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Abstract 

It is shown that if M is a compact, connected, orientable hyperbolic 3-manifold whose boundary 
is a torus, and 7‘1, FZ are two slopes on i7M whose associated fillings are respectively a reducible 
manifold and one containing an essential torus, then the distance between these slopes is bounded 
above by 4. Under additional hypotheses this bound is improved Consequently the cabling con- 
jecture is shown to hold for genus 1 knots in the 3-sphere. 

~e~~~~: Dehn filling; Reducible slope; Essential torus slope; Cabling conjecture 

AMS classijicatian: 57M25; 57R65 

0. Introduction 

Let M be a connected, compact, orientable, irreducible 3-manifold such that SW is 
a torus. A slope on ZIM is a i3iW-isotopy class of essential, unoriented, simple, closed 
curves on MI, and the distance between two slopes ~1 and ~2, denoted A(q) TZ), is the 
minimal geometric intersection number amongst all curves representing the slopes. To 
each slope r on aM we associate the manifold M(r) obtained by attaching a solid torus 
to M along aM in such a way that the meridianal slope of the solid torus is identified 
with T. 

Now consider two distinct slopes q and ~2 on a&f. Recently, there has been much 
work done on the problem of determining how constraints on the topology of M(q) and 
M(Q) put constraints on A(rl,7$. For instance Gordon and Luecke [5] have shown 
that if M(q) and M(ra) are reducible manifolds, then A(Q) r-2) = 1 and Gordon [4] 
has shown that if M is a hyperbolic manifold such that M(q) and M(Q) are m~ifolds 
each of which contains an essential torus, then A(rl, ~-2) < 5 except for four specific 

* Corresponding author. Partially supported by grants: NSERC OGP 0009446 and FCAR EQ 3518. 
’ Supported by a postdoctoral fellow&p from tbe Cen&e de Rechercbes M~rn~q~. 

0166-8641/96/$15.0 0 1996 Elsevier Science B.V. All rights reserved 
SSDI 0166-8641(95)00061-5 



286 S. Bayer, X. Zhang / Topology and its Applications 68 (19%) 285-303 

manifolds M for which A(q) rz) = 6,7 or 8 is possible. Earlier, Gordon and Litherland 

[8, Proposition 6.11 showed that when M is hyperbolic and M(q) is a reducible manifold 

while M(Q) contains an incompressible torus, then A(q) q.) 6 5 (see also [4, Theorem 

1.21). In this paper we improve this last result and show that 4 is an upper bound. 

Theorem 0.1. Let M be a compact, orientable, hyperbolic 3-manifold with i3M a torus. 
Ifq and r2 are slopes on aM such that M(q) is a reducible manifold while M(T~) 
contains an incompressible torus, then A(r, , ~2) < 4. 

It is unknown whether or not the bound 4 is optimal (we expect that it is not), though the 

following example shows that the distance 3 between a reducible slope and an essential 

torus slope may be realized. 

Let W be the complement of the Whitehead link [ll, Example 10, p. 681 and pa- 

rameterize the slopes on each component of al%’ by the standard meridian-longitude 

coordinates. If M is the manifold obtained by Dehn filling one component of aIV with 

slope 6, then it may be verified that 

(i) M is a hyperbolic manifold, 

(ii) M(4) contains an incompressible torus and M(1) is a reducible manifold. 

Fact (i) can be verified using Jeff Weeks’ SNAPPEA programme and fact (ii) can be 

verified through the use of the Montesinos trick. 

Theorem 0.1 can be sharpened if we consider certain additional hypotheses. For in- 

stance, if M(Q) contains an incompressible torus T such that T n aM is a l-sphere, 

then A(q) 7-z) < 1 (Lemma 4.1). We note that this result is sharp by taking M to be as 

in the last paragraph and observing that M (0) contains an incompressible torus which 

intersects aM in a circle. 

Recall that the cabling conjecture asserts that no noncabled knot in S3 admits a surgery 

yielding a reducible manifold. As a consequence of Lemma 4.1, we derive the following 

result. 

Theorem 0.2. Genus one knots in S3 satisfy the cabling conjecture. 

