

type I. If φ denotes the composition π1(∂M) → π1(M) → π1(M(α))
ρ→

PSL(2,C), we shall say that a finite filling class has type T (q) if it
is of type T and q = |φ(π1(∂M))|. Similarly we define I(q)-type and
O(q)-type filling classes.

A simple consequence of these definitions is the following useful re-
sult.

Proposition 3.3. Suppose that α is a finite filling class of type
T (q), I(q) or O(q). If β ∈ L is another finite filling class such that
∆(α, β) ≡ 0 (mod q), then it also has, respectively, type T (q), I(q) or
O(q).

Proof. Say α has type T (q) and fix a representation ρ : π1(M(α)) →
PSL(2,C) whose image is the tetrahedral group T12. If we denote by φ

the composition π1(∂M) → π1(M) → π1(M(α))
ρ→ T12, then from the

definition of q and the hypothesis that ∆(α, β) ≡ 0 (mod q) we deduce

that φ(β) = ±I. Thus the composite π1(M) → π1(M(α))
φ→ T12 factors

through π1(M(β)). It is shown in [2, Lemma 5.3] that if the fundamental
group of a 3-manifold is finite and admits a homomorphism onto the
tetrahedral group, then it is T -type. From the definition of q we now
see that β is actually of type T (q). q.e.d.
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4. Norm curve components of X(M)

In this section we collect some basic facts and properties of the
norm curve components of the SL(2,C)-character variety of M , and
of the Culler-Shalen norms which they determine on the 2-dimensional
real vector space H1(∂M ; R). These norms were originally defined in
[11] and applied to the study of cyclic and finite fillings in [11] and
[2]. See [3] for a discussion of Culler-Shalen norms in the setting of the
PSL(2,C)-character variety of M .

For a finitely generated group G, we use R(G) to denote the set
of all representations of G with values in SL2(C). It is well known
that R(G) has the structure of a complex affine algebraic set [12]. The
character of an element ρ ∈ R(G) is the function χρ : G→C defined
by χρ(g) = trace(ρ(g)). The set of characters of the representations
in R(G), denoted by X(G), is also a complex affine algebraic set [12]
and is called the SL(2,C)-character variety of G. The surjective map
t : R(G)→X(G) which sends a representation to its character is regular
in the sense of algebraic geometry. For a compact manifold W , R(W )
and X(W ) will denote R(π1(W )) and X(π1(W )) respectively.

For each g ∈ G, the evaluation map Ig : X(G)→C defined by
Ig(χρ) = χρ(g) is regular [12] and so fg = (Ig + 2)(Ig − 2) is as well. It
is easy to verify that Ig, and hence fg, is unchanged if we replace g by
its inverse or any of its conjugates in G.

Consider a hyperbolic knot exterior M . The Hurewicz homomor-
phism induces an isomorphism H1(∂M ; Z) ∼= π1(∂M), and so we can
identify L = H1(∂M ; Z) with a subgroup of π1(M), well-defined up
to conjugacy. Each δ ∈ L therefore determines a regular function
Iδ : X(M) → C. An irreducible 1-dimensional algebraic component
X1 of X(M) is called a norm curve component (for reasons to be made
clear below) if Iδ is nonconstant on X1 for every δ ∈ L\{0}. Since M is
an orientable hyperbolic manifold, X(M) contains the characters of dis-
crete faithful representations [12, Proposition 3.1.1]. It is proven in [11,
Proposition 1.1.1] that any irreducible component of X(M) containing
such a character is a norm curve component of X(M).

Proposition 4.1. Let X1 be a norm curve component of X(M).
Then all but finitely many characters in X1 are irreducible.

Proof. It follows from Lefschetz duality that the rank of the natural
homomorphism H1(∂M ; Z) → H1(M ; Z) is 1, and so there is a nonzero
class α ∈ H1(∂M ; Z) which is homologically trivial in M . Thus if χ is
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the character of an abelian representation, we have χ(α) = 2.
Now every reducible character in X(M) is easily seen to be the

character of a diagonal, and therefore abelian, representation of π1(M).
Hence it follows from the previous paragraph that if X1 contains in-
finitely many reducible characters, then Iα|X1 is constantly equal to 2,
contradicting the assumption that X1 is a norm curve. Thus we are
done. q.e.d.

The set of virtually reducible characters in a norm curve is also
constrained. Our next result shows that if this set is infinite, then
the norm curve consists of the characters of very special collection of
representations.

Let D denote the set of diagonal matrices in SL(2,C) and consider
the group

N =
{(

z 0
0 z−1

)
,

(
0 w

−w−1 0

) ∣∣∣ z, w ∈ C∗
}
.

which contains D as an index 2 subgroup.

Proposition 4.2. Let X1 be a norm curve component of X(M)
which contains infinitely many virtually reducible characters. Then there
is an index 2 subgroup π̃ ⊂ π1(M) such that χ|π̃ is reducible for each
χ ∈ X1. Indeed each element of X1 is the character of a representation
ρ : π1(M) → N and π̃ = ρ−1(D) for the generic χρ ∈ X1.

Proof. Suppose that ρ ∈ R(M) is irreducible and π̂ is a finite index
normal subgroup of π1(M) such that ρ|π̂ is reducible, but not central.
The non-centrality of ρ|π̂ implies that there are at most two lines in C2

which are invariant under the π̂-action determined by ρ. Since π̂ is a
normal subgroup of π1(M), these one or two lines are actually invariant
under the action of π1(M) on C2 determined by ρ. The irreducibility of ρ
implies that there are exactly two lines L1, L2 ⊂ C2 invariant under this
action. Fix any A ∈ SL2(C) which takes L1∪L2 to the coordinate axes.
Then the image of ρ1 = AρA−1 lies in N . It follows that π̃ = ρ−1

1 (D) is
an index 2 subgroup of π1(M) on which ρ is diagonal.

Now suppose that {χ1, χ2, χ3, . . . } ⊂ X1 is an infinite set of virtually
reducible characters. By Proposition 4.1 we may assume that each χj is
the character of an irreducible representation ρj ∈ R(M). We claim that
we may assume that each ρj conjugates into N . This follows from the
preceding paragraph if we suppose that infinitely many of the ρj have
infinite image. Suppose then that each ρj has finite image. From the
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classification of finite subgroups of SL(2,C) (see e.g., [36, Lemma 2.6.5])
we see that ρj(π1(M)) is either the binary tetrahedral group, the binary
octahedral group, the binary icosahedral group, or a binary dihedral
group. There are only finitely many characters of representations in
R(M) of the first three types, so without loss of generality, the image
of each ρj is a binary dihedral group, and hence conjugate into N .

Assume then that each ρj conjugates intoN and define π̃j = ρ−1
j (D),

an index 2 subgroup of π1(M). Since there are only finitely many such
subgroups we may assume that π̃j = π̃k for each j, k ≥ 1. Then χj |π̃1 is
reducible for each j. But the set of characters in X1 which are reducible
when restricted to π̃1 is an algebraic subset of X1 (cf. [12, Corollary
1.2.2]) and therefore χ|π̃1 is reducible for each χ ∈ X1. One may now
argue, as in the first paragraph of the proof, that each irreducible char-
acter χ ∈ X1 is the character of a representation ρ ∈ R(M) for which
ρ(π1(M)) ⊂ N and ρ−1(D) = π̃1. The density of such characters in X1

implies that the proposition holds. q.e.d.

Our next two corollaries show that norm curve components of X(M)
contain only finitely many virtually reducible characters as long as M
is the exterior of a knot in the 3-sphere, or a manifold which admits a
finite filling which has neither a cyclic nor dihedral fundamental group.

Corollary 4.3. Suppose that X1 is a norm curve component of
X(M). If H1(M ; Z2) ∼= Z2, then X1 contains only finitely many virtu-
ally reducible characters.

Proof. Suppose that X1 contains infinitely many virtually reducible
characters. According to Proposition 4.2, there is an index 2 subgroup
π̃ of π for which χρ is reducible for each χρ ∈ X1. Let p : M̃ → M be
the 2-fold cover determined by π̃. Restriction determines a regular map
p∗ : X1 → X(M̃) whose image determines a curve Y1 in X(M̃).

Let T̃ be a boundary component of M̃ and consider α̃ ∈ H1(T̃ ; Z) \
{0}. Since X1 is a norm curve, the identity Ip∗(α̃)|X1 = Iα̃|Y1 ◦ p∗ im-
plies that Iα̃|Y1 is nonconstant. Then by Proposition 4.1, ∂M̃ cannot
be connected and so π1(∂M) ⊂ π1(M̃). But then there is a surjection
π → π/π̃ = Z2 which vanishes on π1(∂M). This is impossible as the hy-
pothesis that H1(M ; Z2) ∼= Z2 implies that H1(∂M ; Z2) → H1(M ; Z2)
is surjective. Thus there are only finitely many virtually reducible char-
acters in X1. q.e.d.
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Corollary 4.4. Suppose that X1 is a norm curve component of
X(M) and that it contains the character of a representation ρ with finite
image which is neither cyclic nor binary dihedral. Then X1 contains
only finitely many virtually reducible characters.

Proof. Our hypothesis on ρ implies that it does not conjugate into
N . Thus the corollary follows from Proposition 4.2. q.e.d.

Now consider a norm curve component X1 of X(M). The method
of [11, §1.4] can be used to define a norm ‖ · ‖1 on H1(∂M ; R) which
satisfies (and is determined by) the identity

‖δ‖1 = degree(fδ|X1) = 2degree(Iδ|X1) for each element δ ∈ L.

Our next proposition lists some of the basic properties of this norm.

Proposition 4.5.

(1) Let

s1 = min{ ‖δ‖1 | δ ∈ L \ {0}}
B1 = {v ∈ V | ‖v‖1 ≤ s1}.

Then B1 is a compact, convex, finite-sided, balanced (i.e., B1 =
−B1) polygon whose vertices are rational multiples of boundary
classes in L. They are strict boundary classes if X1 contains non-
virtually reducible characters.

(2) There are at most three (pairs of) classes of L which lie on ∂B1

but are not vertices. Their mutual distances are at most 1.

(3) Choose an ordered basis {µ, λ} for L such that ‖µ‖1 = s1 and
identify V with the µλ-plane (as discussed in §2). Then if (a, b) ∈
B1, we have |b| ≤ 2. Moreover, if there is some (a, b) ∈ B1 with
b = 2, then (a, b) ∈ L and B1 is a parallelogram with vertices
±(1, 0) and ±(a, b).

Proof. Part (1) is proved as in [11, §1.4], though see [11, Proposition
1.2.7] and [3, Proposition 5.2 (5)] for the strictness of the boundary
slopes associated to vertices of B1 when X1 contains the character of
a non-virtually reducible representation. Part (2) can be found in [11,
§1.1], while part (3) is proved in [2, Lemma 6.4]. q.e.d.

It was shown in [11] and [2] how to obtain restrictions on the norms
of finite or cyclic filling classes, which are not strict boundary classes,
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from norm curves which contain the character of a discrete, faithful
representation. These results can be extended to general norm curves.

Proposition 4.6. Suppose that X1 is a norm curve component and
that α = (m,n) ∈ L is a finite or cyclic filling class which is not a strict
boundary class.

(1) If α ∈ L is a cyclic filling class, and X1 contains a character which
is not virtually reducible, then ‖α‖1 = s1. Hence α ∈ ∂B1 but is
not a vertex of B1.

(2) If α is a D-type or a Q-type filling class and X1 contains a char-
acter which is not virtually reducible, then

(i) ‖α‖1 ≤ 2s1,

(ii) ‖α‖1 ≤ ‖β‖1

for any nonzero element β ∈ L such that ∆(α, β) ≡ 0 (mod 2).

(3) (a) If α is a T (q)-type filling class and H1(M ; Z) has no 3-
torsion, then q = 3 and

(i) ‖α‖1 ≤ s1 + 4,
(ii) ‖α‖1 ≤ ‖β‖1

for any nonzero element β ∈ L such that ∆(α, β) ≡
0 (mod q).

(b) If α is a T (q)-type filling class and H1(M ; Z) has nontrivial
3-torsion, then q ∈ {1, 2} and

(i) ‖α‖1 ≤ s1 + 4,
(ii) ‖α‖1 ≤ ‖β‖1

for any nonzero element β ∈ L such that ∆(α, β) ≡
0 (mod q). If ‖α‖1 > s1, then q = 2.

(4) If α is an I(q)-type filling class, then q ∈ {1, 2, 3, 5} and

(i) ‖α‖1 ≤ s1 + 8,

(ii) ‖α‖1 ≤ ‖β‖1

for any nonzero element β ∈ L such that ∆(α, β) ≡ 0 (mod q). If
‖α‖1 > s1, then q > 1.

(5) (a) If α is an O(q)-type filling class and H1(M ; Z) has no 2-
torsion, then q ∈ {2, 4}, and
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(i) ‖α‖1 ≤ s1 + 6,
(ii) ‖α‖1 ≤ ‖β‖1

for any nonzero element β ∈ L such that ∆(α, β) ≡
0 (mod q).

(b) If α is an O(q)-type filling class and H1(M ; Z) has nontrivial
2-torsion, then q ∈ {1, 2, 3}, and

(i) ‖α‖1 ≤ s1 + 12,
(ii) ‖α‖1 ≤ ‖β‖1

for any nonzero element β ∈ L such that ∆(α, β) ≡
0 (mod q). If ‖α‖1 > s1, then q > 1.

Proof. Most of the details of the argument can be found in the proof
of [2, Theorem 2.3], taking into account Lemma 2.3, Proposition 4.1,
and Corollary 4.4 of this paper. The fact that q > 1 when ‖α‖1 > s1
follows from [2, Lemmas 4.1, 4.2, and 5.3]. q.e.d.

Corollary 4.7. Suppose that α and β are finite filling classes, but
not strict boundary classes. If α is of type T (q), I(q) or O(q) and
∆(α, β) ≡ 0 (mod q), then ‖β‖1 = ‖α‖1.

Proof. The result follows immediately from Propositions 3.3 and
4.6. q.e.d.

The final result of this section will prove useful in the proof of the
finite surgery conjecture.

Corollary 4.8. Suppose that X1 is a norm curve component which
contains a non-virtually reducible character. Choose a basis {µ, λ} for
L such that ‖µ‖1 = s1 and identify H1(∂M ; R) with the µλ-plane. If
α = (j, 2) is a finite or cyclic filling class, but is not a strict boundary
class, and q ≤ 2, then α is neither a C, D, Q, T (q), O(q) or I(q)-type
filling class.

Proof. Suppose otherwise. Then there is an integer m such that
α = (2m + 1, 2) is, say, a D-type filling class (the other classes can be
treated similarly). Since ∆(α, µ) = 2, Lemma 2.1 implies that both
α and µ are contained in the index two sublattice L̃ of L described in
Proposition 4.6 (2). Thus ‖α‖1 ≤ ‖µ‖1 = s1, i.e., α = (2m+1, 2) ∈ ∂B1.
Hence Proposition 4.5 (3) implies that (2m + 1, 2) is a vertex of B1,
and thus is a strict boundary class by Proposition 4.5 (2). But this is
contrary to our assumption. q.e.d.
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5. The Aut(C) ×H1(M ; Z2)-action

Let Aut(C) denote the group of field automorphisms of the complex
numbers. As we shall see below, the group Aut(C)×H1(M ; Z2) acts in
a natural fashion on the set of norm curve components of X(M). A key
fact for us is that the orbits of this action are defined over the rationals.

The group Aut(C) acts on both Cn and the ring C[z1, z2, . . . , zn]:
for φ ∈ Aut(C), (c1, c2, . . . , cn) ∈ Cn, and polynomial∑

m∗

am∗z
m1
1 zm2

2 . . . zmn
n ∈ C[z1, z2, . . . , zn],

we have

φ(c1, c2, . . . , cn) = (φ(c1), φ(c2), . . . , φ(cn))

φ

(∑
m∗

am∗z
m1
1 zm2

2 . . . zmn
n

)
=
∑
m∗

φ(am∗)z
m1
1 zm2

2 . . . zmn
n .

These actions are compatible in the sense that if V (J) denotes the
algebraic set associated to an ideal J in C[z1, z2, . . . , zn], then

φ(V (J)) = V (φ(J))

for each φ ∈ Aut(C). Similarly if V ⊂ Cn is an algebraic set and
J(V ) ⊂ C[z1, z2, . . . , zn] is its ideal, then

φ(J(V )) = J(φ(V )).

Algebraically definable notions such as “dimension”, “irreducible”,
“component”, “simple point”, etc. are preserved by the actions.

We say that an ideal J ⊂ C[z1, z2, . . . , zn] is defined over a subfield
K of C if it is generated as a C[z1, z2, . . . , zn]-module by polynomials
f1, . . . , fm ∈ K[z1, z2, . . . , zn]. If J is defined over K and each field over
which J is defined contains K, we say that K is the minimal field of
definition for J . The following theorem is due to André Weil (see e.g.,
[22, §III, Theorem 7 and §III.5]).

Theorem 5.1 (Weil). Each ideal J ⊂ C[z1, z2, . . . , zn] has a mini-
mal field of definition. Further, the algebraic set V (J) ⊂ Cn is invariant
under φ ∈ Aut(C) if and only if φ restricts to the identity on the mini-
mal field of definition of J .

Corollary 5.2. An ideal J ⊂ C[z1, z2, . . . , zn] is defined over Q if
and only if V (J) is invariant under each automorphism of C.
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Next consider a finitely generated group G. The action of Aut(C)
on SL2(C) given by

φ

((
a b
c d

))
=
(
φ(a) φ(b)
φ(c) φ(d)

)
determines actions of Aut(C) on R(G) and X(G) where for ρ ∈ R(G)
we have

φ(ρ)(g) = φ(ρ(g))

and for χρ ∈ X(G),

φ(χρ)(g) = χφ(ρ)(g) = φ(χρ(g)).

These actions are compatible with those described above under the al-
gebraic embeddings of R(G) and X(G) into affine space discussed in
[12]. Hence by Corollary 5.2, both R(G) and X(G) are defined over
Q. Indeed the same holds for the union of the algebraic sets in any
Aut(C)-orbit of components of either R(G) or X(G).

Lemma 5.3. Let X1 ∈ X(M) be a norm curve component of X(M)
and φ ∈ Aut(C).

(1) Then X2 = φ(X1) is also a norm curve component of X(M).
Indeed ‖ · ‖2 = ‖ · ‖1. Thus the norm polygon B1 defined by X1

and the norm polygon B2 defined by X2 coincide.

(2) If X1 contains a character which is not virtually reducible, then
so does X2 = φ(X1).

Proof. For each δ ∈ L there is a commutative diagram

X1
φ � X2

C

fδ|X1

� φ � C.

fδ|X2

�

Since the degree of a map between curves is the cardinality of the inverse
image of a generic point in its range, and since φ is a bijection (non-
continuous in general), we see that the degree of fδ|X1 and that of fδ|X2

coincide. Thus ‖ · ‖1 = ‖ · ‖2.
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Part (2) of the lemma is easy to deduce, for if π̃ is a subgroup
of π1(M) and ρ ∈ R(M) restricts to a reducible representation on π̃,
there is a line L1 in C2 invariant under the π̃-action determined by ρ.
Then φ(L1) is invariant under the π̃-action determined by φ(ρ). Thus
ρ virtually reducible if and only if φ(ρ) = φ ◦ ρ is. q.e.d.

Two other actions of interest to us are those determined byH1(G; Z2)
= Hom(G, {±1}) on R(G) and X(G). For ε ∈ H1(G; Z2), ρ ∈ R(G) and
χρ ∈ X(G) we define

ε(ρ)(g) = ε(g)ρ(g)

and
ε(χρ)(g) = χε(ρ)(g) = ε(g)χρ(g).

These actions are by algebraic isomorphisms and thus permute the al-
gebraic components of X(G), conserving dimension.

When G = π1(M), we shall identify H1(G; Z2) with H1(M ; Z2).

Lemma 5.4. Let X1 ∈ X(M) be a norm curve component and
ε ∈ H1(M ; Z2).

(1) Then X2 = ε(X1) is also a norm curve component of X(M).
Indeed ‖ · ‖2 = ‖ · ‖1. Thus the norm polygon B1 defined by X1

and the norm polygon B2 defined by X2 coincide.

(2) If X1 contains a character which is not virtually reducible, then
so does X2 = ε(X1).

Proof. For each δ ∈ L there is a commutative diagram

X1
ε � X2

C

fδ|X1

� = � C.

fδ|X2

�

Since ε|X1 is an isomorphism, we see that ‖δ‖1 = ‖δ‖2. Thus ‖ · ‖1 =
‖ · ‖2.

The conclusion of part (2) is obvious. q.e.d.

The actions of Aut(C) and of H1(M ; Z2) commute, and so there are
combined actions of the direct product Aut(C) × H1(G; Z2) on R(G)
and X(G). From Corollary 5.2 we derive the following proposition.
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Proposition 5.5. Let Y be the union of the algebraic sets in an
Aut(C)×H1(G; Z2)-orbit of components of either R(G) or X(G). Then
Y is defined over Q.

6. A-polynomials

In this section, we discuss the A-polynomial of M associated to a
norm curve component X1 and defined with respect to a fixed ordered
basis B = {µ, λ} of π1(∂M). The basic reference is [8]. Bearing in mind
its use in the proof of the finite filling conjecture, it is most natural for
us to choose a different normalization for the A-polynomial from that
found in [8] — our A-polynomial is a power of theirs.

Fix a basis B = {µ, λ} of π1(∂M). Given a norm curve component
X1 of X(M), one can construct an algebraic plane curve D1 as follows.
Let i∗ : X(M)→X(∂M) be the regular map induced by the inclusion
induced homomorphism i# : π1(∂M)→π1(M). Let Λ be the set of
diagonal representations of π1(∂M), i.e.,

Λ = {ρ ∈ R(∂M) | ρ(µ), ρ(λ) are diagonal matrices}.

Then Λ is a subvariety of R(∂M) and it is readily seen that t|Λ : Λ →
X(∂M) is a degree 2 surjective map. We may identify Λ with C∗ ×
C∗ through use of the eigenvalue map PB : Λ→C∗ × C∗. It sends a

representation ρ ∈ Λ to (u, v) ∈ C∗ × C∗ if ρ(µ) =
(
u 0
0 u−1

)
and

ρ(λ) =
(
v 0
0 v−1

)
.