The conjecture has been proved for several classes of knots in S3 including satellite 

knots [ 121, strongly invertible knots [2], alternating knots [lo], most knots with symmetry, 

including all Montesinos knots [9]. It is also known that O-surgery on any nontrivial knot 

in S3 yields an irreducible manifold [3] and that if some surgery on a nontrivial knot in 

S3 yields a reducible manifold, then the surgery slope is an integer [6] and the resultant 

manifold contains a nontrivial lens space as a connected summand [7]. 

Theorem 0.1 will be proved by applying the combinatorial techniques developed in 

[1,4,8,131. 
The authors would like to thank Paul Libbrecht for preparing the figures that appear 

in this paper. 
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1. Notations and definitions 

All manifolds in this paper are understood to be orientable. We always assume that 

proper submanifolds meet in general position. For a manifold W, we use int(lV) to 

denote its interior and al~V to denote its boundary. A regular neighborhood in W of a 

subcomplex Q c W will be denoted by N(Q). By a surface we shall mean a compact, 

connected 2-manifold. A surface in a 3-manifold W is called essential if it is properly 

embedded and is either (i) incompressible, not parallel to a subsurface of alV, and not a 

2-sphere, or (ii) a 2-sphere that does not bound a 3-ball in W. We note that if aM is a 

torus, then any essential surface in A4 is also a-incompressible. A 3-manifold is called 

irreducible if it does not contain an essential 2-sphere; otherwise it is called reducible. 

A knot K in a 3-manifold W is said to be a cabled knot if there is another knot K’ in 

W such that K C aN(K’) and the winding number of K in the solid torus N(K’) is 

larger than one. A compact 3-manifold is said to be cabled if it is the exterior of a cabled 

knot. Note that a cabled 3-manifold either contains an essential torus or is a Seifert fibred 

space (thus is not a hyperbolic manifold). 

In what follows, we shall assume all of the conditions listed in Theorem 0.1. We may 

further assume that M(T2) is irreducible as otherwise the main result of [8] cited in 

Section 0 implies that A(q) ~2) < 1. 

Let Vi be the solid torus attached to A4 in forming M(ri), i = 1,2. Consider the family 

of essential 2-spheres in M(ri) which intersect VI in a family of meridianal discs, and 

let S c M(q) b e such a 2-sphere chosen so that S n VI has the minimal number, say 

nr, of components. Similarly, let T C M(Q) be an essential torus which intersects V, 

in a collection of meridian discs, the number of which, say n2, is minimal amongst all 

such tori. Note that as M is hyperbolic, ni > 0, i = 1,2. 

Now if Fr = A4 n S and FZ = M n T, then FI is an essential planar surface in A4 

while Fz is an essential punctured torus. We may assume that the number of components 

of Fl II F2 is minimal amongst all the surfaces in it4 isotopic to F, and transverse to Fz. 

Then no circle component of FI f’? F2 bounds a disk in FI or F2, and no arc component 

of FI fl F2 is boundary parallel in FI or F2. Let Ti (respectively T,) be the graph in 

S (respectively in T) obtained by taking the arc components of F, n Fz as edges and 

taking S n VI = S - int(Fi) (respectively T n V2 = T - int(F2)) as fat vertices. Note 

that if xj is a vertex of T,, then axcj is a boundary component of F,. 

We shall use the indices cy and p to denote 1 or 2, with the convention that, when 

they are used together, {a, p} = { 1,2}. 

Number the vertices of r, 21, . . . , x,_ so that the corresponding components of aF, 

appear consecutively on aM. By construction, each component axj of aF, intersects 

each component ayk of aFD in exactly A = A(q) ~2) points. The ends of the edges in 

r, may be labeled by an integer Ic E { 1,2,. . , np} as follows. Let * be the intersection 

of an edge e of r, with one of its vertices, say xj. Then * is labeled k where yk is the 

unique vertex of r, such that * = e rl axj n ayk. Thus we may travel around axj SO 

that the labels appear in the order 1, . . , np, . , 1, . . . , ng (repeated A times). 
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We fix an orientation on F, and let each component axj of aF, have the induced 

orientation. Each component axj can be assigned a “+” or “-” sign depending on 

whether or not its orientation is parallel on 3iVf to that on 3x1. Two vertices of r, are 

called parallel if the corresponding boundary components of F, have the same sign, and 

otherwise they are called antiparallel. Since FI, FZ and M are orientable, one has the 

following constraint on rt and rz. 

Parity rule 1.1. An edge connects parallel vertices of r, if and only if it connects 

antiparallel vertices in Ffi. 

Remark 1.2. If S (respectively 7’) is separating in M(rt) (respectively in M(4), then 

the number of vertices in Ft (respectively in rz) with a “+” sign is equal to the number 

of such vertices with a ‘I-” sign. In particular, 721 (respectively n2) is an even integer. 

Two edges are said to be parallel in r, if they, together with some arcs in aF,, bound 

a disk in F,. A cycle cr in r, is any subgraph which becomes homeomorphic to a circle, 

after the (fat) vertices of I’, have been shrunk to points. The length of a cycle is the 

number of edges which it contains. A loop is a length one cycle, and we will call a loop 

trivial if it bounds a disk face of the graph. Note that by construction, r, has no trivial 

loops. We shall consider two parallel loops as a length two cycle. We call a cycle c in r2 

essential if u does not bound a disk in T. A cycle u in r, is called a Scharlemann cycle 

if it bounds a disk face of I’, disjoint from Fp and if the edges of (T connect parallel 

vertices of r, and have the same two labels at their ends. Note that the two labels of a 

Scharlemann cycle in r, are successive (mod np). A length two Scharlemann cycle will 

be called an S-cycle. Note that the two edges of an S-cycle are adjacent parallel edges 

connecting two parallel (perhaps equal) vertices. The disk face bounded by an S-cycle 

is referred to as its S-disk. A length two cycle cr’ = {e{ , ei} in r, is called an extended 
S-cycle if there is an S-cycle (T = {et, e2) in r, such that ei and e!, are parallel adjacent 

edges in r, for i = 1,2. The disk in F, bounded by an extended S-cycle whose interior 

intersects the S-cycle is called the extended S-disk of the extended S-cycle. 

The reduced graph r, is the graph obtained from r, by amalgamating each complete 

set of mutually parallel edges of r, to a single edge. 

2. Preparatory lemmas 

Lemma 2.1. Let W be a compact irreducible 3-manifold. Then any nonseparating torus 
T in W is essential in W. 

Proof. Let T’ be a nonseparating torus in W. Any compression of T’ which surgered 

it along an essential curve would produce a nonseparating 2-sphere, contradicting the 

irreducibility of W. Thus T’ must be incompressible. As it clearly cannot be a-parallel, 

T’ is essential in W. 0 



S. Boyec X. Zhang / Topology and its Applications 68 (1996) 285-303 289 

Lemma 2.2. (1) If T is nonseparating in M(Q), then I’1 does not contain an S-cycle. 
(2) Zf S is nonseparating in M(q), then rz does not contain an S-cycle. 

Proof. (1) Suppose that {et, ez} is an S-cycle in ri with label pair {r, r + 1). Let D 

be the S-disk of the given S-cycle and let H be the part of the attached solid torus 

V2 which lies between the disks x, and z,+i and is disjoint from other vertices of I’,. 

Then Q = (CIH U T) - int(z, U x,+1) is a nonseparating closed genus two surface in 

M(r2), in@) n Q is empty and aD c Q is a nonseparating simple closed curve in Q. 

Compressing Q with D, we obtain a new nonseparating torus T’ in M(r2), which is 

essential by Lemma 2.1. But the intersection of T’ with V2 has two fewer components 

than does T, which is impossible by the minimality of n2. Thus ri cannot contain an 

S-cycle. 

(2) The proof of part (2) is similar to that of part (1). 0 

Lemma 2.3. nl b 3. 

Proof. First observe that if nt is either 1 or 2, Fi would be either a 2-disk or an annulus. 

In the former case, M would have a compressible boundary, and thus it would be a solid 

torus. In the latter case, M would either admit an essential torus or be Seifert fibred. 