By hypothesis the function Iµ is nonconstant on X1 and it clearly
factors through X(∂M). Thus if Y1 = i∗(X1) is the algebraic closure
of i∗(X1) in X(∂M), then Y1 is an irreducible curve in X(∂M). Next
let W1 denote the curve t|−1

Λ (Y1) in Λ, and finally define D1 to be the
algebraic closure of PB(W1) in C×C. The following diagram summarizes
the construction.

Λ ⊃W1 = t|−1
Λ (Y1)

∼= � PB(W1) ⊂ PB(W1) = D1 ⊂ C2

X1
i∗� Y1 = i∗(X1) ⊂ X(∂M)

t

�
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The curve D1 is characterized by the conditon that generically speaking,
a point (u, v) lies on D1 if and only if there is a representation ρ ∈ R(M)
with χρ ∈ X1 such that ρ|π1(∂M) ∈ Λ and the upper left hand entries
of ρ(µ) and ρ(λ) are u and v respectively.

Let p1(u, v) be a defining polynomial of D1 with no repeated factors.
Note that by construction, D1 contains neither of the coordinate axes
so that p1 is not divisible by either u or v. Set

A1(u, v) = p1(u, v)d1

where d1 is the degree of the map i∗ : X1→Y1. We call A1(u, v) the
A-polynomial of X1 with respect to the basis B = {µ, λ}. Note that
A1(u, v) is uniquely determined up to multiplication by a nonzero com-
plex constant.

Remark 6.1. (1) In [8] the authors considered the A-polynomial
of the whole character variety of M . Specifically, they proved that
each algebraic component of X(M) gives rise, by the process described
above, to a plane algebraic set of dimension less than or equal to 1.
Let D be the the union of the curves which arise from this process.
The A-polynomial of [8] is a polynomial with no repeated factors which
defines D. In particular they do not take into account the degree d1 of
i∗ : X1 → X(∂M). Thus in the notation above, our p1(u, v) is always
a factor of their A-polynomial, but if d1 > 1, our A-polynomial is not.
Our choice of normalization is, of course, a matter of convenience, but
it is also quite natural. This will become evident in §8.

(2) Very little seems to be known about the degree d1 of i∗ : X1 →
X(∂M), though Nathan Dunfield has shown that if X1 contains the
character of a discrete, faithful representation, then d1 ≤ |H1(M ; Z2)|/2
[15, Corollary 3.2].

Proposition 6.2 ([8]). There are integers r, s ≥ 0 such that

A1(u, v) = εurvsA1(u−1, v−1)

where ε ∈ {±1}.
Proof. This follows directly from the construction of A1(u, v). One

verifies that two elements ρ, ρ′ ∈ Λ have the same image under the map

t|Λ if and only if when ρ(µ) =
(
u 0
0 u−1

)
and ρ(λ) =

(
v 0
0 v−1

)
,

then ρ′(µ) =
(
u−1 0
0 u

)
and ρ′(λ) =

(
v−1 0
0 v

)
. It follows that D1
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is invariant under the involution (u, v) �→ (u−1, v−1). Hence there are
integers r, s ≥ 0 and a constant c ∈ C∗ for which urvsA1(u−1, v−1) =
cA1(u, v). It is simple to deduce that c ∈ {±1}. q.e.d.

Corollary 6.3. Suppose that A1(u, v) =
∑
am,nu

mvn is the A-
polynomial of a norm curve component X1 of X(M). Let m0 be the
maximal exponent of A1(u, v) in u and n0 the maximal exponent in v.
Then am,n = εam0−m,n0−n for all m and n and some fixed constant
ε ∈ {±1}.

The Newton polygon of a two variable polynomial p(u, v) =∑
am,nu

mvn is the convex hull in R2 of the set {(m,n) | am,n �= 0}.
A polygon in R2 is called balanced if it is invariant under reflection in
some point of R2.

Proposition 6.4 ([8]). The Newton polygon N1 of A1(u, v) is finite
sided, convex and balanced. If N1 has an edge of slope q/p, then pµ+qλ
is a boundary class of the manifold M .

Proof. (Sketch). The first statement follows from the definition
of the polygon and Corollary 6.3. The second is proved exactly as in
[8]. The idea is that an appropriate Puiseaux parameterization of D1

associated to the given edge determines the asymptotic behaviour of
both Iµ and Iλ at some ideal point of X1. This behaviour was shown in
[12] to determine a boundary class of M , which in this instance can be
shown to be pµ + qλ. (In §6, we will give another proof of this result
which does not appeal to Puiseaux expansions.) q.e.d.

The A-polynomial has many interesting properties, one of the most
remarkable we describe next. Let N1 be the Newton polygon of the
A-polynomial A1(u, v) =

∑
am,nu

mvn of a norm curve X1. Fix an edge
E of N1 having slope q/p, say, so that there is an integer k for which
qm− pn = k for each (m,n) ∈ E. Then after taking appropriate roots
we have

∑
(m,n)∈E

am,nu
mvn =

{
v

−k
p
∑

(m,n)∈E am,n(uv
q
p )m if p �= 0

u
k
q
∑

(m,n)∈E am,n(u
p
q v)n if q �= 0.

The edge polynomials associated to E are

fE(z) =
∑

(m,n)∈E
am,nz

m if p �= 0
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and
gE(z) =

∑
(m,n)∈E

am,nz
n if q �= 0.

When both p, q �= 0 it is easy to verify that z0 is a nonzero root of fE
if and only if there is a nonzero root z1 of gE such that zp0 = zq1. The
significance of these roots is explained in the following proposition.

Proposition 6.5 ([8]). Let E be an edge polynomial of the Newton
polygon N1. Then every root of an edge polynomial associated to E is a
root of the unity. Further if α = pµ+qλ is the boundary class associated
to the edge E and z0, respectively z1, is a nonzero root of fE, respectively
gE, then fα takes on the value (zp0 − z−p0 )2, respectively (zq1 − z−q1 )2, at
some ideal point of X̃1. In particular if one of ±1 is a root of either fE
or gE, then fα takes on the value zero at some ideal point of X̃1.

We shall see in §8 that the A-polynomial of a norm curve component
of X(M) determines the associated Culler-Shalen norm. The proof will
be based on our next result.

Proposition 6.6. Let X1 be a norm curve component of X(M)
and suppose that ‖µ‖1 = 2n1 and ‖λ‖1 = 2m1. Then m1 is the largest
power of u which occurs in A1(u, v) while n1 is the largest power of v.

Proof. We show that ‖µ‖1 = 2n1 where n1 is the largest power of v
in A(u, v). The other equality is derived similarly.

Recall the plane curve D1 associated to X1 and the polynomial
p1(u, v) ∈ C[u, v], without repeated factors, which defines it. Consider
the commutative diagram

W1

∼= � D1 ∩ (C∗ × C∗)
⊂� C∗ × C∗

������
ψ

�
X1

i∗

degree d1

� Y1

t|W1 degree 2
�

C∗

pru
�

���������
Iµ|X1

� �������������������

z �→ z + z−1

degree 2

C

Jµ

�

where pru is projection on the first factor, ψ is defined by the commu-
tativity of the diagram, and Jµ : Y1 → C sends χ to χ(µ). It follows
that

‖µ‖1 = 2degree(Iµ|X1) = 2d1degree(ψ).
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Now degree(ψ) is the cardinality of ψ−1(u0) for a generic point u0 ∈ C∗,
and this, in turn, equals #{v ∈ C∗ | p1(u0, v) = 0}. To compute this
quantity, think of p1 as a polynomial in v, say

p1(u, v) =
k∑
s=0

hs(u)vs.

Since A1 = pd11 we have n1 = d1k. Expand ∂p1
∂v in a similar fash-

ion and consider the resultant Resv(p1,
∂p1
∂v ) ∈ C[u]. Since p1 has no

repeated factors, this resultant is nonzero (see, for instance, [23, Corol-
lary, §V.10]). From the properties of the resultant we see in particular
that for the generic u0 ∈ C∗, p1(u0, v) is a polynomial of degree k in v
with distinct roots. Hence degree(ψ) = k and so from above

‖µ‖1 = 2degree(Iµ|X1) = 2d1degree(ψ) = 2d1k = 2n1.

q.e.d.

Corollary 6.7. If µ is not a boundary class parallel to an edge of
the Newton polygon N1. Then A1(1, v) is a polynomial of degree ‖µ‖1

2
with nonzero constant term. Similarly A1(u, 1) is a polynomial of degree
‖λ‖1

2 with nonzero constant term.

Proof. We shall continue to use the notation in the proof of the pre-
vious proposition. Recall that A1(u, v) = p1(u, v)d1 = (

∑k
s=0 hs(u)v

s)d1
where n1 = kd1. Thus

A1(u, v) = h0(u)d1 + (terms involving v, . . . , vn1−1) + hk(u)d1vn1 .

Since µ is not a boundary class, there is no edge of N which is horizontal
(Proposition 6.4). Hence h0 and hk are nonzero constant polynomials.
The desired result is then a consequence of this fact and Proposition 6.6.

q.e.d.

It is necessary to extend our notions to more general curves inX(M).
To that end let C = X1∪· · ·∪Xk where X1, X2, . . . , Xk are norm curve
components of X(M). Let ‖ · ‖j be the Culler-Shalen norm of Xj and
Aj(u, v) its A-polynomial with respect to a basis {µ, λ} of π1(∂M).
Define the Culler-Shalen norm of C, denoted ‖ · ‖C : H1(∂M ; R) →
[0,∞), by

‖ · ‖C = ‖ · ‖1 + ‖ · ‖2 + · · · + ‖ · ‖k,
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and the A-polynomial of C, with respect to {µ, λ}, by

AC(u, v) = A1(u, v)A2(u, v) . . . Ak(u, v).

Note that AC is well-defined up to multiplication by a nonzero complex
constant. Of particular interest to us is the case where C consists of the
curves in an Aut(C) ×H1(M ; Z2) orbit.

Suppose thatX1 is a norm curve component ofX(M) and fix (φ, ε) ∈
Aut(C) ×H1(M ; Z2). By Lemmas 5.3 and 5.4, X2 = (φ, ε)(X1) is also
a norm curve component of X(M) and in fact ‖ · ‖2 = ‖ · ‖1.

Next consider the A-polynomial of X2 with respect to a fixed basis
{µ, λ} of π1(∂M). Let Di be the plane curve associated to Xi and
pi(u, v) a polynomial, without repeated factors, which defines it. From
the construction of the plane curves Di, it is not difficult to see that

D2 = {(ε(µ)φ(u), ε(λ)φ(v)) | (u, v) ∈ D1},
which we denote by (φ, ε)(D1). Hence we may take

p2(u, v) = φ(p1)(ε(µ)u, ε(λ)v),

which we denote by (φ, ε)(p1(u, v)). Let d(X1) ∈ Z+ denote the degree
of the restriction map X1 → i∗(X1) ⊂ X(∂M) which is induced from
the inclusion i : π1(∂M)→π1(M).

Lemma 6.8. Suppose that X1 is a norm curve component in X(M).
Then d((φ, ε)(X1)) = d(X1).

Proof. Both (φ, ε) : X1 → (φ, ε)(X1) and (φ, ε ◦ i) : i∗(X1) →
(φ, ε◦i)(i∗(X1)) are injective functions, so the conclusion is an immediate
consequence of the commutativity of the following diagram.

X1
i∗ � i∗(X1)

(φ, ε)(X1)

(φ, ε)

� i∗ � i∗((φ, ε)(X1)) = (φ, ε ◦ i)(i∗(X1)).

(φ, ε ◦ i)
�

q.e.d.

Corollary 6.9. Suppose that X1 is a norm curve component of
X(M) and (φ, ε) ∈ Aut(C) ×H1(M ; Z2). If X2 = (φ, ε)(X1) then

A2(u, v) = φ(A1)(ε(µ)u, ε(λ)v).
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We finish this section with a proposition describing some of the
main properties of the A-polynomial of an Aut(C) × H1(M ; Z2)-orbit
of a norm curve component of X(M).

Proposition 6.10. Suppose that X1 is a norm curve component in
X(M). Let X1, X2, . . . , Xk be the distinct components in its Aut(C) ×
H1(M ; Z2)-orbit. Set C = X1 ∪ X2 ∪ · · · ∪ Xk and let AC(u, v) =∑
am,nu

mvn be the A-polynomial of C with respect to a basis {µ, λ}
of π1(∂M). Let N be the Newton polygon of AC. Then:

(1) After multiplying by a nonzero complex constant, AC(u, v) may be
taken to have integer coefficients whose greatest common denomi-
nator is 1. Such a representative is well-defined up to sign.

(2) Let m0 be the maximal exponent of u occurring in AC(u, v) and
n0 that of v. Then for some ε ∈ {±1}, am,n = εam0−m,n0−n for
all m and n.

(3) The coefficients of AC(u, v) indexed by the corners of N are equal
to ±1.

(4) The nonzero roots of any edge polynomial fE(z) or gE(z) deter-
mined by AC(u, v) are roots of the unity. In fact fE(z) and gE(z)
are products of a power of z with some cyclotomic polynomials.
Further if α = (p, q) is the boundary class associated to the edge
E and if ±1 is a root of either fE(z) or gE(z), then fα takes the
value zero at some ideal point of C̃.

(5) Let i : ∂M →M be the inclusion and i∗ : H1(∂M ; Z2)→H1(M ; Z2)
the associated homomorphism.

(i) If i∗(µ) �= 0 and i∗(λ) = 0, then am,n = 0 when m is odd.
(ii) If i∗(µ) = 0 and i∗(λ) �= 0, then am,n = 0 when n is odd.
(iii) If i∗(µ) �= 0 and i∗(λ) �= 0, then am,n = 0 when m+n is odd.

Proof. Let Dj be the plane curve associated to Xj . Since X1, X2,
. . . , Xk consists of several Aut(C)-orbits, the discussion prior to Lem-
ma 6.8 implies that D1, D2, . . . , Dk consists of several Aut(C)-orbits as
well, though note that there is a positive integer r, possibly larger than
1, such that each orbit occurs r times. It follows from Corollary 5.2 that
D1 ∪D2 ∪ · · · ∪Dk is defined over Q, and so after multiplication by a
suitable nonzero complex constant,

p1(u, v)p2(u, v) . . . pk(u, v) ∈ Q[u, v].
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By Lemma 6.8,

AC(u, v) = Πk
j=1pj(u, v)

d(Xj) = (Πk
j=1pj(u, v))

d1 ∈ Q[u, v].

After multiplying by a further nonzero rational constant we can assume
that AC(u, v) ∈ Z[u, v] and that its coefficients have no common integer
factors, other than ±1. This determines AC(u, v) up to sign. Part (1)
of the lemma is therefore proved.

Next note that the conclusion of part (2) is a consequence of Propo-
sition 6.2 and the identity AC(u, v) = A1(u, v)A2(u, v) . . . Ak(u, v).

For part (3), we observe that the proof of the main theorem in [10]
applies verbatim to our situation, by the normalization we have chose
in part (1) for AC(u, v).

Part (4) follows from Proposition 6.5.
Finally consider part (5). From the definition of C and Corollary

6.9, it follows that A(u, v) = A(ε(µ)u, ε(λ)v) for any ε ∈ H1(M ; Z2).
If µ �∈ ker(H1(∂M ; Z)→H1(M ; Z)) but λ is, there is ε ∈ H1(M ; Z2)
such that ε(µ) = −1 and ε(λ) = 1. Hence A(u, v) = A(−u, v) for each
(u, v) ∈ C2. Therefore all odd exponents of u in A(u, v) must be zero.
The other two cases are handled in a similar fashion. q.e.d.

7. Width

In this section we define and study the width function of a polygon,
originally introduced in [31]. It is the key ingredient to understanding
the relationship between Culler-Shalen norms and the A-polynomial.

We consider R2 as a standard uv-plane. A polygon N in R2 is called
balanced if it is invariant under reflection in some point of R2. Two
points on N are called antipodes if they are related by such a reflection.

Let N ⊂ R2 be a convex, balanced polygon whose vertices lie in
Z2. The width function w = wN : Q ∪ {∞} → Z is defined by taking
w(q/p) = k if k+1 is the number of lines in the plane of slope q/p which
contain points of both Z2 and N .

The group SL2(Z) acts on both R and R2 in the following fashions.

If Ψ =
(
a b
c d

)
∈ SL2(Z) then for u ∈ R, we set Ψ(u) = au+b

cu+d , and for

(u, v) ∈ R2, we set Ψ(u, v) = (au + bv, cu + dv). Since Ψ takes lines in
R2 of slope u ∈ R∪{∞} to lines of slope (Ψ(u−1))−1, we readily deduce
the following lemma.
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Lemma 7.1. If N is a convex, balanced polygon in R2 whose ver-
tices lie in Z2 and Ψ ∈ SL(2,Z), then Ψ(N) is a convex, balanced
polygon whose vertices lie in Z2 and

wΨ(N)((Ψ(p/q))−1) = wN(q/p).

Fix a convex, balanced polygon N ⊂ R2 whose vertices lie in Z2.
Starting from a fixed vertex v1 of N and passing around N in a counter-
clockwise fashion, we may order the remaining vertices v2, v3, . . . , vt, v∗1,
v∗2, . . . , v∗t where vj and v∗j are antipodes. The plane is decomposed into
a collection of sectors by the lines based at the origin whose slopes are
those of the edges of N . The sectors are numbered in a natural fashion
S1, S2, . . . , St, S

∗
1 , S

∗
2 , . . . , S

∗
t as indicated in the figure below. Note that

for each j, Sj and S∗
j are antipodal sectors.

V

V

V

V

V

V 1

2

3

*

* *

1

1

2

23

3

θθ

θ

θ

θ

θ1

1

1

2

2

2

3

3

S

SSS

S

S

S

S

3

*

*

*

θ3
θ3

θ1

θ1θ2

θ2
N

0

Figure 1: Sectors of a balanced polygon.

Lemma 7.2. Let q/p be the slope of a line based at the origin which
lies in Sj ∪ S∗

j . If vj = (m,n) and v∗j = (m∗, n∗), then

wN(q/p) = |(m−m∗)q − (n− n∗)p|.

Proof. Let [vj , v∗j ] denote the line segment in the plane spanned by vj
and v∗j . By our choice of q/p, if wN(q/p) = k, then the number of lines in
the plane of slope q/p which contain points of both Z2 and [vj , v∗j ] is k+1.

Choose integers s, t such that qs−pt = 1 and define Ψ =
(

q −p
−t s

)
∈

SL2(Z). Then from Lemma 7.1 we see that wN(q/p) = wΨ(N)(∞), while
wΨ(N)(∞) is easily seen to be the absolute value of the u-coordinate of
Ψ(m,n)−Ψ(m∗, n∗) = ((m−m∗)q−(n−n∗)p,−(m−m∗)t+(n−n∗)s).
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Thus

wN(q/p) = |(m−m∗)q − (n− n∗)p|.

q.e.d.

In our next result we obtain a closed expression for width in terms
of the coordinates of the vertices of N .

Lemma 7.3. Let N be a convex, balanced polygon whose vertices
lie in Z2 and are numbered consecutively v1, . . . , vt, v∗1, . . . , v∗t as above.
Denote by (mj , nj) the coordinates of vj and by (mt+1, nt+1) those of
v∗1. Then for each pair of relative prime integers p, q,

wN(q/p) =
t∑

j=1

|(mj+1 −mj)q − (nj+1 − nj)p|.

Proof. Recall the sectors S1, . . . , St, S
∗
1 , . . . , S

∗
t determined by N and

the given ordering of its vertices. Now the ordering of the vertices of
N depends only on the choice of v1 and since N is balanced, the sum∑t

j=1 |(mj+1 − mj)q − (nj+1 − nj)p| remains unchanged if we make
any other choice. Thus we may assume that (p, q) ∈ S1. Set αj =
(mj+1 −mj , nj+1 − nj) and observe that by Lemma 7.2

wN(q/p) = |(mt+1 −m1)q − (nt+1 − n1)p|

=

∣∣∣∣∣∣
t∑

j=1

{(mj+1 −mj)q − (nj+1 − nj)p}
∣∣∣∣∣∣

=

∣∣∣∣∣∣
t∑

j=1

αj · (q,−p)
∣∣∣∣∣∣

where αj · (q,−p) denotes the scalar product between αj and (q,−p).
Now by construction α1, α2, . . . , αt all lie in the sector S∗

2 ∪S∗
3 ∪· · ·∪S∗

t .
On the other hand, since (q,−p) is obtained by rotating (p, q) ∈ S1

by an angle of π/2 in a counterclockwise direction, it lies in the sector
disjoint from (S∗

2 ∪S∗
3 ∪ · · ·∪S∗

t )\{(0, 0)} and bounded by the half-rays
throuh the vectors obtained by rotating α1 clockwise by π/2 and αt
counterclockwise by π/2 (Figure 2). In particular αj · (q,−p) ≤ 0 for
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each j ∈ {1, 2, . . . , t}. Thus

wN(q/p) =

∣∣∣∣∣∣
t∑

j=1

αj · (q,−p)
∣∣∣∣∣∣

=
t∑

j=1

|αj · (q,−p)|

=
t∑

j=1

|(mj+1 −mj)q − (nj+1 − nj)p|

as claimed. q.e.d.

1

2 3

1S

S

S

S

*

* *U U ...... U S*t

α

α

1

t

0

(p,q)

(q,-p). .

Figure 2: Calculating the width of q/p from sectors.

Proposition 7.4. Let N be a convex, balanced polygon whose ver-
tices lie in Z2. Then N determines a norm ‖·‖N : R2 → [0,∞) satisfying

‖(p, q)‖N = wN(q/p)

for each pair of coprime integers p, q. Further, if the vertices of N
are numbered in counterclockwise order v1, v2, . . . , vt, v∗1, v∗2, . . . , v∗t and
(mj , nj) are the coordinates of vj and (mt+1, nt+1) those of v∗1, then

‖(u, v)‖N =
t∑

j=1

|(mj+1 −mj)v − (nj+1 − nj)u|.
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Proof. According to the previous lemma, for any pair of relatively
prime integers p, q we have

wN(q/p) =
t∑

j=1

|(mj+1 −mj)q − (nj+1 − nj)p|.

Define
‖ · ‖N : R2 → [0,∞)

by

‖(u, v)‖N =
t∑

j=1

|(mj+1 −mj)v − (nj+1 − nj)u|.

Then ‖ · ‖N is clearly a norm and has all the required properties. q.e.d.