In any event, none of the above possibilities can arise owing to the fact that M is a 

hyperbolic manifold. 0 

Lemma 2.4 [ 1, Corollary 2.6.71. If F, has more than ng/2 mutually parallel edges con- 

necting parallel vertices of r,, then two of these edges form an S-cycle of r,. 

Lemma 2.5. (1) r2 cannot contain two S-cycles with diflerent label pairs. 

(2) r2 cannot contain an extended S-cycle. 
(3) r2 cannot have more than n1/2 + 1 mutually parallel edges connecting parallel 

vertices. 
(4) Suppose that el, e2 are two parallel edges of r2 connecting parallel vertices of 

r2. If they have a label r in common, then they form an S-cycle. 

Proof. According to Lemma 2.3, ni 2 3. In the case that nt = 3, Remark 1.2 implies 

that S is a nonseparating 2-sphere in M(q), and thus Lemma 2.2(2) shows that r2 cannot 

have an S-cycle. In particular, parts (1) and (2) of the lemma do not arise. Similarly, 

applying Lemma 2.4 (respectively Parity rule 1. l), we see that part (3) (respectively part 

(4)) does not occur. Thus we may assume that ni 2 4. But then the proof of Lemma 2.5 

proceeds exactly as in the proofs of [ 13, Lemmas 2.2-2.41. 0 

The following lemma follows from the argument of [8, Proposition 1.31. 

Lemma 2.6. r2 cannot have n1 mutually parallel edges, as otherwise M would be 
cabled, and thus could not be hyperbolic. 
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Lemma 2.7. Let W be an irreducible 3-manifold which contains an essential torus T. 
Suppose that T’ is a torus in W such that T 17 T’ is an annulus which is essential in 

both T and T’. Then if T' compresses in W, it bounds a solid torus U in W such that 

T fl int(U) = 0. 

Proof. Using the irreducibility of W, we see that if T’ compresses in W, then either it 

bounds a solid torus in W or it is contained in a 3-ball in W. The latter can never occur, 

as otherwise the annulus T n T’ would be homotopically trivial in W, and thus also in 

T, contradicting our hypotheses. It follows that there is a solid torus U in W whose 

boundary is T’. Now W cannot be a solid torus, and so in particular, T’ separates W, 

and thus T c U or T c (W - int(U)). Th e incompressibility of T in W implies that 

the latter must occur, in other words T n int(U) = 0. This completes the proof of the 

lemma. Cl 

Lemma 2.8. Suppose that {q, ez} is an S-cycle in rt with label pair {r, r + 1). Then 

el U e2 U z, U x,+1 is an essentiaE cycle in l72. 

Proof. Suppose, otherwise, that et U e2 U z,. U x,+1 is contained in a disk B of T. Let 

D be the S-disk of the S-cycle { ei , e2) in Fl, and let H be the portion of the attached 

solid torus V2 which lies between 2,. and z,+t and is disjoint from the other vertices 

of r2. Then a regular neighborhood of B U H U D in M(Q) is a punctured nontrivial 

lens space, which implies that M(Q), being irreducible, is itself a lens space. But then 

M(Q) cannot contain an essential torus, contradicting the defining property of ~2. Thus 

the cycle et U e2 U 2, U x,.+1 is essential in T. Cl 

In the case that T separates M(Q) into two submanifolds Xt and X2, we shall say 

that an S-cycle lies on the Xi-side of T if its associated S-disk lies in Xi. 

Lemma 2.9. If n2 > 3 and rl contains an S-cycle, then T separates M(r2) and the side 

containing the S-disk admits the structure of a Seifert fibred space with base orbifold 
the 2-disk having exactly two cone points. Furthermore, if & contains two S-cycles with 

disjoint label pairs, then they both lie to the same side of T. 

Proof. Denote the S-cycle by {ei, e2) and its labels by {r, r + 1). In r2, et, e2 connect 

the vertices 2, and x,+1, which are antiparallel, and so unequal, by the Parity rule 1.1. 

Let D be the S-disk and let H be the portion of the attached solid torus V2 which lies 

between 2,. and z,+t and is disjoint from the other vertices of r2. 

According to Lemma 2.2(l), the existence of the S-cycle implies that T separates 

M(Q) into two irreducible submanifolds Xi and X2. Then from Remark 1.2 and our 

hypothesis, we may assume that n2 > 4. 