Two convex, balanced polygons in R2 are called dual if each edge
of one polygon is parallel to the line segment between some pair of
antipodal vertices of the other.

o

o

Figure 3: A pair of dual polygons.

Corollary 7.5. The boundary of a ‖ · ‖N-ball is a convex, balanced
polygon which is dual to N .

Proof. It follows from Lemmas 7.2 and 7.3 that

‖(u, v)‖N = |(mj −m∗
j )v − (nj − n∗j )u| for all (u, v) ∈ Sj ∪ S∗

j .

In particular if B1 is the ball of radius 1 of ‖ · ‖N , then ∂B1 ∩ Sj and

∂B1 ∩ S∗
j are line segments of slope

nj−n∗
j

mj−m∗
j
. It follows that ∂B1 is a

balanced, convex polygon whose edges are parallel to the line segments
in the plane whose endpoints are antipodal vertices of N and whose
vertices lie on the half-rays ∂S1 ∪ ∂S2 ∪ · · · ∪ ∂St ∪ ∂S∗

1 ∪ · · · ∪ ∂S∗
t . By
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construction, the boundaries of these half-rays are parallel to the edges
of N . Thus N and B1 are dual polygons. q.e.d.

8. Relations between Culler-Shalen norms and A-polynomials

One of our main goals in this section is to show that the norm
polygon defined by a curve in X(M) and the Newton polygon of the
associated A-polynomial are dual in the sense of the previous section.
We shall continue to use the notation developed previously in the pa-
per: for a norm curve component X1 of X(M), ‖ · ‖1 will denote
the Culler-Shalen norm it defines, B1 the ‖ · ‖1-ball of radius s1 =
min{‖δ‖1 | δ ∈ L \ {0}}, D1 the plane algebraic curve associated to
X1, p1(u, v) a polynomial without repeated factors which defines D1, d1

the degree of the restriction-induced map X1 → i∗(X1) ⊂ X(∂M), and
A1(u, v) = [p1(u, v)]d1 the A-polynomial associated to X1 relative to the
basis {µ, λ}. Recall that A1(u, v) is well-defined up to multiplication by
a nonzero complex constant and is divisible by neither u nor v.

If the ordered basis {µ, λ} of π1(∂M) is replaced by another {σ =

µpλq, ζ = µsλt}, where Ψ =
(
p q
s t

)
∈ SL2(Z), and Â1(w, z) is the

A-polynomial of X1 with respect to {σ, ζ}, then there are integers a, b
for which

Â1(w, z) = wazbA1(wtz−q, w−szp).

Hence we deduce the following lemma.

Lemma 8.1. Consider a new basis {σ, ζ} = {µpλq, µsλt} of π1(∂M)

where Ψ =
(
p q
s t

)
∈ SL2(Z). Let N1 be the Newton polygon of the

A-polynomial of X1 relative to {µ, λ} and N̂1 the Newton polygon of
the A-polynomial of X1 relative to the basis {µpλq, µsλt}. Then up to a
translation in the plane,

N̂1 = (Ψtranspose)−1(N1).

Proposition 8.2. Let X1 be a norm curve component of X(M).
Fix an ordered basis {µ, λ} of H1(∂M ; Z) ⊂ H1(∂M ; R) and let A1(u, v)
be the A-polynomial of X1 relative to it. If N1 is the Newton polygon of
A1(u, v) and (p, q) ∈ L is a primitive class, then

‖(p, q)‖1 = 2wN1(q/p).
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Hence for each (u, v) ∈ R2,

‖(u, v)‖1 = 2‖(u, v)‖N1 .

Proof. Since A1 is not divisible by u, Proposition 6.6 implies that
‖λ‖1 = 2wN1(∞). Similarly ‖µ‖1 = 2wN1(0).

Consider a pair of relatively prime integers p, q. Choose s, t ∈ Z

such that pt − qs = 1, set Ψ =
(
q −p
t −s

)
∈ SL2(Z) and observe

that Ψ(p, q) = (0, 1). Then from Lemma 7.1 we see that wN1(q/p) =
wΨ(N1)(∞). From Lemma 8.1 we see that up to a translation in the
plane, Ψ(N1) is the Newton polygon of X1 relative to the basis
{µ−sλ−t, µpλq} of π1(∂M). Hence from the previous paragraph we see
that 2wΨ(N1)(∞) = ‖pµ+ qλ‖1. The proof is completed by noting that
any two norms on R2 which agree on Z2 are identical. q.e.d.

Corollary 8.3. Under the hypotheses of Proposition 8.2, the New-
ton polygon N1 of A1 and the norm polygon B1 of ‖·‖1 are dual polygons.

Proof. The conclusion follows from Proposition 8.2 and Corollary 7.5.
q.e.d.

Let X1 be a norm curve component of X(M). It is shown in [11,
Lemma 1.4.1] that if x is an ideal point of X̃1, then one of the following
holds:

(1) Πx(f̃r) = 0 for each slope r on ∂M .

(2) There is a unique slope r for which Πx(f̃r) = 0.

We say that a slope r is associated to an ideal point x of X̃1 (and vice
versa) if f̃r(x) is finite while f̃r′(x) = ∞ for some other slope r′. By
[11], a slope r associated to an ideal point of X1 must be a boundary
slope. Also note that there may be several ideal points of X1 associated
to a given slope r.

Corollary 8.4 ([8]). There is an edge of slope q/p of the Newton
polygon N1 of the A-polynomial of X1 if and only if pµ+qλ is a boundary
class associated to some ideal point of X1.

Proof. A primitive pair ±(pµ+qλ) corresponds to a slope associated
to some ideal point of X1 if and only if it is a rational multiple of some
vertex of the norm polygon B1 of ‖ · ‖1 ([2, Lemma 6.1]). Since B1 is
dual to the Newton polygon N1, the latter occurs if and only if N1 has
an edge of slope q/p. q.e.d.



122 s. boyer & x. zhang

Our next result gives another characterization of ‖ · ‖1 in terms of
A1. Define the span of a Laurent polynomial p(z) ∈ C[z, z−1] to be

span(p) = max degreez p(z) − min degreez p(z).

Proposition 8.5. Suppose that pµ + qλ is not a boundary class
associated to an ideal point of X1. Then

‖pµ+ qλ‖1 = 2spanA1(z−q, zp).

Proof. The case where pµ + qλ equals µ or λ follows from Corol-
lary 6.7. For the general case fix a basis {σ, ζ} = {µpλq, µsλt} of π1(∂M)
where pt − qs = 1. We noted before Lemma 8.1 that if Â1(w, z) is the
A-polynomial of X1 with respect to {σ, ζ}, then there are integers a, b
for which

Â1(w, z) = wazbA1(wtz−q, w−szp).

Since pµ+qλ is not a boundary class associated to an ideal point of X1,
Corollary 6.7 implies that ‖pµ + qλ‖1 is twice the degree of Â1(1, z) =
zbA1(z−q, zp). Thus ‖pµ+ qλ‖1 = 2spanA1(z−q, zp). q.e.d.

It is shown in [11, §1.4] that for any slope r, there is a linear function
φr : H1(∂M ; R) → R such that

|φr(δ)| =
∑

ideal points x of X̃1

associated to r

Πx(f̃δ)

for each δ ∈ H1(∂M ; Z). It follows that for each η ∈ H1(∂M ; R) we
have

‖η‖1 =
∑

slopes r

|φr(η)|.

Our next result shows how the Newton polygon determines |φr|.
Proposition 8.6. Suppose that p and q are coprime integers such

that q/p is the slope of an edge of the Newton polygon N1 of A1(u, v).
Suppose further that the endpoints of this edge have coordinates (m,n)
and (m′, n′). If r denotes the slope associated to ±(pµ+ qλ), then

|φr(u, v)| = 2|(m−m′)v − (n− n′)u|.

Proof. Let v1, v2, . . . , vt, v∗1, v∗2, . . . , v∗t be an ordering of the vertices
of N1, as in the previous section. Let (mj , nj) be the coordinates of vj
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and (mt+1, nt+1) those of v∗1. Choose relatively prime pairs of integers
(p1, q1), (p2, q2), . . . , (pt, qt) such that (mj+1−mj , nj+1−nj) is an integral
multiple of (pj , qj), say

(mj+1 −mj , nj+1 − nj) = lj(pj , qj).

Then by Corollary 8.4, the slopes associated with the ideal points of X1

are r1, r2, . . . , rt where rj corresponds to ±(pjµ+ qjλ). Since φrj (pj , qj)
= 0, there is a nonzero integer l′j for which

φrj (u, v) = |l′j ||pjv − qju|.
Thus if (u, v) ∈ R2 ≡ V ,

t∑
j=1

|l′j ||pjv − qju|

=
t∑

j=1

|φrj (u, v)|

= ‖(u, v)‖1

= 2‖(u, v)‖N1 by Proposition 8.2

=
t∑

j=1

2|(mj+1 −mj)v − (nj+1 − nj)u| by the definition of ‖ · ‖N1

=
t∑

j=1

2|lj ||pjv − qju|.

Thus for each (u, v) ∈ R2,
∑t

j=1(2|lj |−|l′j |)|pjv−qju| = 0. Since (pj , qj)
and (pk, qk) are linearly independent for j �= k, it follows that for each
value of the index j,

φrj (u, v) = |l′j ||pjv − qju| = 2|lj ||pjv − qju|
= 2|(mj+1 −mj)v − (nj+1 − nj)u|

as claimed. This completes the proof. q.e.d.

Next we extend the results of this section to more general curves
in X(M). Consider C = X1 ∪ .... ∪ Xk ⊂ X(M) where each Xj

is a norm curve component of X(M). Recall, from §6 that the A-
polynomial of C, with respect to a basis {µ, λ} of π1(∂M), is given by
AC(u, v) = Πk

j=1Aj(u, v), where Aj is the A-polynomial of Xj with re-
spect to {µ, λ}. Let NC, N1, . . . , Nk be the associated Newton polygons
and wNC

, wN1 , . . . , wNk
their width functions.
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Lemma 8.7. wNC
= wN1 + wN2 + · · · + wNk

.

Proof. Since wNC
(0) is the largest power of v occurring in AC(u, v),

and similarly for each wNj
(0), it is clear that wNC

(0) = wN1(0)+wN2(0)+
· · · + wNk

(0).
Let p, q be an arbitrary pair of coprime integers and choose s, t ∈ Z

such that tp − sq = 1. Set Ψ =
(

t −s
−q p

)
and observe that by

Lemma 7.1 we have wNC
(q/p) = wΨ(NC)(0). Now Ψ(NC) is the Newton

polygon of the Laurent polynomial

ÂC(w, z) = AC(wpzq, wszt)
= A1(wpzq, wszt)A2(wpzq, wszt) . . . Ak(wpzq, wszt)
= Â1(w, z)Â2(w, z) . . . Âk(w, z).

Hence if N̂C, N̂j are the Newton polygons of ÂC, Âj , j = 1, . . . , k, then
N̂C = Ψ(NC) and N̂j = Ψ(Nj). Thus

wNC
(q/p) = wΨ(N)C

(0)
= wN̂C

(0)
= wN̂1

(0) + wN̂2
(0) + · · · + wN̂k

(0)
= wΨ(N1)(0) + wΨ(N2)(0) + · · · + wΨ(Nk)(0)
= wN1(q/p) + wN2(q/p) + · · · + wNk

(q/p).

This completes the proof. q.e.d.

Theorem 8.8. Suppose that X1, X2, . . . , Xk is a collection of dis-
tinct norm curve components of X(M) and set C = X1 ∪X2 ∪ · · · ∪Xk.
Let ‖ · ‖C be the Culler-Shalen norm of C and ‖ · ‖NC

the width function
norm determined by the Newton polygon NC of the A-polynomial of C.
Then the following results hold:

(1) 2‖ · ‖NC
= ‖ · ‖C.

(2) If pµ + qλ is not a boundary class associated to an ideal point of
C, then

‖pµ+ qλ‖C = spanAC(zq, z−p).

(3) NC is balanced and dual to the norm polygon BC of ‖ · ‖C.

(4) NC has an edge of slope q/p if and only if BC has a vertex whose
associated slope is q/p.
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(5) Suppose that r is a slope on ∂M and φr the linear functional on
H1(∂M ; R) which satisfies

|φr(α)| =
k∑
j=1

 ∑
ideal points x of X̃j

associated to r

Πx(fα)


for α ∈ H1(∂M ; Z). If (m,n) and (m′, n′) are the coordinates of
the endpoints of an edge of N of slope q/p, then

|φr(u, v)| = 2|(m−m′)v − (n− n′)u|.

Proof. Let ‖·‖j be the Culler-Shalen norm of Xj and Nj the Newton
polygon of its A-polynomial.

If p, q are relatively prime integers, then

2‖(p, q))‖NC
= 2wNC

(q/p)

= 2
k∑
j=1

wNj
(q/p) by Lemma 8.7

= 2
k∑
j=1

‖(p, q)‖Nj

=
k∑
j=1

‖(p, q)‖j by Proposition 8.2

= ‖(p, q)‖C.

Hence (1) holds.
Next observe that part (2) is a consequence of the definitions and

Proposition 8.5, while part (3) follows from (1), Corollary 7.5 and Corol-
lary 6.3. Finally (4) and (5) are proven exactly as the analogous results
are handled in the proofs of Corollary 8.4 and Proposition 8.6. q.e.d.

9. The canonical curve and norm

In this section we define the canonical curve in the character vari-
ety of a hyperbolic knot exterior and study the associated norm and
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A-polynomial. We shall continue to use the notations established in
previous sections.

According to the rigidity theorem for hyperbolic 3-manifolds of fi-
nite volume [34, §5], there are exactly two conjugacy classes of dis-
crete faithful representations of π1(M) in PSL2(C). Further the char-
acters of these two conjugacy classes differ by complex conjugation.
Thurston proved that all such representations lift to SL2(C) (see [12,
Proposition 3.1.1]), and thus the set of characters of such lifts consists
of two orbits of the H1(M ; Z2)-action on X(M), one orbit the com-
plex conjugate of the other. It can then be shown that there are pre-
cisely 2|H1(M ; Z2)| = 2|H1(M ; Z2)| conjugacy classes of discrete faith-
ful representations of π1(M) in SL(2,C) ([26, Corollary V.1.3], compare
Lemma 9.5).

Let X1, X2, . . . , Xk be the components of X(M) which contain the
character of a discrete faithful representation and recall from §4 that
each is a norm curve component. From the discussion above we see that
CM , the Aut(C) ×H1(M ; Z2)-orbit of X1 (cf, §5), contains X2, . . . , Xk.
Indeed it characterized by the fact that it is the smallest subvariety
of X(M) which is defined over the rationals and which contains these
curves. Thus we call CM the canonical norm curve of X(M).

Suppose that CM contains n algebraic components, say

CM = X1 ∪X2 ∪ . . . Xn.

By Lemmas 5.4 and 5.3 each Xj is a norm curve component of X(M).
Let ‖ · ‖j , sj , and Bj denote respectively the Culler-Shalen norm, the
minimal nonzero value of ‖·‖j , and the ‖·‖j-ball of radius sj . Let ‖·‖M ,
sM , and BM denote those of CM . We call ‖ · ‖M the canonical norm on
H1(M ; Z).

Proposition 9.1.

(1) ‖ · ‖M = n‖ · ‖1, sM = ns1, and BM = B1.

(2) BM is a finite-sided convex polygon balanced about the origin whose
vertices are rational multiples of strict boundary classes of L.

(3) BM contains at most three (pairs of) nontrivial classes of L which
are not vertices of BM, and their mutual distances are at most one.

(4) Choose a basis {µ, λ} for L such that ‖µ‖M = sM and identify
H1(∂M ; R) with µλ-plane. If (a, b) ∈ BM, then |b| ≤ 2. Further if
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there is some (a, b) ∈ BM with b = 2, then (a, b) ∈ L and BM is a
parallelogram with vertices ±(1, 0) and ±(a, b).

Proof. Part (1) is a consequence of the definition of ‖ · ‖M and the
Lemmas 5.4 and 5.3. The rest follows mostly from Proposition 4.5,
though for the strictness of the boundary slopes in part (2) we combine
Lemma 5.3 with the observation that discrete faithful representations
are not virtually reducible. q.e.d.

Lemma 9.2. The inequality 4 ≤ 2|H1(M ; Z2)| ≤ sM holds.

Proof. We noted above that there are exactly 2|H1(M ; Z2)| charac-
ters of discrete faithful representations of π1(M) in SL(2,C), and each
of these characters lies in CM . Fix µ ∈ L ∩ ∂BM and note that since fµ
takes the value zero at each of these characters, we have sM = ‖µ‖M =∑n

j=1 degree(fµ)|X̃j
≥ 2|H1(M ; Z2)|. q.e.d.

The inequality given in the lemma is sharp as sM = 4 when M is the
figure eight knot exterior. For this manifold, CM is an irreducible curve
(see [6] for details).

Proposition 9.3. Fix a basis {µ, λ} of L where ‖µ‖M = sM and
identify H1(∂M ; R) with the µλ-plane. Suppose that α ∈ L is a finite
or cyclic filling class but is not a strict boundary class.

(1) If α is a C-type filling class, then:

(i) ‖α‖M = sM. Hence α ∈ ∂BM but is not a vertex of BM.

(ii) The absolute value of the λ-coordinate of α is less than or
equal to 1.

(2) If α is a D-type or a Q-type filling class, then:

(i) ‖α‖M ≤ 2sM.

(ii) ‖α‖M ≤ ‖β‖M for any nontrivial element β ∈ L satisfying
∆(α, β) ≡ 0 (mod 2).

(iii) The absolute value of the λ-coordinate of α is less than or
equal to 1.

(3) (a) If α is a T (q)-type filling class and H1(M ; Z) has no 3-
torsion, then q = 3 and:

(i) ‖α‖M ≤ sM + 4.
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(ii) ‖α‖M ≤ ‖β‖M for any nontrivial class β ∈ L satisfying
∆(α, β) ≡ 0 (mod q).

(iii) If β ∈ L is a finite filling class satisfying ∆(α, β) ≡ 0
(mod q), then β is also of type T (q) and ‖β‖M = ‖α‖M.

(b) If α is a T (q)-type filling class and H1(M ; Z) has 3-torsion,
then q ∈ {1, 2} and:
(i) ‖α‖M ≤ sM + 4 and q = 2 if ‖α‖M > sM.
(ii) ‖α‖M ≤ ‖β‖M for any nontrivial class β ∈ L satisfying

∆(α, β) ≡ 0 (mod q).
(iii) If β ∈ L is a finite filling class satisfying ∆(α, β) ≡ 0

(mod q), then β is also of type T (q) and ‖β‖M = ‖α‖M.

(4) If α is an I(q)-type filling class, then q ∈ {1, 2, 3, 5} and:

(i) ‖α‖M ≤ sM + 8 and q > 1 if ‖α‖M > sM.
(ii) ‖α‖M ≤ ‖β‖M for any nontrivial class β ∈ L satisfying ∆(α, β)

≡ 0 (mod q).
(iii) If β ∈ L is a finite filling class satisfying ∆(α, β) ≡ 0 (mod

q), then β is also of type I(q) and ‖β‖M = ‖α‖M.

(5) (a) If α is an O(q)-type filling class and H1(M ; Z) has no 2-
torsion, then q ∈ {2, 4} and:
(i) ‖α‖M ≤ sM + 6.
(ii) ‖α‖M ≤ ‖β‖M for any nontrivial class β ∈ L satisfying

∆(α, β) ≡ 0 (mod q).
(iii) If β ∈ L is a finite filling class satisfying ∆(α, β) ≡ 0

(mod q), then β is also of type O(q) and ‖β‖M = ‖α‖M.
(b) If α is an O(q)-type filling class and H1(M ; Z) has 2-torsion,

then q ∈ {1, 2, 3} and:
(i) ‖α‖M ≤ sM + 12 and q > 1 if ‖α‖M > sM.
(ii) ‖α‖M ≤ ‖β‖M for any nontrivial class β ∈ L satisfying

∆(α, β) ≡ 0 (mod q).
(iii) If β ∈ L is a finite filling class satisfying ∆(α, β) ≡ 0

(mod q), then β is also of type O(q) and ‖β‖M = ‖α‖M.

Proof. Parts (1), (2) of the proposition follow directly from Propo-
sition 4.6 (1), (2) and Proposition 9.1. Parts (3) (ii) and (iii) are conse-
quences of Propositions 4.6 (3) and 3.3 respectively. To prove part (3)
(i), first recall that

C̃M = X̃1 ∪ · · · ∪ X̃n.
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For each δ ∈ L,

‖δ‖M =
n∑
j=1

‖δ‖j =
n∑
j=1

degree(f̃δ|X̃j
) =

n∑
j=1

∑
x∈X̃j

Zx(f̃δ)

where Zx(f̃δ) is the multiplicity of x as a zero of f̃δ. Hence

‖α‖M = ‖µ‖M + (‖α‖M − ‖µ‖M) = sM +
n∑
j=1

∑
x∈X̃j

(Zx(f̃α) − Zx(f̃µ)).

Thus if J = {x ∈ C̃M | Zx(f̃α) > Zx(f̃µ)}, then

‖α‖M ≤ sM +
∑
x∈J

(Zx(f̃α) − Zx(f̃µ)).

Recall that X̃j = Xν
j ∪ Ij where Xν

j
ν→ Xj is the normalization of Xj

and Ij is the finite set of ideal points of X̃j . Fix x ∈ J ∩ X̃j . The
hypothesis that α is not a strict boundary slope implies that x ∈ Xν

j

([11, Prop. I.6.1] and Proposition 4.5). We now proceed in the manner
of [2, §4]. It was shown there that:

• Zx(f̃α) − Zx(f̃µ) = 2.

• The Zariski tangent space of X(M) at ν(x) is 1-dimensional.

• ν(J) is the set of characters in CM correspondingto representations
which send α to {±I} and whose image is the binary tetrahedral
group.

The first statement shows that ‖α‖M ≤ sM + 2|J |. It follows from
the second that ν(x) is a simple point of X(M) (cf. §2) and therefore
ν−1(ν(x)) = x. Hence ‖α‖M ≤ sM + 2|ν(J)|. Finally combining the
third with the method of [2, Lemma 5.6] implies that |ν(J)| = 2. Thus
‖α‖M ≤ sM + 4, as claimed.

Parts (4) and (5) can be proved similarly. q.e.d.

Remark 9.4. The previous proposition can be sharpened under
certain additional assumptions. For instance if µ is a cyclic filling class,
but not a strict boundary class, then Zx(f̃µ) ≤ Zx(f̃α) for each x ∈
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C̃M [11, Proposition 1.1.3]. Hence following the method of proof of
Proposition 9.3 we have

‖α‖M =


sM or sM + 4 if α is T -type
sM or sM + 8 if α is I-type
sM, sM + 4, sM + 8, or sM + 12 if α is O-type

and H1(M ; Z2) = Z2 ⊕ Z2.

We close this section with some useful properties concerning the
canonical norm of a class in the kernel of H1(∂M ; Z2) → H1(M ; Z2).

Lemma 9.5. H1(M ; Z2) acts freely on the Zariski open set of non-
virtually reducible characters in CM.

Proof. Let χρ ∈ CM be a non-virtually reducible character and
suppose there is an ε ∈ H1(M ; Z2) such that χρ = ε · χρ. We will show
that ε is the trivial homomorphism π1(M) → {±I}.

Since ρ is irreducible and ε ·χρ = χερ, there is a matrix A ∈ SL(2,C)
satisfying ερ = AρA−1. Suppose that there is some ξ ∈ π1(M) for which
ε(ξ) = −I. Set ρ(ξ) = B. Then −B = ε(ξ)ρ(ξ) = Aρ(ξ)A−1 = ABA−1,
and so A = −BAB−1. It follows that trace(A) = 0, and so without

loss of generality we may assume that A =
(
i 0
0 −i

)
. The subgroup

π̃ = ker(ε) of π1(M) has index 2 and for any γ ∈ π̃, ρ(γ) = Aρ(γ)A−1. It
follows that ρ(γ) is diagonal and thus ρ|π̃ is a reducible representation.
But this contradicts our choice of ρ. Hence ε is the trivial element of
H1(M ; Z2). q.e.d.

Consider the |H1(M ; Z2)|-sheeted regular covering p : M̃→M corre-
sponding to the surjective homomorphism π1(M)→H1(M ; Z2). The ho-
momorphism p# : π1(M̃)→π1(M) induces a regular map p∗ : X(M)→
X(M̃) and the closure EM of p∗(CM) in X(M̃) is a curve in X(M̃). It is
an elementary exercise to show that if χ1, χ2 ∈ CM are two non-virtually
reducible characters then p∗(χ1) = p∗(χ2) if and only if χ2 = εχ1

for some ε ∈ H1(M ; Z2). Hence by Proposition 4.2 and Lemma 9.5,
p̃∗ : C̃→Ẽ is generically a |H1(M ; Z2)|-to-one map.

Fix a boundary component T̃ of ∂M̃ . For any element δ̃ ∈ L̃ =
H1(T̃ ; Z) ⊂ L (we identify L̃ with p#(L̃)) let I

δ̃
: X(M̃) → C be the

evaluation map and set f
δ̃

= I2
δ̃
− 4. There is a commutative diagram
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of surjective rational maps

CM

p∗ � EM
�������f
p#(δ̃) � 	








f
δ̃

C.

Define the degree of a rational function f : X → Y between curves to
be
∑

degree(f |Xj : Xj → f(Xj)), where the sum is over the algebraic
components Xj of X. Then

‖p#(δ̃)‖M = degree(f
p#(δ̃)

|CM) = |H1(M ; Z2)|degree(f
δ̃
|EM).

If f̃
δ̃
|C̃M has p distinct poles, then its degree is at least 2p since f

δ̃
=

(I
δ̃

+ 2)(I
δ̃
− 2). In order to apply this observation, let β1, β2, . . . , βp

be the strict boundary classes associated to the vertices of BM. Then
for any j = 1, 2, . . . , n there are ideal points x1, x2, . . . , xp of X̃j such
that for δ ∈ L, f̃δ(xj) ∈ C if and only δ is a nonzero, integral multiple
of βj . For each j, choose a class β̃j ∈ L̃ such that p#(β̃j) is a nonzero
multiple of βj . Then from the commutativity of the diagram above we
see that f̃

δ̃
(p∗(xj)) ∈ C if and only p#(δ̃) is a nonzero multiple of βj . It

follows that for any δ̃ ∈ L̃ \ {0}, f̃
δ̃

has at least p − 1 distinct poles in
X̃j . Further if p∗(δ̃) is a primitive class which is not a boundary class
associated to a vertex of BM, then f̃

δ̃
has at least p distinct poles. In

summary, we have derived the following proposition.

Proposition 9.6. Suppose that α ∈ L is a primitive class which lies
in the kernel of the homomorphism H1(∂M ; Z2)→H1(M ; Z2) induced by
inclusion. Let n be the number of algebraic components of CM.

(1) ‖α‖M is divisible by 2n|H1(M ; Z2)|.
(2) If BM has p pairs of vertices then

‖α‖M ≥


2n(p− 1)|H1(M ; Z2)| if α is a rational multiple

of a vertex of BM

2np|H1(M ; Z2)| if α is a rational multiple
of a vertex of BM.
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10. The canonical A-polynomial

Let X1, X2, . . . , Xn be the algebraic components of CM and B =
{µ, λ} a basis for π1(∂M). Suppose that Aj(u, v)) is the A-polynomial
of Xj with respect to B. The canonical A-polynomial of M , with respect
to the basis B, is the product

AM(u, v) = A1(u, v)A2(u, v) . . . An(u, v).

Let NM be the associated Newton polygon. Our next results follow
immediately from Theorem 8.8 and Proposition 6.10.

Proposition 10.1. The canonical norm polygon BM is dual to the
canonical Newton polygon NM and ‖ ·‖M = ‖ ·‖NM

. Further, ‖µ‖M = 2n0

and ‖λ‖M = 2m0, where n0 is the maximal exponent of v in AM(u, v)
and m0 that of u.

Proposition 10.2. If pµ+ qλ is not a boundary class associated to
an ideal point of CM, then

‖pµ+ qλ‖M = 2spanAM(zq, z−p).

Proposition 10.3. The canonical A-polynomial AM(u, v) =∑
am,nu

mvn of M has the following properties:

(1) After multiplying by a nonzero complex constant, AM(u, v) may be
taken to have integer coefficients whose greatest common denomi-
nator is 1. Such a representative is well-defined up to sign.

(2) Let m0 be the maximal exponent of u occurring in AM(u, v) and
n0 that of v. Then for some ε ∈ {±1}, am,n = εam0−m,n0−n for
all m and n.

(3) The coefficients of AM(u, v) indexed by the corners of N are equal
to ±1.

(4) The nonzero roots of an edge polynomial fE(z) or gE(z) deter-
mined by AM(u, v) are roots of the unity. In fact fE(z) and gE(z)
are products of a power of z with some cyclotomic polynomials.
Further if α = (p, q) is the boundary class associated to the edge
E and if ±1 is a root of either fE(z) or gE(z), then fα takes the
value zero at some ideal point of C̃M.

(5) Let i : ∂M →M be the inclusion and i∗ : H1(∂M ; Z2)→H1(M ; Z2)
the associated homomorphism.
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(i) If i∗(µ) �= 0 and i∗(λ) = 0, then am,n = 0 when m is odd.

(ii) If i∗(µ) = 0 and i∗(λ) �= 0, then am,n = 0 when n is odd.

(iii) If i∗(µ) �= 0 and i∗(λ) �= 0, then am,n = 0 when m+n is odd.

Corollary 10.4 ([8]). If M is a knot exterior in S3 and {µ, λ} is
the standard meridian-longitude basis of L, then the powers of u occur-
ring in the canonical A-polynomial of M are even numbers.

11. Applications to Dehn filling

In this section we discuss some results concerning the manifolds
obtained by Dehn filling on M , results derived from the canonical poly-
nomial AM(u, v).

A 3-manifold is small if it does not contain any closed incompressible
surfaces. If a small 3-manifold is homeomorphic to a Seifert fibred space,
then it admits a Seifert structure whose base orbifold is S2 with at most
three singular fibres [20, §IV].

Proposition 11.1. Let X1 be a norm curve component of X(M)
and suppose that α ∈ L is a primitive class. Suppose that x ∈ Xν

1 where
Zx(f̃α) > Zx(f̃δ) for some δ ∈ L \ {0} and ν(x) = χρ ∈ X1.

(1) If M(α) is a small 3-manifold which is a Seifert fibred space, then
χρ is a simple point of X(M). Furthermore χρ takes only real
values on π1(M) and the eigenvalues of ρ(γ) lie on either the real
line or the unit circle.

(2) If M(α) has a finite fundamental group then χρ is a simple point
of X(M). Furthermore the eigenvalues of ρ(δ) are roots of unity
of order less than or equal to 10.

Proof. (1) By [11, §1.5], the condition that Zx(f̃α) > Zx(f̃δ) implies
that there is some ρ ∈ t−1(ν(x)) with non-cyclic image in PSL(2,C)
such that ρ(α) ∈ {I,−I}. In fact ρ can be chosen to have a non-
abelian image, for the argument in [11] shows that ρ can be chosen
so that its image is also non-diagonalisable in PSL(2,C). Hence if
its image is abelian, then it must conjugate into the group of upper-
triangular parabolic matrices. But this cannot occur because the hy-
pothesis that M(α) be small implies that rankH1(M(α); Z) = 0. Thus
rankH1(M ; Z) = 1 and therefore any parabolic representation has cyclic
image in PSL(2,C), contrary to our choices.
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Assume then, without loss of generality, that image(ρ) is nonabelian.
We can also assume that ρ(π1(M)) is nonabelian when projected to
PSL(2,C), for otherwise image(ρ) would be the quaternion group of
order 8, and so again the proposition holds. Since ρ(α) = ±I, ρ induces
a representation π1(M(α)) → PSL(2,C) and our assumptions imply
that the latter factors through a group ∆ of the form 〈a, b | ap = bq =
(ab)r = 1〉 for some p, q, r ≥ 2. Choose a1, b1 ∈ π1(M) which are
sent to a, b under the composition π1(M) → π1(M(α)) → ∆. Now fix
g ∈ G. There is a word w = w(a1, b1) such that ρ(g) = ±ρ(w) so that
χρ(g) = ±χρ(w). It follows from [12, Proposition 1.4.1] that χρ(w) =
P (χρ(a1), χρ(b1), χρ(a1b1)) where P is a polynomial with integral coef-
ficients. Now by construction, each of ρ(a1), ρ(b1) and ρ(a1b1) has finite
order in SL(2,C), and so have real traces. Thus χρ(g) = ±χρ(w) ∈ R.
Finally, χρ is a simple point of X(M) by [5].

Fix g ∈ G. By part (1), trace(ρ(g)) is real. Now ρ(g) is conjugate
to a matrix of the form (

u ∗
0 u−1

)
.

Let u = reiθ. Then u+u−1 = reiθ+ 1
re

−iθ = (r+ 1
r ) cos θ+ i(r− 1

r ) sin θ
and so (r − 1

r ) sin θ = 0. If sin θ = 0, then u is real. If r − 1
r = 0, then

r = 1 and u lies on the unit circle.
(2) Again by [11, §1.5], the condition that Zx(f̃α) > Zx(f̃δ) implies

that there is some ρ ∈ t−1(ν(x)) with non-cyclic image such that ρ(α) ∈
{I,−I}. Thus α has type T, I,O,D or Q. By [5], χρ is a simple point
of X(M). We can use ρ to construct an irreducible representation ρ :
π1(M(α)) → PSL(2,C). It follows from Lemma 3.1, and the discussion
immediately preceding it, that ρ(π1(∂M)) is a cyclic group of order no
larger than 10. Thus part (2) holds. q.e.d.

Let AM(u, v) be the canonical A-polynomial of M with respect to
the basis {µ, λ}.

Proposition 11.2. Suppose that α = (p, q) ∈ H1(M ; Z) is a primi-
tive class which is not a strict boundary class. Let (u0, v0) be a solution
of either {

AM(u, v) = 0
upvq = 1

or
{
AM(u, v) = 0
upvq = −1.

Assume that M(α) is a small 3-manifold.

(1) If one of u0 or v0 is not ±1, then there is a representation ρ ∈
R(M), with nonabelian image, whose character lies in CM and for
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which

ρ(µ) =
(
u0 0
0 u−1

0

)
and ρ(λ) =

(
v0 0
0 v−1

0

)
.

(2) If one of u0 or v0 is neither real nor on the unit circle, then M(α)
is not a Seifert fibred space which is small.

(3) If one of u0 or v0 is not a root of unity of order less than or equal
to 10, then π1(M(α)) is not finite.

Proof. (1) We shall assume that u0 �= ±1. The case v0 �= ±1 is
handled similarly.

As (u0, v0) is a solution of AM, there is an algebraic component X1

of CM whose associated plane curve D1 contains (u0, v0). Recall from
§6 that we have the following diagram of regular maps between affine
algebraic sets:

W1 = t|−1
Λ (Y1) ⊂ Λ � D1 = PB(W1) ⊂ C × C

X1
i∗ � Y1 = i∗(X1) ⊂ X(∂M)

t

�

Hence we have an associated diagram of rational maps between smooth
projective sets:

W̃1
� D̃1

X̃1
ĩ∗ � Ỹ1

t̃
�

Each map in this latter diagram is surjective, so there is a point w ∈ W̃1

which is mapped to a point d ∈ ν−1(u0, v0) ⊂ Dν
1 ⊂ D̃1. Fix any

x ∈ X̃1 such that ĩ∗(x) = t̃(w) ∈ Ỹ . Note that by construction f̃µ(x) =
(u0 − u−1

0 )2 ∈ C∗, while f̃α(x) = 0. Hence Zx(f̃µ) = 0 < Zx(f̃α).
Assume first that x ∈ X̃1 − Xν

1 , i.e., x is an ideal point. Since
α is not a strict boundary class, [11, Prop. I.6.1] implies that there
is an essential closed surface in M which remains essential in M(α),
contrary to our supposition that M(α) is a small 3-manifold. Thus
x ∈ Xν

1 . Set ν(x) = χρ ∈ X1 where ρ ∈ R(M) and note that by



136 s. boyer & x. zhang

the argument in the proof of [11, Proposition 1.5.5], we may assume
that ρ is not diagonalisable. Hence if the image of ρ is abelian, then
its non-central elements would have to consist of parabolic matrices.
But this would imply that u0, v0 ∈ {±1}. Hence ρ is a nonabelian
representation. Finally observe that since one of u0, v0 is different from
±1, we can assume that ρ|π1(∂M) is diagonal.

(2) We continue to use the notation of part (1). Since M(α) is a
Seifert space which is small and Zx(f̃µ) = 0 < Zx(f̃α), Proposition 11.1
implies that χρ is a real valued function. But this contradicts the fact
that either χρ(µ) = u0 + u−1

0 �∈ R or χρ(µ) = v0 + v−1
0 �∈ R. Thus M(α)

cannot be a Seifert space which is small.
Part (3) follows from a similar argument. q.e.d.

In our next two results we see how the existence of finite filling slopes
of a given type constrains the A-polynomial.

Proposition 11.3. Suppose that α = pµ + qλ ∈ L is an I(5)-type
finite filling class which is not a strict boundary class. Suppose further
that ‖α‖M > sM. The following statements hold:

(1) There are integers a, b, c, j where j ≥ 1 and θ ∈ {±1} for which
AM(zq, z−p) = ±za(z − 1)b(z + 1)c(z4 + θz3 + z2 + θz + 1)j.

(2) Let ε be the nonzero element of H1(M ; Z2) = Z2 and choose θ ∈
{±1} so that AM(zq, z−p) = ±za(z − 1)b(z + 1)c(z4 + θz3 + z2 +
θz + 1)j. Then:

(i) If q is odd, AM(zq,−z−p) = ±za(z − ε(µ))b(z + ε(µ))c(z4 +
ε(µ)θz3 + z2 + ε(µ)θz + 1)j.

(ii) If p is odd, AM(−zq, z−p) = ±za(z − ε(λ))b(z + ε(λ))c(z4 +
ε(λ)θz3 + z2 + ε(λ)θz + 1)j.

Remark 11.4. It can be shown that the power j which occurs in
Proposition 11.3, and in the proposition which follows, is 1. As we won’t
be needing this in the proof of the finite filling conjecture, we will only
prove the simpler statements.

Proof. According to Lemma 2.1, H1(M ; Z2) = Z2 and further i∗(α)
is a generator of this group. In what follows, ε will denote the nonzero
element of H1(M ; Z2). Clearly we have ε(α) = −1.

The hypothesis ‖α‖M > sM implies that there is a point x ∈ C̃M such
that Zx(f̃α) > Zx(f̃µ). Since π1(M(α)) is finite, [11, Proposition 1.6.1]
implies that x ∈ CνM. If we set ν(x) = χρ0 ∈ CM, then from [11, §1.5] it
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follows that we can assume that ρ0 is nonabelian and that ρ0(α) = ±I.
By possibly replacing ρ0 by ε · ρ0 we may arrange for ρ0(α) = I. Since
α has type I(5) and ρ0 factors through π1(M(α)), ρ0(π) ⊂ SL(2,C) is
isomorphic to the binary icosahedral group (see §3) and ρ0(π1(∂M)) has
image Z5 in PSL(2,C). After conjugating ρ0 by an element of SL(2,C)
we may arrange for its restriction to π1(∂M) to be diagonal, say

ρ0(µ) =
(
u0 0
0 u−1

0

)
, ρ0(λ) =

(
v0 0
0 v−1

0

)
.

Choose integers s, t so that qs − pt = 1 and set z0 = us0v
t
0. Then

zq0 = u0 and z−p0 = v0 so AM(zq0, z
−p
0 ) = 0. Further it is clear that

±ρ0(π1(∂M)) ∼= Z5 ⊂ PSL(2,C) is generated by ±ρ0(sµ + tλ) =(
z0 0
0 z−1

0

)
. Thus z0 is a primitive nth root of unity where n =

|ρ0(π1(∂M))| ∈ {5, 10}. Since AM is an integral polynomial it follows
that AM(zq, z−p) is divisible by the irreducible polynomial of z0, which
is z4 + z3 + z2 + z + 1 if n = 5 or z4 − z3 + z2 − z + 1 if n = 10. To
complete the proof of part (1) of the proposition, we must show that
any nonzero root z1 of AM(zq, z−p), different from ±1, is also a primitive
nth root of unity.

Let z1 be such a root and note that (zq1)
s(z−p1 )t = zqs−pt1 = z1 �= ±1.

Thus if (u1, v1) = (zq1, z
−p
1 ), then one of u1, v1 is different from ±1.

By Proposition 11.2 there is a character χρ1 ∈ CM of a nonabelian
representation ρ1 ∈ R(M) such that

ρ1(µ) =
(
u1 0
0 u−1

1

)
, ρ1(λ) =

(
v1 0
0 v−1

1

)
.

Therefore ρ1(α) = I. Now it is shown in [2, §5] that up to conjugacy
there are precisely four nonabelian representations ρ : π → SL(2,C)
such that ρ(α) = ±I. In fact these four representations are given
by ρ0, ε · ρ0, φ ◦ ρ0 and ε · φ ◦ ρ0 where φ is a nontrivial outer au-
tomorphism of the image of ρ0 (the binary icosahdral group). Since
ε(α) = −1, it follows that up to conjugation there are exactly two non-
abelian representations ρ ∈ R(M) satisfying ρ(α) = I and they are
ρ0 and φ ◦ ρ0. In particular ρ1 is conjugate to one of these two rep-
resentations. In either case, u1 is a primitive mth root of unity where
m = |ρ1(π1(∂M))| = |ρ0(π1(∂M))| = n. This completes the proof of
part (1) of the proposition.

To prove part (2) choose θ ∈ {±1} and integers a, b, c, j so that
AM(zq, z−p) = ±za(z − 1)b(z + 1)c(z4 + θz3 + z2 + θz + 1)j . Since
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ε(DM) = DM, we see that AM(u, v) = ±AM(ε(µ)u, ε(λ)v). Now ε(α) =
−1 and so if q is odd then ε(λ) = ε(λ)q = −ε(µ)p. Therefore AM(u, v) =
±AM(ε(µ)u, ε(λ)v) = ±AM(ε(µ)u,−ε(µ)pv). Thus AM(zq, z−p) =
±AM(ε(µ)zq,−(ε(µ)z)−p) = ±AM((ε(µ)z)q,−(ε(µ)z)−p). In particular
the roots of AM(zq, z−p), counted with multiplicity, correspond bijec-
tively to those of AM(zq,−z−p) under the function which sends a zero z1
of AM(zq, z−p) to the root ε(µ)z1 of AM(zq,−z−p). Hence AM(zq,−z−p)
= ±za(z − ε(µ))b(z + ε(µ))c(z4 + ε(µ)θz3 + z2 + ε(µ)θz + 1)j . A similar
argument works if p is odd. This completes the proof of the proposition.

q.e.d.

Similarly one can show:

Proposition 11.5. Suppose that α = pµ + qλ ∈ L is a T (3)-type
finite filling class which is not a strict boundary class. Suppose further
that ‖α‖M > sM. The following statements hold:

(1) There are integers a, b, c, j where j ≥ 1 and θ ∈ {±1} for which
AM(zq, z−p) = ±za(z − 1)b(z + 1)c(z2 + θz + 1)j.

(2) Let ε be the nonzero element of H1(M ; Z2) = Z2 and choose θ ∈
{±1} so that AM(zq, z−p) = ±za(z − 1)b(z + 1)c(z2 + θz + 1)j.
Then:

(i) If q is odd, AM(zq,−z−p) = ±za(z − ε(µ))b(z + ε(µ))c(z2 +
ε(µ)θz + 1)j.

(ii) If p is odd, AM(−zq, z−p) = ±za(z − ε(λ))b(z + ε(λ))c(z2 +
ε(λ)θz + 1)j.

Example 11.6. Let M be the exterior of the (−2, 3, 7)-pretzel
knot. It is known [1] that M is hyperbolic and that if µ, λ are the stan-
dard meridian-longitude coordinates for knots in the 3-sphere then the
17µ+λ-filling of M has fundamental group I120×Z/17. It is also known
that 18 and 19-fillings yield lens spaces. The canonical A-polynomial of
M , with respect to µ, λ, has been calculated in [8] to be

AM(u, v) = −1 + (u16 − 2u18 + u20)v + (2u36 + u38)v2

+ (−u72 − 2u74)v4 + (−u90 + 2u92 − u94)v5 + u110v6.