Suppose now that the disk D lies in Xi. Then H c X1 also. Let Al be a thin regular 

neighbourhood in T of the essential cycle ei U e2 U 5, U x,.+1 (Lemma 2.8) and let Ul be 

a regular neighborhood in XI of Al U H U D. Then CIUl is a torus which intersects V2 

in 2 < n2 meridian discs, which shows that aUt must be compressible in M(r2). Since 
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T = 3X1 is essential in M(Q), aU1 is also compressible in X1. Further note that i3Ul 

intersects T in an annulus which is essential in both T and aU1. Thus by Lemma 2.7, 

U1 is a solid torus. 

Next let Uz = X1 - int(Ul). The boundary of U.2 is a torus which intersects V2 in n2 - 2 

meridian disks, and so as before, we may deduce that U2 is a solid torus. Now X1 is the 

manifold obtained by gluing VI and U2 along the annulus A2 = &Y, - int(Al), which is 

essential in both U1 and U2. We may therefore construct a Seifert structure on X1 whose 

base orbifold is a 2-disk with at most two cone points. As T = 8x1 is incompressible in 

X1, there are exactly two cone points. Finally observe that el U e2 U 2, U x,.+1 is isotopic 

to a fibre in this structure. 

Assume now that rl contains another S-cycle {e{, ei} with label pair {s, s+ 1) disjoint 

from {T, T + 1). Let D’ be the S-disk and let H’ be the portion of the attached solid 

torus V2 which lies between x3 and x,+1 and is disjoint from the other vertices of rz. 

Suppose that D’ c X2 and construct A’, , A;, U,l and Vi as in the previous paragraph. 

Then X2 admits the structure of a Seifert fibred space having base orbifold the 2-disk 

with exactly two cone points. Furthermore, ei U ei U x, U x,+1 is isotopic to a fibre in 

this structure. But according to Lemma 2.8, e{ U eh U x, U x,+1 is an essential cycle in T, 

and our hypotheses imply that it is disjoint from the essential cycle el U e2 U CC, U x,+ 1. 

Thus these two cycles are parallel on T, and so M(Q) = X1 U X2 admits the structure 

of a Seifert fibred space over the 2-sphere with exactly four singular fibres and for which 

A1 is a vertical annulus. Now we may assume that U1 fl U{ = 8 and so both U1 U Ui 

and M(Q) - (VI U Vi) = Vi U U2 are Seifert fibred over the 2-disk with exactly two 

singular fibres each. Hence a(U, U I&‘) is an incompressible torus in M(Q). But this 

torus intersects V2 in at most n2 - 2 meridianal disks, contradicting our choice of n2. 

Thus D’ cannot lie in X2, that is D’ c XI. 0 

A similar analysis to that used in the previous lemma proves the following one. 

Lemma 2.10. If n2 2 3, then r, cannot contain an extended S-cycle. 

Proof. Suppose, otherwise, that {e{ , ei} is an extended S-cycle in rl which extends the 

S-cycle {el, ez}. By Lemma 2.2(l), T is separating, and therefore by Remark 1.2 and 

our hypothesis, we may assume that 122 > 4. 

Denote by {T, T + 1) the labels of the S-cycle, so that the extended S-cycle has labels 

{r- l,r+2} (modnz).Th en in rz, e;, e; connect the vertices x,-l and x,+2, which 

are antiparallel by the Parity rule 1.1. Further note that as n2 3 4, {x,.-l, x,+2} and 

{x~, x,+1} are disjoint in r2. Let D be the extended S-disk and let H be the portion of 

the attached solid torus V2 which lies between x,-l and x,+2 and contains x, and x,+1. 

Claim. e{ U ei U x,-1 U x,+2 is an essential cycle of r,. 

Proof. If ei U e; U X,-I U x,+2 is contained in a disk in T, we may use Lemma 2.8 to 

find such a disk, B say, which is disjoint from el U e2 U x, U x,+1. Then it is easy to 
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Fig. 1. 

see that a regular neighborhood of B U H U D in M(Q) is a nontrivial punctured lens 

space, which leads to a contradiction as in the proof of Lemma 2.8. 