From the polynomial and its Newton polygon we see that the minimal
norm sM = 12 and further that the norm of the slope 17 is 20 = sM + 8.
Specializing the variables to v = z−17 and v = −z−17 yields

AM(z, z−17) = −(z4 − z3 + z2 − z + 1)(z − 1)3(z + 1)3z−1
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in the former case and

AM(z,−z−17) = −(z4 + z3 + z2 + z + 1)(z − 1)3(z + 1)3z−1

in the latter. Setting u = z and v = ±z−18 or ±z−19 yields Laurent
polynomials whose roots are ±1.

Figure 4: The (−2, 3, 7)-pretzel knot.

Example 11.7. In our second example we take M to be the ex-
terior of the knot K in the lens space L(5, 1) obtained by Dehn filling
one of the boundary tori of the Whitehead link exterior with the slope
5 (with respect to the standard meridian-longitude coordinates). It is
commonly referred to as the figure-8 sister knot. This manifold is also
hyperbolic and admits five finite Dehn fillings [35]: The two fillings
parameterized by 3µ+λ and 3µ+2λ are of T -type, while those parame-
terized by 2µ+λ, µ+λ and µ-fillings are lens spaces. A computer-aided
calculation shows

AM(u, v) = 1 + (u2 − u4)v − 2u4v2 + (−u4 + u6)v3 + u8v4

and so sM = 8 while the norms of both 3µ+λ and 3µ+2λ are 12 = sM+4.
Corresponding to the T -type filling associated to 3µ+ λ we have

AM(z, z−3) = −(z2 − z + 1)(z − 1)2(z + 1)2z−5

while
AM(z,−z−3) = (z2 + z + 1)(z − 1)2(z + 1)2z−5.

Corresponding to the T -type filling slope 3µ+ 2λ we have

AM(z2, z−3) = AM(−z2, z−3) = −(z2 − z + 1)(z − 1)2(z + 1)2z−1.
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K

Figure 5: The figure-8 sister knot.

12. Outline of the proof of the conjecture

From now till the end of the paper µ ∈ L will denote a class satisfying
‖µ‖M = sM . We shall also assume that either

• µ is not a vertex of BM, or

• each class in ∂BM ∩ L is a vertex of BM.

Let λ ∈ L be a class such that {µ, λ} is a basis for L. We parameterize
the slopes on ∂M by the set of primitive classes pµ + qλ ∈ L where
either q > 0 or q = 0 and p = 1.

A class in L will be called integral if its λ coordinate is ±1.
Define F0 to be the set of finite or cyclic filling classes α = pµ+ qλ

which are not strict boundary classes.

Theorem 12.1. Let #, ∆, and n0 denote respectively the num-
ber, the maximal mutual distance, and the maximal value of the λ-
coordinates of all classes in F0. Then # ≤ 5, ∆ ≤ 3, n0 ≤ 2. Further
∆ = 3 can be realized by at most one pair of classes.

Assuming Theorem 12.1 holds, we may complete the proof of the
finite filling conjecture as follows.

Proof of the finite filling conjecture. Denote by F the set of all finite
or cyclic filling classes and by S the set of all strict boundary classes.
If F ∩ S = ∅, then the conjecture follows from Theorem 12.1. Suppose
next that F ∩ S = {α}. By Proposition 2.2, any finite or cyclic class
has distance at most 1 from α. Hence if α = µ, then all other finite or
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cyclic classes are integral and so by Theorem 12.1, their number is at
most four and their maximal mutual distance is at most 3, realized at
most once. This implies that the conjecture holds. Similarly if α �= µ,
the truth of the conjecture is easy to verify. Finally, if F∩S ⊃ {α1, α2},
then it follows from Proposition 2.2 that # ≤ 4 and ∆ ≤ 2. q.e.d.

The rest of the paper is devoted to the proof of Theorem 12.1. One
easily sees that it is a consequence of the following five propositions
(the inequality n0 ≤ 2 has been proved in [2, Theorem 7.2]). Recall
that 4 ≤ sM ≡ 0 (mod 2) (Lemma 9.2).

Proposition 12.2. If sM ≤ 6 then # ≤ 5,∆ ≤ 3 and there are at
most two classes in F0 whose mutual distance is 3.

Proposition 12.3. When sM ≥ 8, there is at most one class in F0

whose λ-coordinate is equals 2.

Proposition 12.4. When sM ≥ 8, there are at most four integral
classes in F0 and their maximal distance is at most three.

Proposition 12.5. When sM ≥ 8, ∆ ≤ 3.

Proposition 12.6. When sM ≥ 8, there is at most one pair of
classes α and β in F0 for which ∆(α, β) = 3.

These propositions will be proved in the next five sections. Through-
out, i : ∂M → M will be the inclusion and i∗ : H1(∂M ; Z2) →
H1(M ; Z2) the induced homomorphism.

13. Proof of Proposition 12.2

We shall divide the proof of Proposition 12.2 into two main cases:
(I) sM = 4 and (II) sM = 6.

Case I. sM = 4.
By Lemma 9.2, H1(M ; Z2) = Z2 and by Proposition 9.3, F0 ⊂ 3BM.

We shall divide Case I into two subcases depending on whether or not
µ is a vertex of BM.

Subcase I.1. µ is not a vertex of BM.
It then follows from [2, Lemma 6.5] that CM is an irreducible compo-

nent of X(M), and BM is a parallelogram with vertices ±(a, 2/(k + 2))
and ±(a+2, 2/(k+2)), for some integer k ≥ 0 satisfying a(k+2)/2 ∈ Z.
In fact using the Newton polygon we can find a much stronger constraint
on k.
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Lemma 13.1. k ≡ 2 (mod 4).

Proof. According to Proposition 9.6 (2), we must have i∗(µ) �= 0.
We claim first that k must be even. We may assume that k > 0 and
so from the shape of BM, there exist two consecutive integral classes in
L, say α1 = (m, 1) and α2 = (m + 1, 1), such that neither α1 nor α2

is a boundary class corresponding to a vertex of BM and that ‖α1‖M =
‖α2‖M = 2(k + 2). Since i∗(µ) �= 0, one of α1 and α2, say α1, must lie
in the kernel of i∗. Hence applying Proposition 9.6, we see that ‖α1‖M

is divisible by 4, and so k is even.
Now we replace λ by the class corresponding to

(
(k+2)

2 a+ (k+2)
2 , 1

)
.

Then BM becomes the parallelogram whose vertices are ±
(
−1, 2

(k+2)

)
and ±

(
1, 2

(k+2)

)
. It follows from Proposition 10.1 that the Newton

polygon is a parallelogram whose vertices are (0, 1), (k+2, 1),
(

(k+2)
2 , 0

)
and

(
(k+2)

2 , 2
)

(the case k = 4 is depicted in Figure 6). In particular

a (k+2)
2

,0
�= 0. Since i∗(µ) �= 0, Proposition 10.3 implies that (k+2)

2 is

even. Thus k ≡ 2 (mod 4). q.e.d.

When k = 2, one can easily check from the shape of BM together
with Proposition 9.3, that # ≤ 4, ∆ ≤ 2 (recall F0 ⊂ 3BM). Similarly
when k ≥ 6 the only possible class in F0 is µ. Thus Proposition 12.2
holds in Subcase I.1.

λ

µ

MBo
1

1o

 2 

2

MN

(-2,1) (-1,1) (1,1) (2,1)

(1,0)

(0,1)

3 4 5 6

(3, 1)(-3,1)

(a) (b) (c) ( ε ε1
a) b)ε ( ε
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(
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ε1)

(1) u 

v

Figure 6: The canonical norm polygon and Newton polygon when k = 4
in Subcase I.1.

Subcase I.2. µ is a vertex of BM.
By the convention set at the beginning of §12, all points of ∂BM ∩L

are vertices of BM . Since sM = 4, CM is either irreducible or contains
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Figure 7: The canonical norm polygon and Newton polygon when k = 0
in Subcase I.2.a.

exactly two components, i.e., CM = X1 or CM = X1 ∪ X2. According
to [2, Lemma 6.6 (2)] (which remains true for BM since BM = B1 by
Proposition 9.1), there are three types possible for the shape of BM.

Subcase (I.2.a). BM is a parallelogram with vertices ±(1, 0) and
±
(

2m
k+2 ,

2
k+2

)
for some integers m and k ≥ 0.

We may assume that m = 0. When k ≥ 1, the fact that F0 ⊂ 3BM

is sufficient to obtain the estimates ∆ ≤ 2 and # ≤ 2. Suppose then
that k = 0. In this case BM is a parallelogram with vertices ±(1, 0)
and ±(0, 1) (Figure 7). Since F0 ⊂ 3BM consists of non-∂-slopes,
F0 ⊂ {(−1, 2), (1, 2), (−2, 1), (−1, 1), (1, 1), (2, 1)}. Now by Proposi-
tion 10.1, the canonical Newton polygon NM is as shown in Figure 7
and by Proposition 10.3 (1)-(3), the canonical A-polynomial of M with
respect to the basis B = {µ, λ} is of the form

AM(u, v) = 1 + au+ ε1u
2 + (b+ cu+ εbu2)v + (εε1 + εau+ εu2)v2,

where a, b ∈ Z and ε, ε1 ∈ {±1}. Since ‖µ‖M = ‖λ‖M = 4, the zero sets
in C̃M of both fµ and fλ consists of the four discrete faithful characters
of π1(M). In particular, neither fµ nor fλ has a zero at an ideal point of
C̃M. Therefore by Proposition 10.3 (4), +1 and −1 are not zeros of any
edge polynomial of AM(u, v). At least one of µ and λ is not contained
in the kernel of i∗ and without loss of generality we take i∗(µ) �= 0.
Then by Proposition 10.3 (4) and (5), we have a = 0 and since ±1
are not roots of the edge polynomials of NM, we have ε1 = 1. Hence
AM(u, v) = 1+u2 +(b+ cu+ εbu2)v+(ε+ εu2)v2. We now use AM(u, v)
to show:

Lemma 13.2. When k = 0, α = (−2, 1) is not a finite filling class.
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Proof. Suppose otherwise. From Figure 7, we see that ‖α‖M =
sM + 8 and α must be an I(5)-type class by Proposition 9.3 (recall
H1(M ; Z2) = Z2). Also by Proposition 11.3 there is an integer d ≥ 1
for which AM(u, u2) = 1 + (b+ 1)u2 + cu3 + ε(b+ 1)u4 + εu6 is divisible
by either (u4 + u3 + u2 + u+ 1)j or (u4 − u3 + u2 − u+ 1)j and the only
roots of the quotient are ±1. Obviously j = 1.

Fix θ ∈ {±1} and suppose that AM(u, u2) is divisible by u4 + θu3 +
u2 + θu+ 1. Long division yields the quotient εu2 − εθu+ ε(b+ 1). But
since the coefficient of u is odd, εu2− εθu+ ε(b+1) has roots other than
±1. This contradiction completes the proof of the lemma. q.e.d.

Similarly one can show that none of the classes (2, 1), (1, 2) and
(−1, 2) can be in F0. Thus when k = 0, we have ∆ ≤ 2 and # ≤ 2.

Subcase (I.2.b). BM is a parallelogram with vertices ±(1, 0) and
±
(

2(2j+1)
k+2 , 4

k+2

)
, for some integers j and k ≥ 2.

In this case, one can easily verify that F0 ∩ 3BM contains at most
four classes, the distance between any two of them is at most three, and
the distance three is realized by at most one pair of these classes.

Subcase (I.2.c). BM is a polygon with vertices ±(1, 0),±
(

2m
k+2 ,

2
k+2

)
,

±
(

2(m+j)
k+2 , 2

k+2

)
, for some integers m, j, k with j ≥ 1 and k ≥ j − 1.

We may assume that m = 0. By the dual relationship between BM

andNM (Proposition 10.1), the latter has vertices (0, 0), (0, 1), (j, 2), (k+
2, 2), (k+2, 1) and (k+2−j, 0) (see Figure 8). In particular the coefficient
of v in AM is nonzero. Thus by Proposition 10.3 (5) we see that i∗(λ) =
0. Hence i∗(µ) �= 0 and so applying the same result we see that no
odd powers of u occur in AM(u, v). Consideration of the coefficients
corresponding to the vertices (j, 2) and (k + 2, 2), we see that both j
and k are even. In particular this implies j, k ≥ 2. When k ≥ 4, one
readily verifies that Proposition 12.2 is a consequence of Proposition 9.3,
so the only case we need consider is when k = j = 2.

Suppose then that k = j = 2. The only classes in 3BM which can lie
in F0 are (−1, 1), (1, 1) and (3, 1) (Figure 8). We need only show that
(−1, 1) is not a finite filling class. From the previous paragraph we see
that the canonical A-polynomial is of the form

AM(u, v) = 1 + ε1u
2 + (ε2 + cu2 + εε2u

4)v + (εε1u2 + εu4)v2

where c ∈ Z and ε, ε1, ε2 ∈ {±1}. Since ‖µ‖M = 4, f̃µ has no zeros at
ideal points of C̃M. Hence by Proposition 10.3 (4) we have ε1 = 1. So
AM(u, v) = 1 + u2 + (ε2 + cu2 + εε2u

4)v + (εu2 + εu4)v2.
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Figure 8: The canonical norm polygon and Newton polygon when k =
j = 2 in Subcase I.2.c.

Lemma 13.3. When k = j = 2, α = (−1, 1) is not a finite filling
class.

Proof. Suppose otherwise. From the shape of BM, we see that
‖α‖M = sM + 8 and therefore α must be an I(5)-type class (recall
H1(M ; Z2) = Z2). Then by Proposition 11.3, AM(u, u) = 1 + ε2u +
u2 + cu3 + εu4 + εε2u

5 + εu6 is divisible by either u4 + u3 + u2 + u+ 1
or u4 − u3 + u2 − u + 1, and the roots of the quotient are ±1. But
for θ ∈ {±1}, the quotient of AM(u, u) by u4 + θu3 + u2 + θu + 1 is
q(u) = εu2 + ε(ε2 − θ)u + ε(1 − θε2). Since the leading term of q(u) is
not congruent (mod 2) to its constant term, it has a root other than
±1. Thus α = (−1, 1) cannot be a finite filling class. q.e.d.

Case II. sM = 6.
In this case we also have H1(M ; Z2) = Z2 (Lemma 9.2). Therefore

by Proposition 9.3, F0 ⊂ 7
3sM . We consider two subcases.

Subcase II.1. µ is not a vertex of BM.
By [2, Lemma 6.5 (2)], there are three subcases to consider.

Subcase (II.1.a). BM is a parallelogram with vertices ±(3(2m +
1)/|k|, 6/|k|) and ±(3(2m+ 1 + k)/2|k|, 3/|k|), for some integer m and
odd integer k, with |k| ≥ 5.

After an appropriate change in λ, we may assume that m = 0. By
symmetry, we may also suppose that k ≤ −5.

According to Proposition 10.1, NM has vertices (0, 1), (1, 3),
(

1−k
2 , 2
)

and
(−(1+k)

2 , 0
)

(the case k = −5 is pictured in Figure 9). Since (0, 1)
is a vertex, Proposition 10.3 (5) implies that i∗(λ) = 0, so i∗(µ) �= 0.
But then the same result implies that no odd power of u occurs in AM,
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contrary to the fact that (1, 3) is a vertex of NM. Thus this case cannot
arise.
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Figure 9: The canonical norm polygon and Newton polygon when k =
−5 in Subcase II.1.a.

Subcase (II.1.b). BM is a parallelogram with vertices ±(3m/|k|, 3/|k|)
and ±(3(m+ k)/2|k|, 3/2|k|), for some integers m and k, with |k| ≥ 3.

We may assume thatm = 0 and k ≥ 3. If k ≥ 7, the primitive classes
in 7

3BM are a subset of {±µ,±λ}, and so we need only consider k = 3, 4, 5
and 6. The cases k = 3, 5, 6 can be handled in a straightforward manner
using Proposition 9.3 alone, so we shall assume that k = 4. In this case
F0 ∩ 7

3BM ⊆ {µ,−µ+ λ, µ+ λ, 2µ+ λ, 3µ+ λ}. It suffices then to prove
that at least one of −µ+ λ and 3µ+ λ is not an element of F0.

Assume otherwise and set α = −µ+ λ, β = 3µ+ λ. As ∆(α, β) = 4,
neither of these classes can be a boundary class (Proposition 2.2). Fur-
ther since ‖α‖M = ‖β‖M = 14 and H1(M ; Z2) = Z2, it follows from
Proposition 9.3 that α and β both have type I. Finally through con-
sideration of the shape of BM, the same result implies that in fact they
both have type I(5).

In order to determine the AM(u, v), we first observe that the Newton
polygon NM has vertices (0, 0), (0, 2), (4, 1) and (4, 3). As (4, 1) is a
vertex of NM, Proposition 10.3 implies that i∗(λ) = 0 and hence i∗(µ) �=
0 ∈ H1(M ; Z2). The same result now shows that there are integers a, b
and ε, ε1 ∈ {±1} such that

AM(u, v) = 1 + (a+ bu2 + ε1u
4)v + (εε1 + εbu2 + εau4)v2 + εu4v3.

According to Proposition 11.3, there is some θ ∈ {±1} and integer j ≥ 1
for which

AM(u, u) = εu7 + εau6 + ε1u
5 + εbu4 + bu3εε1u

2 + au+ 1
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is divisible by (u4 + θu3 + u2 + θu + 1)j . Moreover, the roots of the
quotient lie in {±1}. Obviously j = 1 and performing the division
yields the quotient

q(u) = εu3 + ε(a− θ)u2 + (ε1 − εθa)u+ (εb− ε1θ)

and the four identities

εb− ε1θ = 1(1)
θb− ε1θ = 1(2)

εε1 + εθ − ε1θ = 1(3)
θa− θε1 + εa = 1.(4)

Since the roots of q lie in {±1} we have

εq(u) = u3 + (a− θ)u2 + (εε1 − θa)u+ (b− εε1θ)
∈ {u3 + 3u2 + 3u+ 1, u3 − u2 − u+ 1, u3 + u2 − u− 1,

u3 − 3u2 + 3u− 1}

and so in particular a is even. Now Identity (1) implies that b−εε1θ = ε
and so a further examination of the possible coefficients of εq(u) yields
a− θ = ε(εε1 − θa) = ε1 − εθa. Hence

ε1 + θ = (1 + εθ)a ≡ 0 (mod 4).

Thus both sides of this equation are zero. It follows that

ε1 = −θ and a = −εθa

Hence by Identity (2) we deduce that b = 0. It follows from these
calculations that

AM(u, v) = 1 + av − θu4v − εθv2 − θau4v2 + εu4v3

and consequently

AM(u, u−3) = 1 + au−3 − θu− εθu−6 − θau−2 + εu−5

= −θu−6(u− θ)(u6 + au3 − θε).

But this contradicts Proposition 11.3 since our assumptions imply that
β = 3µ + λ is an I(5)-type class of non-minimal norm which is not a
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boundary class. Hence at least one of α, β is not an element of F0. This
completes the analysis of Subcase (II.1.b).

Subcase (II.1.c). BM has three pairs of vertices ±(3m/(2j+q), 3/(2j+
q)), ±(3(m+j)/(j+q), 3/(j+q)) and ±(3(m+j+q)/(j+2q), 3/(j+2q)),
for some integers m, j > 0, q > 0, with j + q ≥ 3.

We may assume that m = −j. Then the vertices of NM are (0, 1),
(0, 2), (q, 3), (j + q, 2), (j + q, 1) and (j, 0) (the case j = 1, q = 2 is
depicted in Figure 10). Since i∗(µ) �= 0 (Proposition 9.6) it follows from
Proposition 10.3 (5) that both j and q are even. One can now verify,
using Proposition 9.3, that Proposition 12.2 holds.
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Figure 10: The canonical norm polygon and Newton polygon when
j = −1, q = 2 in Subcase II.1.c.

Subcase II.2 µ is a vertex of BM .
According to [2, Lemma 6.6 (3)], we have seven subcases to consider.

Subcase (II.2.a). BM is contained in a parallelogram with vertices
±(1, 0) and ±(m, 1), with (m, 1) being a strict boundary class associated
to a vertex of BM .

We may assume that m = 0. Then, 7
3BM is contained in the par-

allelogram with vertices ± (73 , 0) and ± (0, 7
3

)
. In this parallelogram

the primitive classes are ±(1, 0),±(−1, 1),±(0, 1) and ±(1, 1). Noting
that (1, 0) and (0, 1) are rational multiples of the vertices of BM, and
therefore strict boundary classes, we have # ≤ 2, ∆ ≤ 2.

Subcase (II.2.b). BM is contained in a parallelogram with vertices
±(1, 0) and ± (6m5 , 6

5

)
with (2m + 1, 2) being a strict boundary class

associated to a vertex of BM .
We may assume thatm = 0. Then 7

3BM is contained in the parallelo-
gram with vertices ± (73 , 0) and ±(0, 14/5). The primitive classes in this
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parallelogram are ±(1, 0),±(−1, 1), ±(0, 1),±(1, 1),±(2, 1) and ±(1, 2).
Since (1, 0) and (1, 2) are strict boundary classes, we have # ≤ 4, ∆ ≤ 3
and there is at most one pair of slopes realizing the distance 3.

Subcase (II.2.c). BM is contained in a parallelogram with vertices
±(1, 0) and ± (m3 , 1) where (m, 3) is a strict boundary class associated
to a vertex of BM .

We may assume that m = 1. Then 7
3BM is contained in the parallel-

ogram with vertices ± (73 , 0) and ± (79 , 7
3

)
. The primitive classes in this

parallelogram are ±(1, 0),±(−1, 1), ±(0, 1),±(1, 1) and ±(1, 2). Since
(1, 0) is strict boundary class we have # ≤ 4, ∆ ≤ 3 and there is at
most one pair of slopes realizing the distance 3.

Subcase (II.2.d). BM is contained in a polygon with vertices ±(1, 0),
±(m, 1) and ±

(
3(2m+1)

5 , 6
5

)
where (2m+1, 2), (1, 0) and (m, 1) are strict

boundary classes associated to vertices of BM .
We may assume that m = 0. Then 7

3BM is contained in the polygon
with vertices ± (73 , 0), ± (0, 7

3

)
and ± (75 , 14

5

)
. The primitive classes in

this polygon are ±(1, 0), ±(−1, 1), ±(0, 1), ±(1, 1), ±(2, 1) and ±(1, 2).
But (1, 0), (1, 2) and (0, 1) are strict boundary classes, so # ≤ 3, ∆ ≤ 3
and there is at most one pair of slopes realizing the distance 3.

Subcase (II.2.e). BM is contained in the polygon with vertices
±(1, 0), ±(m + 1, 1) and ±

(
3(2m+1)

5 , 6
5

)
where (2m + 1, 2), (1, 0) and

(m+ 1, 1) are strict boundary classes associated to vertices of BM .
We may assume that m = 0. Then 7

3BM is contained in the polygon
with vertices ± (73 , 0), ± (73 , 7

3

)
and ± (75 , 14

5

)
. The primitive classes in

this polygon are ±(1, 0), ±(−1, 1), ±(0, 1), ±(1, 1), ±(2, 1) and ±(1, 2).
But (1, 0), (1, 2) and (1, 1) are strict boundary classes, so # ≤ 3, ∆ ≤ 3
and there is at most one pair of slopes realizing the distance 3.

Subcase (II.2.f). BM is a polygon with vertices ±(1, 0), ±
(

3m
|k|+q ,

3
|k|+q
)

and ±
(

3(m−k)
2|k|+q ,

3
2|k|+q

)
, for some integers m, k �= 0 and q > 0, satisfying

|k| + q ≥ 3.
We may assume that m = 0 and k < 0. Then NM has vertices

(0, 0), (0, 2), (−k, 3), (q− k, 3), (q− k, 1) and (q, 0) (the case k = −1 and
q = 2 is shown in Figure 11). We already know that since ‖µ‖M = 6,
i∗(µ) �= 0. Hence q is even by Proposition 10.3 (5). On the other hand,
from the shape of NM we see that both even and odd powers of v occur
in AM, and so i∗(λ) �= 0. Proposition 10.3 (5) therefore implies that k
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is odd. When |k| + q > 3, one can easily check that Proposition 12.2
is a consequence of Proposition 9.3. Thus we must analyze the case
k = −1, q = 2.

When k = −1 and q = 2, BM and NM are shown in Figure 11 and the
canonical A-polynomial is of the form AM(u, v) = 1 + au+ ε1u

2 + (b+
cu+ du2 + ε2u

3)v + (εε2 + εdu+ εcu2 + εbu3)v2 + (εε1u+ εau2 + εu3)v3

for some integers a, b, c, d and ε, ε1, e2 ∈ {±1}. Since i∗(µ) �= 0 and
i∗(λ) �= 0, Proposition 10.3 (5) implies that a = b = d = 0. Thus

AM(u, v) = 1 + ε1u
2 + (cu+ ε2u

3)v + (εε2 + εcu2)v2 + (εε1u+ εu3)v3.

The primitive classes contained in 7
3BM are ±(1, 0), ±(−1, 1), ±(0, 1),

±(1, 1), (2, 1) and ±(1, 2). It suffices for us to show that (2, 1) is not in
F0.
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Figure 11: The canonical norm polygon and Newton polygon when
k = −1 and q = 2 in Subcase II.2.f.

Lemma 13.4. When k = −1 and q = 2, α = (2, 1) is not a finite
filling class.

Proof. Suppose otherwise. From the shape of BM, we see that
‖α‖M = sM + 8 and since H1(M ; Z2) = Z2, α must be an I(5)-type
class. Therefore by Proposition 11.3, AM(u, u−2) = 1 + ε1u

2 + (cu +
ε2u

3)u−2 + (εε2 + εcu2)u−4 + (εε1u+ εu3)u−6 = u−5(εε1 + εε2u+ εu2 +
εcu3 + cu4 + u5 + ε2u

6 + ε1u
7) is divisible by either u4 + u3 + u2 + u+ 1

or u4 −u3 +u2 −u+1 and the roots of the quotient polynomial are ±1.
Fix θ ∈ {±1}. If AM(u, u−2) is divisible by u4+θu3+u2+θu+1, the

quotient polynomial is q(u) = ε1u
3 + (ε2 − ε1θ)u2 + (1− ε2θ)u+ (c− θ).

By hypothesis q(u) is congruent to (u+1)3 (mod 2) and so ε2− ε1θ, the
coefficient of u2 in q, is odd. This is clearly false. Thus (2, 1) is not in
F0. q.e.d.
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Subcase (II.2.g). BM is a polygon with vertices ±(1, 0), ±(3m/(2j+
k + q), 3/(2j + k + q)), ±(3(m + j)/(j + k + q), 3/(j + k + q)) and
±(3(m + j + k)/(j + 2k + q), 3/(j + 2k + q)), for some integers m, j >
0, k > 0, q > 0.

We may assume that m = −j. Then NM has vertices (0, 1), (0, 2),
(k, 3), (k + q, 3), (j + k + q, 2), (j + k + q, 1), (j + q, 0) and (j, 0). From
Proposition 10.3 we see that both j and q are even while k is odd. It
now follows from Proposition 9.3 that Proposition 12.2 holds in this
case. The proof of Proposition 12.2 is therefore complete. q.e.d.

14. Proof of Proposition 12.3

From now till the end of §17 we assume that sM ≥ 8. The proof of
Proposition 12.3 is based on the following three lemmas.

Lemma 14.1. Suppose that sM = 8.

(1) If µ is not a vertex of BM , then BM has at most four pairs of ver-
tices and the absolute values of the λ-coordinates of the associated
boundary classes are no larger than 3. Further:

(i) If BM has a pair of vertices whose associated boundary classes
have λ-coordinates equal to 3 in absolute value, then BM is
a parallelogram and the absolute value of the λ-coordinate of
its other pair of vertices is 1.

(ii) If BM has at least two pairs of vertices whose associated
boundary classes have λ-coordinates which are larger than 1
in absolute value, then BM is a parallelogram and the abso-
lute value of the λ-coordinate of its other pair of vertices is
2.

(2) If µ is a vertex of BM , then BM has at most five pairs of ver-
tices and the absolute values of the λ-coordinates of the associated
boundary classes are no larger than 4. Further:

(i) If BM has a pair of vertices whose associated boundary classes
have λ-coordinates equal to 4 in absolute value, then BM is
parallelogram.

(ii) If BM has a vertex pair whose associated boundary classes
have λ-coordinates equal to 3 in absolute value, then BM has
exactly one more vertex pair, besides ±µ, and its associated
boundary classes are integral.
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(iii) If BM has two pairs of vertices whose associated boundary
slopes have λ-coordinates equal to 2 in absolute value, then
BM has no other vertex pairs, besides ±µ.

Proof. Apply [2, Lemma 6.2]. q.e.d.

Lemma 14.2. Suppose that sM = 10.

(1) If µ is not a vertex of BM , then BM has at most five pairs of ver-
tices and the absolute values of the λ-coordinates of the associated
boundary classes are no larger than 4. Further:

(i) If BM has a pair of vertices whose associated boundary classes
have λ-coordinates equal to 4 in absolute value, then BM has
only one other pair of vertices and the absolute value of the
λ-coordinates of its associated classes is 1.

(ii) If BM has a pair of vertices whose associated boundary classes
have λ-coordinates equal to 3 in absolute value, then BM has
at most one vertex pair whose associated boundary class has
λ-coordinate equal to 2, in which case BM is a parallelogram.

(iii) If BM has a pair of vertices whose associated boundary classes
have λ-coordinate equal to 3 in absolute value, then BM has at
most two more vertex pairs whose associated boundary classes
are integral.

(2) If µ is a vertex of BM , then BM has at most six pairs of vertices and
the absolute values of the λ-coordinates of the associated boundary
classes are no larger than 5 in absolute value. Further:

(i) If BM has a pair of vertices whose associated boundary slopes
have λ-coordinates equal to 5 in absolute value, then BM is
parallelogram.

(ii) If BM has a vertex pair whose associated boundary classes
have λ-coordinates equal to 4 in absolute value, then BM has
exactly one vertex pair, besides ±µ, in which case the asso-
ciated boundary class is integral.

(iii) If BM has a vertex pair whose associated boundary classes
have λ-coordinates equal to 3 in absolute value, then BM has
at most one vertex pair whose associated boundary slope has
λ-coordinate equal to 2 in absolute value, in which case BM

has exactly three vertex pairs.
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(iv) If BM has a vertex pair whose associated boundary classes
have λ-coordinates equal to 3 in absolute value, then BM has
at most two other vertex pairs whose associated boundary
classes are integral.

Proof. Apply [2, Lemma 6.2]. q.e.d.

Lemma 14.3. Suppose that sM = 8. If BM is a parallelogram
with vertices ±(m − 1, 1) and ±(m + 1), then F0 ⊂ {(1, 0), (m, 1)}. In
particular # ≤ 2 and ∆ ≤ 1.

Proof. We may assume that m = 0 and so BM is as shown in Figure
12. According to Proposition 9.3, any finite filling class is contained in
5
2BM . Therefore F0 ⊂ {(−1, 2), (1, 2), (−2, 1), (2, 1), (0, 1), (1, 0)}. We
now use AM to show that α = (−2, 1) �∈ F0. By symmetry neither are
(−1, 2), (1, 2) or (2, 1).

If α ∈ F0, then since sM+8 = ‖α‖M > ‖α+µ‖M, ‖α+2µ‖M, ‖α+3µ‖M,
Proposition 9.3 implies that it must be an I(5)-type class. Thus by
Lemma 2.1, i∗(λ) = i∗(α) �= 0.

λ

µMBo

(-1,1) (1,1) (2,1)

(1,0)

(0,1)
MB

1

1

o

 2 

2

MN

3 4
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(ε
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a)b) ε(

ε

ε( )

( )(ε1)
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(d) (e) d)ε(
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Figure 12: The canonical norm polygon and Newton polygon.

By Proposition 10.1, NM is as shown in Figure 12. Hence the canon-
ical A-polynomial is of the form AM(u, v) = u2 + (au + bu2 + cu3)v +
(ε1 +du+eu2 + εdu3 + εε1u

4)v2 +(εcu+ εbu2 + εau3)v3 + εu2v4 for some
integers a, b, c, d, e and ε, ε1 ∈ {±1}.

By Proposition 11.3, there is some θ ∈ {±1} such that u−2AM(u, u2)
= 1+au+(b+ε1)u2+(c+d)u3+eu4+ε(c+d)u5+ε(b+ε1)u6+εau7+εu8 is
divisible by (u4 +θu3 +u2 +θu+1)j for some integer j ≥ 1. Further the
roots of the quotient lie in {±1}. Obviously j ≤ 2 but in fact it’s easy
to see that j = 1. For otherwise Proposition 11.3 implies that neither
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A(u, u2) nor A(u,−u2) have roots in {±1}. But this contradicts the
fact that any discrete faithful character in CM corresponds to a point in
{±(1, 1),±(1,−1)}. Hence we have j = 1.

Let ε be the nonzero element of H1(M ; Z2) = Z2 and recall that
we have shown ε(λ) �= 0. If ε(µ) = 0 then Proposition 10.3 (5) implies
that a = b = c = 0. Thus u−2AM(u, u2) = 1 + ε1u

2 + du3 + eu4 +
εdu5 + εε1u

6 + εu8. Its quotient by u4 + θu3 + u2 + θu + 1 is q(u) =
εu4 − εθu3 + εε1u

2 + ε(d− ε1θ)u+(e− εθd) where e− εθd = 1. But since
the coefficient of u3 in q is odd, q has roots other that ±1, contrary to
our set-up.

Assume then that ε(µ) �= 0. Then Proposition 10.3 (5) implies that
b = d = 0. Calculation shows that up to a power of u we have

AM(u, u2) = εu8 + εau7 + εε1u
6 + εcu5 + eu4 + cu3 + ε1u

2 + au+ 1.

Dividing AM(u, u2) by u4 + θu3 + u2 + θu+ 1 yields the quotient poly-
nomial

q(u) = εu4 + ε(a− θ)u3 + ε(ε1 − θa)u2 + ε(c− θε1)u+ 1.

Since the roots of q lie in {±1}, examination of its coefficients shows
that both a and c are odd. Hence by Proposition 10.3 (4) we see that
|a| = |c| = 1. The same result then implies that ε1 = ε = 1. Hence
the leading and constant coefficients of q are both 1. It follows that
q(u) is either (u + 1)4, (u − 1)4, or (u + 1)2(u − 1)2. Since |a| = 1 we
have |a − θ| ≤ 2 and thus q(u) = (u + 1)2(u − 1)2 = u4 − 2u2 + 1.
Examination of the coefficient of u3 in q implies that a = θ. But then
from the coefficient of u2 we obtain −2 = ε(ε1 − θa) = 1 − 1 = 0. This
final contradiction completes the proof of Lemma 14.3. q.e.d.

We are now ready to give the proof of Proposition 12.3. For points
v1, v2 ∈ H1(∂M ; R), let [v1, v2] denote the line segment they span.

Assume that there are two classes in F0 whose λ-coordinate is 2.
By [2, Theorem 1.1(1)], there are at most two such classes and if two,
we may assume without loss of generality that they are ±(1, 2) and
±(−1, 2). By Proposition 9.3 (1) and (2), neither of these two slopes
has type C,D,Q, T (2), O(2) or I(2).

Assume first that ‖(−1, 2)‖M, ‖(1, 2)‖M ≤ 2sM. Then [(−1/2, 1),
(1/2, 1)] ⊂ BM. Since this segment contains (0, 1) it follows that it ac-
tually lies on ∂BM. Noting that (0, 1) is not a vertex of BM, our conven-
tions imply that neither is (1, 0). Hence if sM = 8, Lemma 14.1 implies
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that BM must be a parallelogram with vertices ±(−1, 1),±(1, 1). But
then from Lemma 14.3 we deduce that (−1, 2) �∈ F0. Thus sM > 8 and
since ‖(−1, 2)‖M = ‖(1, 2)‖M = 2sM, it follows from Proposition 9.3 that
(−1, 2) and (1, 2) are both of type O(3). Now ∆((1, 2), (−1, 1)) = 3, and
so from Proposition 9.3 we see that 2sM = ‖(1, 2)‖M ≤ ‖(−1, 1)‖M. But
this contradicts the fact that (−2/3, 2/3) ∈ [(−1/2, 1), (−1, 0)] ⊂ BM

and therefore ‖(−1, 1)‖M = 3
2‖(−2/3, 2/3)‖M < 2sM. Thus one of

‖(−1, 2)‖M and ‖(1, 2)‖M is larger than 2sM.
By symmetry we may suppose that α = ‖(1, 2)‖M > 2sM. From

Proposition 9.3 we see that it must be an O(3)-type filling class and so as
above we have 2sM <‖(1, 2)‖M ≤‖(−1, 1)‖M . Therefore ‖(−1/2, 1/2)‖M

> sM . Now (−1/2, 1/2) ∈ [(−1, 0), (0, 1)] and since ‖(−1, 0)‖M = sM, the
convexity of ‖·‖M implies that ‖v‖M >sM for each v∈ [(−1/2, 1/2), (0, 1)].
In particular we have ‖(−1/3, 2/3)‖M > sM. Thus ‖(−1, 2)‖M ≥ 3sM ≥
sM + 16, which contradicts Proposition 9.3 (5). The proof of Proposi-
tion 12.3 is therefore complete. q.e.d.

15. Proof of Proposition 12.4

Let I0 be the set of integral classes in L which are finite or cyclic
filling classes, but not strict boundary classes, and let ∆(I0) denote the
maximal distance between elements in I0. We only need to show that
∆(I0) ≤ 3 (which implies that the number of elements in I0 is at most
4).

Fix α1 ∈ I0 which satisfies

‖α‖M ≤ ‖α1‖M for each α ∈ I0.

As a first case, suppose that ‖α1‖M < 2sM. Then I0 ⊂ int(2BM). Since
each horizontal line in the µλ-plane intersects BM in a line segment of
length no larger than 2, there exists a line segment L ⊂ {(u, 1) | u ∈ R}
of length strictly less than 4 which contains I0. Thus Proposition 12.4
holds in this case.

We shall therefore assume below that ‖α1‖M ≥ 2sM. Since sM ≥ 8,
Proposition 9.3 implies that we may assume one of the following cases
holds:

• α1 is of type D,Q, I(q) or O(q) where q ≤ 3.

• sM = 8, ‖α1‖M = 16, and each α ∈ I0 with ‖α‖M = 16 is an
I(5)-type class.
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We consider these two cases separately below.

Case 1. α1 is of type D,Q, I(q) or O(q) where q ≤ 3.
Suppose first of all that there is an integral class α0 in L such that

‖α0‖M < ‖α1‖M. Then there is an integer j �= 0 such that α0 = α1 + jµ.
Set ε = j/|j| and choose integersm, r ≥ 0 such that r < q and |j| = md+
r. Then by the choice of q we have ‖α1 +εmqµ‖M, ‖α1 +ε(m+1)qµ‖M ≥
‖α1‖M > ‖α0‖M = ‖α1 + ε(mq+ r)µ‖M. By the properties of a norm we
must have ‖α1+εkµ‖M > ‖α1‖M for each k < mq and each k > (m+1)q.
But this implies that m = 0 and I0 ⊂ {α1, α1 + εµ, . . . , α1 + qεµ}.
Therefore Proposition 12.4 holds.

Now assume that ‖α1‖M ≤ ‖α‖M for each integral class α ∈ L. By
the choice of α1 it follows that ‖α‖M = ‖α1‖M for each α ∈ I0. Without
loss of generality we may assume that I0 ⊂ {α1, α1 + µ, . . . , α1 + kµ}.
Clearly ‖α1 + jµ‖M = ‖α1‖M for 0 ≤ j ≤ k. Since ∆(I0) = k, we need
to show that k ≤ 3.

If ‖α1‖M = 2sM and k ≥ 4, then α1
2 ,

α1
2 +µ and α1

2 +2µ all lie on ∂BM.
It follows that BM is a parallelogram with vertices α1

2 and α1
2 +2µ. But

then α1 is a strict boundary class, contrary to our hypotheses. Thus we
must have k ≤ 3 when ‖α1‖M = 2sM, so Proposition 12.4 holds in this
case.

We may suppose then, for the rest of the proof of Case 1, that
‖α1‖M > 2sM. From Proposition 9.3, we see that sM = 8 or 10, each
α ∈ I0 is an O-type class, ‖α1‖M ≤ sM + 12, and H1(M ; Z2) ∼= Z2 ⊕Z2.

If sM = 10 then by Proposition 9.6, µ �∈ ker(H1(∂M ; Z2) → H1(M ;
Z2)) and so one of ‖α1‖M and ‖α1 + µ‖M is divisible by 4. But then
since 20 = 2sM < ‖α1‖M < sM + 12 = 22, ‖α1 + µ‖M �= ‖α1‖M. Hence
k = 0.

Last we consider the case where sM = 8. As 2α1 ∈ ker(H1(∂M ; Z2)
→H1(M ; Z2)), ‖2α1‖M is divisible by 8 by Proposition 9.6 and thus
‖α1‖M is visible by 4. But 16 = 2sM < ‖α1‖M ≤ sM + 12 = 20 and so
‖α1‖M = 20. Hence I0 ⊂ ∂(5

2BM). Since neither α1 nor α1 + kµ are
strict boundary slopes we must have k ≤ 4 (cf. the argument for the
case ‖α1‖M = 2sM).

Suppose k = 4. Then 2
5α1,

2
5(α1 + 2µ) and 2

5(α1 + 4µ) lie on ∂BM

but are not vertices of BM. By Lemma 14.1, we see that BM is a par-
allelogram with vertices {±2

5(2α1 − µ),±2
5(2α1 + 9µ)}. Without loss of

generality we may take λ = α1 + 2µ. Then the Newton polygon NM

is a diamond with vertices (5, 0), (0, 2), (5, 4) and (10, 2). Therefore the
canonical polynomial AM(u, v) has u5 (up to sign) as a monomial. Now
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we must have µ ∈ ker(H1(∂M ; Z2)→H1(M ; Z2)) since the monomial
u5 appears in AM(u, v) (by Proposition 10.3 (5) (i) (iii)). But then by
Proposition 9.6 (2), we would have ‖µ‖M ≥ 16 (note that µ is not a ver-
tex of BM). This contradiction completes the proof of Proposition 12.4
in Case 1.

Case 2. sM = 8, ‖α1‖M = 16, and each α ∈ I0 with ‖α‖M = 16 is
an I(5)-type class.

Choose α0 ∈ I0 and k ≥ 0 so that α0 + kµ ∈ I0 and I0 ⊂ {α0, α0 +
µ, . . . , α0 + kµ}. We must show that k ≤ 3.

Since I0 ⊂ 2BM we have k ≤ 4. If k = 4 then the horizontal line
segment of length 2, [α0

2 ,
α0
2 +2µ], lies in BM. This in particular implies

that µ is not a vertex of BM. Since neither α0 nor α0 + 4µ are strict
boundary classes, Lemma 14.1 implies that BM is a parallelogram with
vertices {±(α0 +µ, 1),±(α0 + 3µ, 1)}, or {±1

3(2α0 +µ),±1
3(2α0 + 7µ)},

or {±1
4(3α0+2µ),±(α0+3µ)}, or {±(α0+µ),±1

4(3α0+10µ)}. Now the
latter two cases are not possible because for these configurations we have
8 = ‖7

8(α0+2µ)‖M and so ‖α0+2µ‖M �∈ Z. By Lemma 14.3, the first case
cannot occur. Hence BM must have vertices {±1

3(2α0 + µ),±1
3(2α0 +

7µ)}. In particular, ‖α0‖M = ‖α0 + 4µ‖M = 16 and thus both of α0 and
α0 + 4µ are I(5)-type filling classes. The proof of Proposition 12.4 in
Case 2 is completed by an appeal to the following lemma.

Lemma 15.1. Suppose that sM = 8 and BM is a parallelogram with
vertices {±1

3(2α0 + µ),±1
3(2α0 + 7µ)}, where α0 is an integral class in

L. If α0 is an I(5)-type class, then α0 + 4µ is not an I(5)-type class.

Proof. Without loss of generality we may take λ = α0 + 2µ. Then
BM is the polygon with vertices ±2

3(−3, 2),±2
3(3, 2) and therefore NM

is the diamond with vertices (3, 0), (0, 2), (3, 4) and (6, 2). It follows
from Proposition 10.3 that i∗(µ) = 0. The same result now implies
that there are integers a, b, c and ε, ε1 ∈ {±1} such that AM(u, v) =
u3 + (ε1 + au+ bu2 + cu3 + εbu4 + εau5 + εε1u

6)v2 + εu3v4 where c = εc.
Setting v = u2 we obtain

AM(u, u2) = u3[εu8 + εε1u
7 + εau6 + εbu5 + cu4 + bu3 + au2 + ε1u+ 1].