Thus el U e2 U 2,. U z,.+l and e{ U e$ U X,-I U 2,+x are disjoint, essential cycles of 

r2, and so are parallel on T. Our goal is to use this observation along with Lemma 2.7 

to construct a new essential torus in M(Q) which intersects V2 in fewer meridian disks 

than does T, contradicting our initial choices. 

Now the edges et and e:! divide the extended S-disk D into three subdisks, denoted 

by Do, Dt , D2, with Dt , say, being the S-disk. The vertices 2, and a+.+1 divide H into 

three parts, denoted by Ha, HI, HZ, with HI, say, being that part which lies between 2, 

and z,+t (Fig. 1). By Lemma 2.2(l), T is a separating torus in M(Q). Let XI and X2 

be the two (irreducible) submanifolds in M(Q) bounded by T. We may assume that X1 



S. Bayer. X. Zhang / Topology ana’ its Applications 68 (19%) 285-303 293 

contains Ha, Hz, Da, Dz and that X2 contains Hi, DI. Letting the topological closure 
operation be denoted by an overbar, we have 

(i) T- {~-1,+~+1,~+2 } splits into two annuli AI, AZ, which are joined along 

the four arcs in 8Da n T and aD2 n T. 

(ii) For j = 0,2, A4 fl aHj is divided into two disks which intersect along the two 

arcs aDo f~ aHj and CID2 n aHj. Further, Hj provides an isotopy of one disk to the 

other, relative to these two arcs. 
There is a unique disk in M n aHo as described in (ii) which shares two boundary 

arcs with the annulus Al, and similarly for M n 3 HT. The union of these two disks with 
Do and 02 forms a band Br with two boundary components, i.e., an annulus, which is 
properly embedded in Xi and for which aBi = i3Al (see Fig. 1). Now TI = AI U I31 is 
a torus in Xi which, after being pushed off of HO U HZ, will intersect V2 in a collection 
of fewer than n2 meridian discs. Thus by the choice of n2, Tl compresses in M(r2), 

and hence also in Xi. Since T n TI = Al is an essential annulus in both T and Tl, 

we may invoke Lemma 2.7 to conclude that Tl bounds a solid torus Ur in X1. Thus 
X1 decomposes into two pieces X1 = Vi UB, Xi - Vi. In fact Xi - Ut is also a solid 
torus. To see this, consider the torus T2 = (T - Al) U I31 c X1 and note that T2 may 

be pushed through HO U Hz by using the isotopies described in (ii). It follows that T2 is 
isotopic to a torus which intersects V2 in a collection of fewer than n2 meridian discs. 
Thus T2 is compressible in M(rZ), and as above, it bounds a solid torus U2 in Xl, which 
is necessarily X1 - 271. We conclude that X1 is the union of two solid tori U1 and U2, 
joined along the annulus Al, which is essential in the boundary of each of them. X1 
therefore admits a Seifert structure whose base orbifold is a 2-disk which has at most 
two cone points. As T = aXl is incompressible in Xi, there are exactly two cone points. 
Note also that in this structure, A1 is a union of fibres, that is Al is vertical. 

Since n2 > 3 and the given S-cycle lies to the X2-side of T, Lemma 2.9 implies that 
there is also a Seifert structure on X2 whose base orbifold is a 2-disk with exactly two 
cone points. More precisely, let A3 be a thin regular neighbourhood in T of the cycle 
er U e2 U 2,. U x,-+1 and let U3 be a regular neighborhood in X2 of A3 U HI U DI. Then 
the proof of Lemma 2.9 shows that both UJ and U4 = X2 - int(Us) are solid tori which 
intersect along an annulus which is essential in both U, and U4 and vertical with respect 
to the Seifert structure on X2. By construction, both A1 and A3 are vertical annuli in 
this structure. 