Suppose that α0 = (−2, 1) is an I(5)-type class. Then by Proposi-
tion 11.3 there is a θ ∈ {±1} and d ≥ 1 for which AM(u, u2) is divisible
by (u4 +θu3 +u2 +θu+1)j . As in Lemma 14.3, we see that j = 1. Long
division of u−3AM(u, u2) by (u4 + θu3 + u2 + θu+ 1) yields the quotient

q(u) = εu4 + ε(ε1 − θ)u3 + ε(a− θε1)u2 + ε(b− θa)u+ 1
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as well as the equation c − θεb = 1. Since the roots of q are ±1 and
the coefficient of u3 is ε(ε1 − θ) ∈ {−2, 0, 2}, it follows that εq(u) =
(u−1)3(u+1), (u−1)2(u+1)2 or (u−1)(u+1)3. It can then be argued
that

a = −1, b = −εθ, c = 0, ε1 = εθ.

Thus

AM(u, v) = u3 + (εθ − u− εθu2 − θu4 − εu5 + θu6)v2 + εu3v4.

If we assume that α0 + 4µ = 2µ+ λ is also an I(5)-type class then

u5AM(u, u−2) = u8 + θu7 − εu6 − θu5 − εθu3 − u2 + εθu+ ε

has either ζ = e
2πi
5 or −ζ as a root. Substituting these values into

AM(u, u−2) yields ε = 1 and

θ =
{

1 if ζ is a root of AM(u, u−2)
−1 if −ζ is a root of AM(u, u−2).

Thus

AM(u, v) = u3 + (θ − u− θu2 − θu4 − u5 + θu6)v2 + u3v4.

But it is proven in the appendix to this paper that there is no compact,
irreducible, orientable, hyperbolic 3-manifold M whose boundary is a
torus which has such a canonical A-polynomial. Thus α0 +4µ is not an
I(5)-type class. q.e.d.

16. Proof of Proposition 12.5

Suppose that α, β ∈ F0. We need to show that ∆(α, β) ≤ 3. Suppose
otherwise. Then by Propositions 12.3 and 12.4 we see that one of α and
β, say β, has λ-coordinate 2, while α is integral. After possibly changing
λ we can assume that β = (1, 2). Since the distance between an integral
class and β is always an odd number, [2, Theorem 1.1(1)] implies that
∆(α, β) = 5. Hence α = (−2, 1) or (3, 1) and by possibly changing the
orientation of λ we may assume that α = (−2, 1). Let γ and η denote
(−1, 1) and (1, 1) respectively.

An application of [2, Theorem 1.1 (2)] yields the fact that neither α
nor β is a cyclic filling class.

Recall that for points ω, σ ∈ V = H1(∂M ; R), we use [ω, σ] to denote
the line segment in V with endpoints ω and σ.

The following lemma records several useful inequalities.
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Lemma 16.1.

(1) ‖λ‖M, ‖η‖M < ‖β‖M.

(2) (i) 5‖λ‖M ≤ ‖α‖M + 2‖β‖M with equality if and only if [ sM
‖α‖M

α,
sM

‖β‖M
β] ⊂ ∂BM.

(ii) If 5sM = ‖α‖M + 2‖β‖M, then λ ∈ ∂BM.

(3) ‖β‖M ≤ ‖α‖M and ‖β‖M = ‖α‖M if and only if both α and β are
of type I(5).

Proof. (1) Suppose that ‖β‖M ≤ ‖λ‖M. Then since β = 2λ + µ we
have ‖β‖M = ‖2λ+µ‖M ≥ 2‖λ‖M − sM ≥ 2‖β‖M − sM and so ‖β‖M ≤ sM

which contradicts Propsition 4.5 (3). Thus ‖β‖M > ‖λ‖M and a similar
argument shows that ‖β‖M > ‖η‖M.

(2) (i) The line segment [ sM
‖α‖M

α, sM
‖β‖M

β] lies entirely in BM and in-

tersects the λ-axis at (0, 5sM
‖α‖M+2‖β‖M

). On the other hand ∂BM inter-

sects the positive λ-axis at (0, sM
‖λ‖M

) and so 5sM
‖α‖M+2‖β‖M

≤ sM
‖λ‖M

, i.e.,
5‖λ‖M ≤ ‖α‖M + 2‖β‖M. Further if there is equality then the three
points sM

‖α‖M
α, sM

‖λ‖M
λ, sM

‖β‖M
β of norm sM all lie on [ sM

‖α‖M
α, sM

‖β‖M
β]. Thus

[ sM
‖α‖M

α, sM
‖β‖M

β] ⊂ ∂BM.
(ii) If 5sM = ‖α‖M + 2‖β‖M, then part (i) shows that sM = ‖λ‖M.
(3) According to part (1) of this lemma we have ‖β‖ > sM and so by

Proposition 9.3, β cannot have type C, D, Q, or T (q), I(q), O(q) where
q ≤ 2.

Assume next that β is of type T (3), O(3) or I(3). Recall γ = (−1, 1).
Then since ∆(β, γ) = 3, Proposition 9.3 implies ‖β‖M ≤ ‖γ‖M. There
are some x, t ∈ (0, 1) such that γ = x((1 − t)α + tβ) and so ‖γ‖M <
‖(1− t)α+ tβ‖M ≤ (1− t)‖α‖M + t‖β‖M ≤ (1− t)‖α‖M + t‖γ‖M. Hence
‖α‖M > ‖γ‖M ≥ ‖β‖M.

If β is of type I(5), then since ∆(β, α) = 5, Proposition 9.3 (4) shows
that α is also of type I(5) and ‖β‖M = ‖α‖M. Hence part (3) of the
lemma holds in this case.

Next we suppose that β is of type O(4) and that ‖α‖M < ‖β‖M.
According to Proposition 9.3 (5), ‖β‖M ≤ sM + 6 and so by part (2) we
have 5sM ≤ 5‖λ‖M ≤ ‖α‖M + 2‖β‖M ≤ 3sM + 16. Thus sM = 8, ‖α‖M =
sM + 4, ‖β‖M = sM + 6 from part (2) we obtain ‖λ‖M = sM and the line
segment [ sM

‖α‖M
α, sM

‖β‖M
β] = [23α,

4
7β] lies in ∂BM. Now the segment [µ, 4

7β]
also lies in BM and intersects the horizontal line through 2

3α ∈ ∂BM in



160 s. boyer & x. zhang

the point (3
4 ,

2
3) = 2

3α + 25
12µ. But this is impossible as BM contains no

horizontal segment of length larger than 2.
Finally suppose that β is of type O(4) and that ‖α‖M = ‖β‖M. We

must show that this case cannot occur. The inequalities of part (2)
imply that sM = 8, ‖λ‖M = sM and ‖α‖M = ‖β‖M = sM + 6 = 7

4sM.
Hence by Proposition 9.3 (3) and (5), we see that α is not of type T . As
β is of type O(4) we have H1(M ; Z2) = Z2 and therefore by Lemma 2.1
i∗(µ) = i∗(β) = 0. It follows that i∗(α) �= 0 and so H1(M(α); Z2) = 0.
Hence Lemma 2.1 implies that α must be of type I (we already knew
that it is not of type C or T ). Now α cannot be of type I(2) since
‖α‖M > sM = ‖λ‖M. It cannot have type I(5) for otherwise β would
also (Proposition 9.3 (4)), so as our final case assume it is of type I(3).
Then since ∆(α, η) = 3 we have ‖η‖M ≥ ‖α‖M = sM + 6 and therefore
(4
7 ,

4
7) is not contained in the interior of BM. On the other hand, we

have ‖β‖M = sM + 6 and thus the line segment [(4
7 ,

8
7), µ] is contained

in BM. But the segments [(4
7 ,

8
7), µ] and [η,−η] intersect in the point

( 8
11 ,

8
11), which implies that (4

7 ,
4
7) is contained in the interior of BM.

This contradiction completes the proof of the lemma. q.e.d.

We now complete the proof of Proposition 12.5.

Lemma 16.2. α cannot be of type C,D,Q or O(q), T (q), I(q) where
q ≤ 3.

Proof. This follows from Proposition 9.3 since ‖α‖M ≥ ‖β‖M >
‖λ‖M, ‖η‖M ≥ sM by Lemma 16.1. q.e.d.

Lemma 16.3. α cannot be of type O(4).

Proof. If α has typeO(4) then from Proposition 9.3 (5) and Lemma 16.1
(3) we see that ‖β‖M < ‖α‖M ≤ s + 6. Hence by Lemma 16.1 (2) we
have 5sM ≤ 3sM + 14. But then sM < 8, a contradiction. Therefore the
lemma holds. q.e.d.

Lemma 16.4. α cannot be of type I(5).

Proof. If α is of type I(5), then from Proposition 9.3 (4) we see
that β also has type I(5) and ‖α‖M = ‖β‖M. Hence Lemma 2.1 implies
that i∗(µ) = i∗(β) = i∗(α) �= 0 while i∗(γ) = i∗(η) = 0. Then by
Proposition 9.6, both ‖γ‖M and ‖η‖M are divisible by 4. Since ‖α‖M =
‖β‖M ≤ sM + 8, Lemma 16.1 (2) shows that one of the following cases
holds:
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(i) sM = 12 = ‖λ‖M, ‖α‖M = ‖β‖M = sM + 8, and [ sM
‖α‖M

α, sM
‖β‖M

β] ⊂
∂BM.

(ii) sM = 10 = ‖λ‖M and ‖α‖M = ‖β‖M = sM + 8.

(iii) sM = 8 = ‖λ‖M and ‖α‖M = ‖β‖M ∈ {sM + 6, sM + 8}.
We’ll deal with these cases separately.

In Case (i) note first that the line segment of negative slope [µ, 3
5β]

lies in BM and calculation shows that it intersects the horizontal line
through 3

5α in the point 3
5α + 2µ. On the other hand, the fact that α

is not a strict boundary class implies that the edge of ∂BM containing
[35α,

3
5β] extends through 3

5α and ends below and to the left of it. It
follows that there is a horizontal line lying just below 3

5α which intersects
BM in a segment of length strictly longer than 2, which is impossible.
Thus Case (i) leads to a contradiction.

Next consider Case (ii). Recall ‖γ‖M, ‖η‖M ≡ 0 (mod 4) and since
the segments [59α, λ] and [µ, 5

9β] lie in BM and it follows that ‖γ‖M =
‖η‖M = 12. The segments [−µ, 5

9α] and [µ, 5
6η] lie inBM and are parallel,

so in fact they lie in ∂BM. Hence µ is not a vertex of BM. Now 5
9β ∈

BM so there is a vertex v1 of BM whose λ-coordinate is larger than 1.
Actually v1 may be taken to lie in the sector bounded by the half-rays
based at the origin and passing through λ and η. Let (m1, n1) ∈ L be the
strict boundary class associated to v1. Since β is not a strict boundary
class we have |n1| ≥ 3. Consider the edge of BM which contains [−µ, 5

9α].
Since α is not a strict boundary slope this edge passes through 5

9α to an
edge v2 associated to a strict boundary class (m2, n2) where |n2| ≥ 2.
An application of Lemma 14.2 reveals that |n1| = 3, |n2| = 2 and BM is
a parallelogram. Since ‖λ‖M = sM it is easy to see that (m1, n1) = (2, 3)
while (m2, n2) = (−2, 3). The Newton polygon of AM is a parallelogram
with vertices (0, 2), (2, 5), (5, 3) and (0, 3). In particular since (0, 3) is a
vertex of NM, Proposition 10.3 (5) implies that i∗(µ) = 0, contrary our
previous calculations. Thus Case (ii) leads to a contradiction.

Now consider Case (iii) when ‖α‖M = ‖β‖M = sM + 6. The line
segment [µ, 4

7β] lies in BM, which implies that ‖η‖M ≤ 11
8 sM = 11.

Hence since ‖η‖M is divisible by 4, ‖η‖M = 8 = sM. The segment [µ, η]
is therefore contained in BM, as is [−µ, 4

7α]. But then BM contains a
horizontal line segment of length longer than two, which is impossible.

Finally suppose that ‖α‖M = ‖β‖M = sM + 8 in Case (iii). The
line segment [12α, λ] lies in BM, which implies that ‖γ‖M = 8 or 12.
If ‖γ‖M = 8, then as ‖α/2‖M = sM and lies on [−µ, γ] we see that
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this segment is contained in ∂BM. Similarly since ‖λ‖M = sM and is
contained on [γ, 1

2β], this segment is contained in ∂BM as well. Thus γ
is a vertex of BM. Let e be the edge of BM which contains [γ, 1

2β] and v1
the endpoint of e other than γ. Now v1 �= 1

2β since β is not a boundary
class associated to a vertex of BM. Further Lemma 14.3 shows that
v1 �= η = (1, 1). Then by Lemma 14.1, we see that v1 = (2

3 , 1). Now
[v1, µ] is contained in BM which implies that ‖η‖M ≤ 4

3sM ≤ 11. Thus
since ‖η‖M is divisible by 4, ‖η‖M = 8. But then [γ, η] is contained in
∂BM, which contradicts Lemma 14.3. Therefore we have ‖γ‖M = 12.

The segment [µ, 1
2β] lies in BM and so ‖η‖M = 8 or 12. In the

former case the parallel segments [µ, η], [−µ, α/2] lie in BM and have
horizontal separation equal to 2, so in particular they lie in ∂BM and
therefore µ is not a vertex of BM. Further we have [η, λ] ⊂ ∂BM as
‖β/2‖M = sM. Thus η is a vertex of BM. By Lemma 14.3, γ cannot be a
vertex of BM, and so since α is not a strict boundary class, Lemma 14.1
can be used to prove that BM is the polygon with vertices ±η,±λ and
±(−1, 2/3). But then NM has a vertex at (3, 0), which implies that
i∗(µ) = 0 (Proposition 10.3 (5)), contrary to our previous calculations.
Thus ‖η‖M = 12. It follows that [µ, 1

2β] ⊂ ∂BM and since β is not a
strict boundary class, this segment extends upward along an edge of BM

to a vertex, say v1, of BM, whose λ-coordinate is larger than 1. If v1
is a positive multiple of a primitive class (m,n) ∈ L, then Lemma 14.1
implies that that n = 3 and since λ ∈ ∂BM, an easy calculation shows
that v1 must be the point (2

5 ,
6
5), which is the intersection of the two

edges of BM containing the segments [µ, 1
2β] and [12α, λ]. Lemma 14.1

now shows that BM has at most one other vertex pair different from
±µ, and this pair corresponds to an integral class. Owing to the fact
that α is not a strict boundary class, we deduce that BM must be the
parallelogram with vertices ±(2

5 ,
6
5) and ±(−6

5 ,
2
5). But then NM is the

parallelogram with vertices (3, 0), (0, 1), (1, 4) and (4, 3). In particular
Proposition 10.3 (5) implies that i∗(µ) = 0, contrary to our previous
calculations. This final contradiction completes the proof of the lemma.

q.e.d.

According to the three previous lemmas, α �∈ F0. This contravenes
our hypotheses and so completes the proof of Proposition 12.5. q.e.d.

17. Proof of Proposition 12.6

If there is no half-integral class in F0, then Proposition 12.6 holds
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by Propositions 12.3 and 12.4. So we may assume that there is some
β ∈ F0 whose λ-coordinate is 2. Without loss of generality, we may
assume that β = (1, 2). Applying Propositions 12.3 and 12.5, we see
that F0 ⊂ {β, α = (−1, 1), λ = (0, 1), η = (1, 1), γ = (2, 1),m = (1, 0)}.
If Proposition 12.6 is not true, then α, γ ∈ F0. We shall assume this in
order to derive a contradiction.

We start by developing some useful inequalities.

Lemma 17.1.

(1) sM < ‖α‖M, ‖β‖M, ‖γ‖M.

(2) ‖λ‖M, ‖η‖M < ‖β‖M.

(3) (i) 3‖λ‖M ≤ ‖α‖M + ‖β‖M with equality if and only if[
sM

‖α‖M
α, sM

‖β‖M
β
]
⊂ ∂BM.

(ii) If 3sM = ‖α‖M + ‖β‖M, then λ ∈ ∂BM.

(4) (i) 3‖λ‖M ≤ ‖γ‖M + ‖β‖M with equality if and only if[
sM

‖γ‖M
γ, sM

‖β‖M
β
]
⊂ ∂BM.

(ii) If 3sM = ‖γ‖M + ‖β‖M, then λ ∈ ∂BM.

Proof. (1) The inequality ‖β‖M > sM follows from Proposition 4.5.
Suppose next that ‖α‖M = sM. Then ‖β‖ ≥ 2sM as otherwise λ would
be contained in the interior of BM. If ‖β‖ = 2sM then as neither α nor
β are strict boundary classes, [α, β/2] is contained in the interior of an
edge of ∂BM. Let v be the endpoint of this edge which has negative
µ-coordinate. Then [−µ, v] ⊂ BM. Hence if ‖γ‖M ≤ 2sM then the line
{(x, 1/2) | x ∈ R} intersects BM in a segment of length larger than 2.
As this is impossible it follows that either ‖β‖M > 2sM or ‖γ‖M > 2sM.
If ‖γ‖M > 2sM, then γ is of type O(2) or O(3) by Proposition 9.3.
In the former case we have 2sM < ‖γ‖M ≤ ‖λ‖M = ‖α + µ‖M ≤ 2sM,
which is obviously impossible. The latter is ruled out by the inequalities
2sM < ‖γ‖M ≤ ‖α‖M = sM. A similar argument shows that ‖β‖M cannot
be larger than 2sM. Hence sM < ‖α‖M and an identical argument gives
sM < ‖γ‖M.

(2) This may be deduced in the same manner that was used to prove
Lemma 16.1 (1).

(3) (i) The line segment
[

sM
‖α‖M

α, sM
‖β‖M

β
]

lies entirely in BM and

intersects the λ-axis at
(
0, 3sM

‖α‖M+‖β‖M

)
. On the other hand ∂BM in-

tersects the positive λ-axis at
(
0, sM

‖λ‖M

)
and so 3sM

‖α‖M+‖β‖M
≤ sM

‖λ‖M
,
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i.e., 3‖λ‖M ≤ ‖α‖M + ‖β‖M. Further if there is equality then the three
points sM

‖α‖M
α, sM

‖λ‖M
λ, sM

‖β‖M
β of norm sM all lie on

[
sM

‖α‖M
α, sM

‖β‖M
β
]
. Thus[

sM
‖α‖M

α, sM
‖β‖M

β
]
⊂ ∂BM.

(ii) If 3sM = ‖α‖M + ‖β‖M, then part (i) shows that sM = ‖λ‖M.
(4) This follows as in part (3). q.e.d.

The following lemma is a consequence of Proposition 9.3 and Lem-
ma 17.1.

Lemma 17.2. β cannot have type C,D,Q or T (q), O(q), I(q) where
q ≤ 2.

Lemma 17.3. β cannot have type O(3).

Proof. If β is of type O(3) then so are α and γ (Proposition 3.3).
Theorem 1.5 of [2] implies that H1(M ; Z2) = Z2 ⊕ Z2 and so from
Lemma 2.1 we deduce that i∗(µ) = i∗(β) �= 0. Thus either i∗(γ) = 0
or i∗(α) = 0. But then H1(M(α); Z2) = Z2 ⊕ Z2 or H1(M(γ); Z2) =
Z2 ⊕ Z2, contrary to Lemma 2.1. Thus β is not of type O(3). q.e.d.

Lemma 17.4. β cannot have type T (3) or I(3).

Proof. If β is of type T (3) or I(3), then both α and γ have the same
type as β. In particularH1(M(β); Z2) = H1(M(α); Z2) = H1(M(γ); Z2)
= 0 and H1(M ; Z2) = Z2. Thus i∗(µ) = i∗(β) �= 0 but either i∗(γ) = 0
or i∗(α) = 0. Then H1(M(α); Z2) = Z2 or H1(M(γ); Z2) = Z2, giving
a contradiction. Thus β cannot have type T (3) or I(3). q.e.d.

Lemma 17.5. β cannot have type O(4).

Proof. Suppose otherwise. Then Proposition 10.3 implies that
H1(M ; Z2) = Z2, and thus i∗(µ) = i∗(β) = 0. Hence i∗(α) = i∗(γ) �= 0.
Therefore by Lemma 17.1 (1), both α and γ have type I or T . Also
Proposition 9.6 implies that ‖µ‖M and ‖β‖M are divisible by 4. Hence
as sM < ‖β‖M ≤ sM + 6 we deduce that ‖β‖M = sM + 4. Now 3sM ≤
‖α‖ + ‖β‖ ≤ 2sM + 14 (recall α has type T or I) and so sM ≤ 14. But
sM = ‖µ‖M is divisible by 4, so sM = 8 or 12. In the latter eventuality
Lemma 17.1 (3), (4) implies that:

• ‖α‖M = 20, ‖λ‖M = 12 and
[

3
5α,

3
4β
] ⊂ ∂BM.

• ‖γ‖M = 20, ‖η‖M = 12 and
[

3
5γ,

3
4β
] ⊂ ∂BM.
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Therefore 3
4β is a vertex of BM, contrary to our assumptions, and

so sM = 8. Another application of Lemma 17.1 (3), (4) shows that
‖α‖M, ‖γ‖M ≥ 12 while ‖λ‖M = ‖η‖M = 8.

Since the point 2
3β is in BM, the polygon BM has a vertex whose

associated boundary class has λ-coordinate at least three. According to
Lemma 14.1 there are only four possible shapes for BM:

(i) a parallelogram with vertices ±1
2(µ+ 3λ) and ±1

2(3µ+ λ),

(ii) a parallelogram with vertices ±1
2(−2µ+ λ) and ±1

2(2µ+ 3λ),

(iii) a polygon with vertices µ,±1
2(µ+ 3λ) and η,

(iv) a polygon with vertices µ, λ and ±1
2(2µ+ 3λ).