Next we consider M(r2). Now AI c T is a vertical annulus in both X1 and X2, and 
so the two fibrings are isotopic when restricted to T. Hence M(r2) is Seifert fibred over 
the 2-sphere with exactly four singular fibres in such a way that A3 = U2 n Us is vertical. 
Then U2 U U3 and M(r2) - (U2 U U3) are Seifert fibred over the 2-disk with exactly two 
singular fibres each. Hence a(& U UJ) is an incompressible torus in M(r2). But this 
torus intersects V2 in at most nz - 2 meridianal disks, contradicting our choice of n2. 

Thus r~ can contain no extended S-cycle. 0 

Lemma 2.11. If n2 2 3, then rl cannot have more than n2/2 + 2 mutually parallel 

edges connecting parallel vertices of rl. 
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Proof. Otherwise using Lemma 2.4, rl would contain an S-cycle, and so T would be 

separating by Lemma 2.1(l). It follows from Remark 1.2 that n2 is an even integer. It is 

now easy to see that Ft contains an extended S-cycle, contradicting Lemma 2.10. 0 

3. Proof of Theorem 0.1 when n2 > 3 

In this section we prove Theorem 0.1 under the additional hypothesis that n2 2 3. The 

case that n2 < 2 will be dealt with separately in Section 4. To obtain a contradiction, 

we shall suppose that A = A(q) 7-2) 3 5. Recall that T2 denotes the reduced graph of 

I’2 in T. 

Claim 3.1. Each vertex of r2 has valency at least 6. 

Proof. Suppose otherwise that TX has a vertex of valency at most 5. Then since A > 5, 

in r2 there is a family of at least nt mutually parallel edges. But this contradicts 

Lemma 2.6. 0 

Claim 3.2. Each vertex of T2 has valency 6. 

Proof. A face of F2 is a component of the complement of an open regular neighbourhood 

of F.2 in T. If u and e denote the number of vertices and edges in r2, then it is easy to 

see that 

O=X(T)=w-e+zx(F), 

where the sum is taken over the faces F of r2. By Claim 3.1, each vertex of 72 has 

valency at least 6. Hence we have 2e 3 6v, that is v < e/3. Now let d be the number of 

disk faces of F2. By construction, each disk face of F2 has at least three sides, Hence 

we have 2e > 3d and thus d < 2e/3. Substituting these inequalities into the identity 

above shows that 

O=w-e+xx(F) < u-e+d$i-e+$=O. 

It follows that all of the above inequalities are in fact equalities. In particular the claim 

must hold. 0 

Thus the ends of the edges incident to a given vertex of r2 can be partitioned into six 

families such that each family consists of ends of mutually parallel edges of r2. 

Claim 3.3. Among the six families of ends around each vertex y of r2, there is at most 
one family which are ends of edges connecting y to a parallel vertex. 

Proof. Suppose otherwise that there are two such families, By Lemma 2.5(3), two such 

families occupy at most 2(nt/2 + 1) = nt + 2 ends. By Lemma 2.6, the remaining four 

families occupy at most 4(ni - 1) ends. Hence there is a total of at most 5nt - 2 ends 



5’. Bayer, X. Zhang / Topology und its Applications 68 (1996) 285-303 295 

of edges incident to y. But we have assumed that there are An, 3 5nl ends of edges of 

rz incident to y and so a contradiction is derived. 0 

Combining Claim 3.3 and Lemma 2.5 we deduce that at each vertex y of r2, the ends 

of edges which belong to edges of r:! connecting y to antiparallel vertices are successive, 

and their number is at least An, - (n1/2 + 1). Therefore by the parity rule, we have 

Claim 3.4. Let r E { 1, . . . ,n2) be any given label. Among the A ends of edges with 

the label r around each vertex xj of rl, there is at most one which belongs to an edge 
connecting xj to an antiparallel vertex of r,. 

Now we consider the reduced graph rl of r, in S. 

Claim 3.5. TI has a vertex of valency at most 5. 

Proof. Suppose otherwise that every vertex of rl has valency at least 6. Let V, e, d 

be the number of vertices, edges and disk faces of F,. Then arguing as in the proof of 

Claim 3.2, we have 

2=X(S)<v-e+d<i-e+$=O, 

which is absurd. 0 

Fix then a vertex x of T, of valency Ic < 5. 

Claim 3.6. There is a family of n2 parallel edges in rl which are incident to x and 

which connect x to a parallel vertex. 