In each of these four cases one verifies that the associated Newton poly-
gon has a corner at a lattice point whose second coordinate is odd. But
we have already shown that i∗(µ) = 0 while i∗(λ) �= 0 and so Proposi-
tion 10.3 (5) shows that AM(u, v) involves only even powers of v. This
contradiction completes the proof that β cannot be of type O(4). q.e.d.

Lemma 17.6. β cannot have type I(5).

Proof. Suppose otherwise. Then H1(M ; Z2) = Z2 and i∗(µ) =
i∗(β) �= 0. Thus exactly one of α and γ is not in ker(H1(∂M ; Z2)→
H1(M ; Z2)). We will treat the case α �∈ ker(H1(∂M ; Z2)→H1(M ; Z2)),
the other can be handled similarly.

Now our hypotheses imply that H1(M(α); Z2) = 0 while
H1(M(γ); Z2) = Z2. Thus α is either a T or I-type class and γ is
either a D or O-type class (neither α nor γ has C-type by Lemma 17.1
(1)). We also have

‖λ‖M ≡ ‖γ‖M ≡ 0 (mod 4)

by Proposition 9.6.
First note that γ cannot be of type O(3) because β is of I-type

and ∆(β, γ) = 3. Next assume that γ is of type O(2) or D so that
‖γ‖M ≤ ‖λ‖M. Then by Lemma 17.1 (1) we have ‖λ‖M > sM and so
part (3)(i) of that result implies 3(sM + 2) ≤ 2sM + 16, or sM ≤ 10. If
sM = 10, then Lemma 17.1 gives 10 < ‖λ‖M ≤ 12 and so ‖λ‖M = 12.
We also have ‖γ‖M = 12 since 10 < ‖γ‖M ≤ ‖λ‖M and ‖γ‖M is divisible
by 4. Lemma 17.1 now implies that ‖β‖M = ‖α‖M = sM +8 and ‖η‖M =
10. Hence the line segments

[
sM

‖α‖M
α, sM

‖β‖M
β
]

and
[
sM

‖γ‖M
γ, sM

‖β‖M
β
]

are
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contained in ∂BM. But this is impossible as it implies sM
‖β‖M

β is a vertex
of BM. Hence sM �= 10. If sM = 8, Lemma 17.1 implies that ‖λ‖M = 8 =
sM (recall it is divisible by 4), contradicting the fact that ‖λ‖M > sM.
Thus γ cannot be of type D or O(2).

Finally suppose that γ is of type O(4). Then ‖γ‖M ≤ sM + 6 and so
by Lemma 17.1 we see that sM ≤ 14.

If sM = 14, then by Lemma 17.1 we obtain ‖λ‖M = 14, which is not
divisible by 4, a contradiction.

Next suppose that sM = 12. Then Lemma 17.1 implies that ‖λ‖M =
‖η‖M = 12. As ‖γ‖M > sM and divisible by 4, ‖γ‖M = 16. Hence
from Lemma 17.1 we see that ‖β‖M = 20 and

[
sM

‖γ‖M
γ, sM

‖β‖M
β
]
⊂ ∂BM.

Now sM
‖γ‖M

γ is not a vertex of BM and so if v ∈
(
µ, sM

‖γ‖M
γ
)

we have
‖v‖M < sM. Hence for such v we have ‖v − 2µ‖M > sM. In particular
3
5α + 2µ ∈

(
µ, sM

‖γ‖M
γ
)

so ‖3
5α‖M > sM = 12, or ‖α‖M > 20 = sM + 8, a

contradiction. Therefore sM �= 12.
Now consider the case where sM = 10. By Lemma 17.1 we have

‖η‖M = 10 and ‖λ‖M = 12 (note again that ‖λ‖M divisible by 4).
Hence Lemma 17.1 implies that ‖α‖M = ‖β‖M = 18. Further the
segment

[
sM

‖α‖M
α, sM

‖β‖M
β
]
⊂ ∂BM. Lemma 17.1 also gives 12 ≤ ‖γ‖M.

Hence ‖γ‖M = 12 or 16. In fact ‖γ‖M = 16. To see this suppose
that it is 12. Then 3‖η‖M = ‖γ‖M + ‖β‖M and therefore the seg-
ment

[
sM

‖γ‖M
γ, sM

‖β‖M
β
]
⊂ ∂BM. But then sM

‖β‖M
β =

[
sM

‖α‖M
α, sM

‖β‖M
β
]
∩[

sM
‖γ‖M

γ, sM
‖β‖M

β
]

is a vertex of BM, implying that β is a strict boundary
class, a fact our hypotheses exclude. Thus ‖γ‖M = 16. Next observe
that since sM = 10 and β is not a strict boundary class, the segment[

sM
‖α‖M

α, sM
‖β‖M

β
]
⊂ ∂BM extends past sM

‖β‖M
β to a vertex v1 of BM corre-

sponding to a boundary class mµ+nλ where 3 ≤ n ≤ 5 and 1 ≤ n
m < 2

(Lemma 14.2). We claim n �= 5. For otherwise BM would be a paral-
lelogram with vertices ±µ and ±v1 which is impossible as ‖γ‖M < 2sM.
So (m,n) = (2, 3) or (3, 4). The latter case can be excluded as it would
imply that η lies in the interior of BM. Thus v1 lies on the line of slope 3

2

through the origin. One can now verify that
[
v1,

sM
‖γ‖M

γ
]
⊂ ∂BM. Since

both
[

sM
‖α‖M

α, sM
‖β‖M

β
]

and
[
v1,

sM
‖γ‖M

γ
]

lie in ∂BM, they extend down-
wards to two more vertices v2 and v3 of BM whose associated boundary
classes must be integral (Lemma 14.2). By hypothesis α and γ are not
strict boundary classes, so v2 lies on a line through the origin of slope
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− 1
k where k is an integer which is at least 2, and v2 lies on the line of

slope 1
j through the origin where j is at least 3. But this is impossible as

one can now easily see that BM contains a horizontal segment of length
longer than 2. This contradiction completes the proof that sM �= 10.

Finally assume that sM = 8. Since ‖λ‖M is divisible by 4 and
3‖λ‖M ≤ ‖α‖M + ‖β‖M ≤ 2sM + 16 = 32, we have ‖λ‖M = 8. Also
3‖η‖M ≤ ‖γ‖M + ‖β‖M ≤ 2sM + 14 = 30 and therefore ‖η‖M = 8 or
10. Now sM < ‖γ‖M ≤ sM + 6 = 14 and ‖γ‖M is divisible by 4, so in
fact ‖γ‖M = 12. If we now assume that ‖η‖M = 10, then we obtain the
impossible relation 30 = 3‖η‖M ≤ ‖γ‖M + ‖β‖M ≤ 12 + 16 = 28. Hence
‖η‖M = 8. Note that ‖β‖M ≤ sM + 8 = 16. We shall consider two cases
‖β‖M < 16 and ‖β‖M = 16 separately.

Suppose first of all that ‖β‖M < 16 = 2sM and let v1 = uµ + vλ be
the vertex of BM which has the maximal λ-coordinate. Let mµ + nλ
be a primitive class which is a positive rational multiple of v1. Since
‖β‖M < 2sM and β is not a strict boundary class, n > 2. Now by Lemma
14.1, v1 is the unique vertex of BM whose λ-coordinate is larger than 1.
It follows that [v1, λ] and [v1, η] are contained in ∂BM and thus extend
downward to two more vertices of BM which can be easily seen to be
distinct from ±µ. But this contradicts Lemma 14.1.

Finally suppose that ‖β‖M = 16. Then ‖λ‖M = ‖β/2‖M = ‖η‖M =
8 = sM. It follows that the segment [λ, η] ⊂ ∂BM. If η is not a vertex of
BM, then BM is a parallelogram by Proposition 9.6 (2) and the segment
[λ, η] extends to a vertex v1 which is either 4

3µ + λ, 3
2µ + λ or 5

3µ +
λ. The first and third are ruled out by the fact that if either were a
vertex then λ would be as well (Lemma 14.1). But then BM would
not be a parallelogram. Thus v1 = 3

2µ + λ. We see then that BM is
the parallelogram with vertices ±(−1

2 , 1) and ±(3
2 , 1). So the Newton

polygon NM is the parallelogram with vertices (1, 0), (0, 2), (3, 4) and
(4, 2). Hence the A-polynomial AM(u, v) contains u (up to sign) as a
monomial, which contradicts to Proposition 10.3 (5).

Assume now that η is a vertex of BM. By Proposition 9.6 (1), BM

contains at most two more vertex pairs. Since 2
3γ = (4

3 ,
2
3) is in ∂BM,

there is vertex v1 of BM whose µ-coordinate is larger than 1. Since α is
not a vertex of BM, one can easily see that BM has two vertices with non-
positive µ-coordinates and positive λ-coordinates. So BM would have at
least four pairs of vertices, which contradicts Lemma 14.1. Therefore γ
cannot be of type O(4). q.e.d.

The above lemmas imply that β �∈ F0. This contradiction completes
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the proof of Proposition 12.6. q.e.d.

18. Finite surgery on small knots in S3

In this section we make some general remarks concerning finite
surgery on small knots in the 3-sphere, i.e., those knots K whose exte-
riors MK contain no closed essential surface, and show how the theory
developed previously in this paper can be used to give a quick proof of
the classification of the finite surgery slopes of 2-bridge knots (due to
Delman [14] and independently to Tanguay [32]).

The finite surgery slopes on ∂MK have been classified when K is a
torus knot [27] and a satellite knot [2], so we only need to consider small
hyperbolic knots. Fix such a knot and let M denote its exterior, CM the
canonical norm curve in X(M), and BM the canonical norm polygon.
It is a consequence of Theorem 2.0.3 of [11] that the finite filling slopes
on ∂M are not boundary slopes. Hence the canonical norm of a finite
filling class is subject to the constraints imposed by Proposition 9.3 and
so in particular if {µ, λ} denotes the standard meridian-longitude basis
of H1(∂M), ‖µ‖M = sM and µ is not a vertex of BM. Consider a non-
meridinal finite filling class on ∂M . According to Proposition 9.3 we
have ‖α‖M ≤ max{2sM, sM + 8}. Therefore

α ∈ 3BM if sM = 4
α ∈ 7

3BM if sM = 6
α ∈ 2BM if sM ≥ 8.

We also know that the absolute value of the λ-coordinate of α is strictly
less than than 2 (Theorem 1.2). Set

h(BM) = sup {y | there is an x such that xµ+ yλ ∈ BM}.
Proposition 18.1. Suppose that K ⊂ S3 is a small hyperbolic

knot with exterior M , and that α is a non-meridinal finite filling class
on ∂M .

(1) The inequality h(BM) ≥ 1
2 holds.

(2) If α = mµ+2λ for some odd integer m, then α is of type T (3), I(3)
or I(5). Further sM ≥ 8 and h(BM) ≥ 1.

Proof. (1) We observed above that if sM ≥ 8 then α ∈ 2BM, and so
h(BM) ≥ 1

2 . If sM = 4, then α ∈ 3BM so that h(BM) ≥ 1
3 . But since µ is
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not a vertex, Subcase I.1 of §13 implies that there is an integer n ≥ 1
such that h(BM) = 1

2n . Hence we must have h(BM) = 1
2 .

Finally assume that sM = 6. Then α ∈ 7
3BM and so h(BM) ≥ 3

7 .
According to Subcase II.1 of §13, either h(BM) = 3

k for some integer
k ≥ 3 (Subcase II.1.b), or h(BM) = 3

j+q for some even integers j, q ≥ 2
(Subcase II.1.c). In the latter case the inequality h(BM) ≥ 3

7 implies
that j + q ∈ {4, 6} and therefore h(BM) ≥ 1

2 . In the former we see that
k ∈ {3, 4, 5, 6, 7}. But if k ≤ 6, then h(BM) ≥ 1

2 , while the case k = 7
cannot arise because otherwise it follows from Subcase II.1.b of §13 that
the only non-meridinal primitive class in 7

3BM is a vertex of BM, and so
α would be a boundary class.

(2) If α = mµ + 2λ is a finite filling class of K, the cyclic surgery
theorem [11] implies that it is not of C-type. Thus since m is odd, it
must be either T -type or I-type (see §2). Since α is not a boundary
class, α �∈ ∂BM (Proposition 4.5), and therefore ‖α‖M > sM. It follows
that α has type T (3), I(3) or I(5) (Proposition 9.3).

We observed above that if sM ≥ 8, then α ∈ 2BM, and so h(BM) ≥ 1.
To complete the proof we note that under our hypotheses, sM �= 4 or
6. For instance if sM = 4, then α ∈ 3BM so that h(BM) ≥ 2

3 . But this
contradicts Subcase II.1 of §13 which implies that h(BM) ≤ 1

2 . Finally
if sM = 6, consideration of Subcase II.1 of §13 shows that the only
possibility is for BM to be a parallelogram with vertices ±(m, 1) and
±((m+ k)/2, 1/2), for some integer m and α to be (2m+ 1)µ+ 2λ. In
this case ‖α‖M = 14 = sM + 8 and so α has type I. But this cannot
be as the shape of BM implies that α does not have type I(q) for any
q ∈ {3, 5} (Proposition 9.3). Hence the case sM = 6 does not arise
either. q.e.d.

The 2-bridge knots are an interesting collection of knots in the 3-
sphere (see, for instance, [7]). According to [18], they are small knots
and further their boundary classes are even integer classes, i.e., they
have the form 2pµ+ λ for some integer p.

Theorem 18.2. A hyperbolic 2-bridge knot admits no nontrivial
finite surgery slope.

Proof. Let K be a hyperbolic 2-bridge knot in S3 with exterior M .
The result will follow from the previous proposition if we can show that
h(BM) < 1

2 , a fact due to Tanguay [32].
Let p : M̃→M be the (unique) 2-fold cover and {µ̃, λ̃} the basis for

H1(∂M̃) corresponding to {µ, λ}. Then M̃ is hyperbolic and M̃(µ̃) is
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the double branched cover of S3 branched over K, which is known to
be a lens space (see [7]). Thus µ̃ is a cyclic filling class of M̃ .

By the discussion proceeding Proposition 9.6 (cf. also [2, Section
3]), the cover p : M̃→M induces a regular map p∗ : X(M)→X(M̃) and
EM = p∗(CM) is a norm curve in X(M̃) with norm ‖ ·‖

ẼM
. Moreover for

every δ̃ in H1(∂M̃) it can be shown that if p# : H1(∂M̃) → H1(∂M) is
the homomorphism induced by p|∂M̃ , then

‖p#(δ̃)‖M = 2‖δ̃‖
ẼM
.

Now µ̃ cannot be associated to an ideal point of y ∈ ẼM as otherwise µ
would be associated to each of the ideal points of (p̃∗)−1(y) ⊂ C̃M, which
is impossible as it is not a boundary class. Thus ‖µ̃‖

ẼM
≤ ‖β̃‖

ẼM
for

each nonzero β̃ ∈ H1(∂M̃) (see Theorem 6.1 of [3]). Since even integer
classes in H1(∂M) lift to classes in H1(∂M̃), it follows that

‖β‖M ≥ ‖2µ‖M = 2‖µ‖M

for every even integer slope β on ∂M . We now show that this inequality
holds strictly for all primitive classes β �= ±µ, and so h(BM) < 1

2 .
Let β be a boundary slope of M associated to a vertex of BM, i.e.,

there is an ideal point x ∈ C̃M for which fβ(x) is finite but fµ(x) =
∞. According to Theorem 5.4 of [28], the components of the essential
surfaces in M associated to x have one or two boundary components.
This fact implies, by §5 of [8], that fβ(x) = 0. If Iµ : X(M) → C

denotes the evaluation map, then fµ = I2
µ − 4 and fµ2 = I2

µfµ. Hence
fµ2(x) = ∞. Therefore the norm of β is strictly larger than that of 2µ.
It follows that the norm polygon BM lies strictly below the horizontal
half-integer line. Hence Proposition 18.1 implies that K admits no non-
meridinal finite filling slope. q.e.d.

Appendix

The goal of this appendix is to prove the following result.

Proposition. Let θ ∈ {±1}. The polynomial Aθ(u, v) = u3 + (θ −
u− θu2 − θu4 − u5 + θu6)v2 + u3v4 is not the canonical polynomial of a
hyperbolic knot exterior.
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Proof. Let M be a compact, connected, orientable 3-manifold whose
interior admits a complete hyperbolic structure of finite volume. Sup-
pose further that the boundary of M is a torus. In [8] it is described
how work of C. Hodgson implies that the real 1-form

ω = ln |u|d(arg(v)) − ln |v|d(arg(u))

is exact on the smooth part of DM. In particular its integral over any
closed, piecewise-smooth loop in DM is zero. We’ll show that this con-
dition does not hold for the zero sets of the polynomials under consid-
eration in the proposition. Arguments of this type were first used by D.
Cooper and D. Long in [9, §10].

First observe that we may assume that θ = 1. For if ψ : A−1
1 (0) →

A−1
−1(0) is the isomorphism given by (u, v) �→ (−u, v) and C ⊂ A−1

1 (0)
is a piecewise-smooth curve, then

∫
C ω =

∫
ψ(C) ω. Consider then

A(u, v) = u3 + (1 − u− u2 − u4 − u5 + u6)v2 + u3v4

and set
D = A−1(0).

The singular set of D consists of the simultaneous solutions of the equa-
tions

A = 0,
∂A

∂u
= 0,

∂A

∂v
= 0

and is readily calculated to be Σ = {(u, v) | u2 = v4 = 1}. The
projection induced map

π : D → C, π : (u, v) �→ u

has degree 4 and is branched at the points of B = ∂A
∂v

−1
(0) \ Σ. The

automorphism φ : (u, v) �→ (u,−v) of D satisfies π ◦ φ = π, so the
branching at a point (u, v) ∈ D is necessarily of order 2 if v �= 0. Set
u0 = 1

4(1 −√
17) − i

2

√
2
√

17 − 2 and u1 = i. It is easy to verify that

(u0, i), (u0,−i), (u1, i), (u1,−i) ∈ B.

The path u(t) = (1 − t)u0 + tu1 in the u-plane lifts to four smooth
paths σj(t) = (u(t), vj(t)) (j = 1, 2, 3, 4) in D which we can determine
as follows. Any lift v(t) of u(t) satisfies the identity

1 + g(t)v(t)2 + v(t)4
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where

g(t) = u−3(t) − u−2(t) − u−1(t) − u(t) − u2(t) + u3(t).

Solving for v(t) shows that

v(t) = ±
√

−g(t) ±√g(t)2 − 4
2

.

The reader may verify that g(t) = ±2 if and only if t ∈ {0, 1}, and so
there are precisely two smooth functions r1(t) and r2(t) whose square
is g(t)2 − 4. They are unambiguously determined by requiring that
Re(r1(t)) ≥ 0 and Re(r2(t)) ≤ 0 when t is close to zero. Evidently
r2 = −r1. Next note that since −g(t) + r1(t) �= 0, there are exactly
two smooth functions v1, v3 satisfying v2

1 = v2
3 = 1

2(−g + r1). They are
determined by requiring that v1(0) = i while v3(0) = −i. Similarly there
are exactly two smooth functions v2, v4 satisyfying v2

2 = v2
4 = 1

2(−g+r2)
and they are determined by requiring that v2(0) = i while v4(0) = −i.
Evidently v3 = −v1 and v4 = −v2. We take

σj(t) = (u(t), vj(t)).

It follows from our choices that

v2
1v

2
2 =

1
4
(−g+r1)(−g+r2)−1 =

1
4
(−g+r1)(−g−r1) =

1
4
(g2−r21) = 1.

and hence for each t ∈ [0, 1], we have v1(t)v2(t) = v1(0)v2(0) = −1. In
particular since v1(1) = εi for some ε ∈ {±1}, we must have v2(1) = εi
as well. It follows that C = σ1 ∗σ−1

2 is a closed, piecewise-smooth curve
in D. Now ∫

C
ω =
∫
σ1

ω −
∫
σ2

ω

while from the relation v1v2 = −1 and the form of the integrand we see
that ∫

σ1

ω = −
∫
σ2

ω.

Hence ∫
C
ω = 2

∫
σ1

ω.
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To compute the latter we proceed as follows. One can verify that if w(t)
is a smooth path in the complex plane, then d

dt arg(w(t)) = Im
(
w′(t)
w(t)

)
.

It follows that

2
∫
σ1

ω = −
∫ 1

0

{
ln(|u(t)|2)Im

(
g′(t)
2r1(t)

)
− ln(|v1(t)|2)Im

(
u′(t)
u(t)

)}
dt.

Let f(t) be the integrand of this integral. Its graph is depicted in
Figure 13.
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Figure 13: The graph of f(t).

Now with n = 10, 000 we have

∣∣∣∣∣∣
∫ 1

0
f(t)dt−

n∑
j=1

f( jn)
n

∣∣∣∣∣∣
≤
∣∣∣∣∣
∫ 1

n

0
f(t)dt

∣∣∣∣∣+
∣∣∣∣∣f( 1

n)
n

∣∣∣∣∣+
∣∣∣∣∣∣
∫ n−1

n

1
n

f(t)dt−
n−1∑
j=2

f( jn)
n

∣∣∣∣∣∣
+

∣∣∣∣∣
∫ 1

n−1
n

f(t)dt

∣∣∣∣∣+
∣∣∣∣f(1)
n

∣∣∣∣
≤ 4K

n
+

(n− 2)L
n2

<
4K + L

10, 000



174 s. boyer & x. zhang

where

K = sup
{
|f(t)|

∣∣∣∣ t ∈ [0, 1
n

]
∪
[
n− 1
n

, 1
]}

,

L = sup
{
|f ′(t)|

∣∣∣∣ t ∈ [ 1
n
,
n− 1
n

]}
.

Crude estimates show that K < 2 while L < 1, 700. Thus∣∣∣∣∣∣
∫ 1

0
f(t)dt−

n∑
j=1

f
( j
n

)
n

∣∣∣∣∣∣ < 1, 708
10, 000

< 0.2

and so ∣∣∣∣∫ 1

0
f(t)dt

∣∣∣∣ ≥
∣∣∣∣∣∣
n∑
j=1

f
( j
n

)
n

∣∣∣∣∣∣− 0.2.

Computer assisted calculation shows
∣∣∣∣∑n

j=1

f
(

j
n

)
n

∣∣∣∣ > 0.94 so that we

conclude ∫
C
ω = 2

∫
σ1

ω = −
∫ 1

0
f(t)dt �= 0.

This completes the proof of the proposition. q.e.d.
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