Assuming the truth of this claim for the moment, Lemma 2.4 guarantees that r1 

contains an S-cycle, and so n2 is even by Lemma 2.2( 1) and Remark 1.2. Hence n2 > 4. 

On the other hand, the claim also implies that n2 Q 4, as Lemma 2.11 forces the inequality 

n2 < n2/2 + 2 when n2 2 3. Therefore the proof of Theorem 0.1 when n2 > 3 will be 

reduced to the consideration of the case where n2 = 4. 

Proof. The ends of edges in r, incident to x, and which connect z to a parallel vertex 

can be divided into k < 5 families, each belonging to mutually parallel edges of r,. If 

every end at x belongs to an edge of rl connecting x to a parallel vertex, then we have 

at least (An2)/5 > n2 successive ends at x belonging to mutually parallel edges of r,, 

completing the proof of the claim. 

Assume then that there is at least one end incident to x which belongs to an edge of 

rl connecting x to an antiparallel vertex. By Claim 3.4, there are at least (A - l)n2 

ends at x which belong to edges of r, connecting x to parallel vertices. Then at x, there 

is a family of at least ((A - l)nz)/4 > n2 successive ends which belong to mutually 

parallel edges of r, connecting y to a parallel vertex. 0 
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Fig. 2. 

As noted above, Claim 3.6 reduces us to the case n2 = 4. Assume this and let 
yi, i = 1,2,3,4, be the four vertices of l72. By Remark 1.2, we may assume that yi, ys 
are assigned a “+” sign while yz, y4 are assigned a “-” sign. We know from Claim 3.6 
that incident to the vertex z of Ti, there are n2 = 4 successive ends which belong to 
mutually parallel edges of Tt connecting 2 to a parallel vertex (perhaps z itself). Let 
ei, i = 1,2,3,4, be four such edges. Using the parity rule, one can easily see that either 
the four edges form an extended S-cycle in Ti or they form two S-cycles with disjoint 
label pairs in Ti. The former case is impossible by Lemma 2.11. In the latter case we 
may assume that {ei , ez} form one S-cycle with label pair { 1,2} and {es, e4) form the 
other S-cycle with label pair {3,4}. By Lemma 2.8, the two cycles ei U e2 U yt U y2 and 
es U e4 U y3 U y4 in I’2 are essential and disjoint (see Fig. 2). 

Now let us return to the reduced graph T2. We may consider Fig. 2 to be a subgraph 
of 72. The cycles ei U e2 U y1 U ye and es U e4 U y3 U y4 divide T into two annuli, and 
since each vertex of ‘T2 has valency 6 (Claim 3.2), it may be argued that in each of these 
annuli, there is an edge of 72 connecting yi and ys. But then in 72, there are distinct 
edges which connect yi and y3. As yi , y3 are parallel vertices, we obtain a contradiction 
to Claim 3.3. This completes the proof of Theorem 0.1 when n2 2 3. 

4. Proof of Theorem 0.1 when n2 < 2 

In this section we complete the proof of Theorem 0.1 by dealing with the special cases 
n2 = 1 and n2 = 2. In fact we obtain sharp estimates for A = A(q) ~2) and use these 
to prove Theorem 0.2. First we show 

Lemma 4.1. Suppose that n2 = 1, then A = 1. 
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Fig. 3. 

Proof. Suppose to the contrary that A 3 2. Recall that there are no trivial loops in T.2, 

and so the same holds for Tz. On the other hand, our hypothesis that nz = 1 implies 

that Fz has only one vertex, and so every edge of FZ is necessarily an essential cycle 

in T. One may now argue that 72 is a subgraph of the graph illustrated in Fig. 3 (for a 

proof see [4, Lemma 5.11). Hence the valency of the vertex of Fz is either 2 or 4 or 6. 

Correspondingly in rz, we have either k = 1,2 or 3 families of mutually parallel edges. 

Order these families in a clockwise fashion around the vertex and let pi be the number 

of edges in the ith family. Then counting the ends at the vertex we have 

AnI = 2&i. (1) 
i=l 

On the other hand, Lemma 2.5(3) implies the following inequalities, 

2nl 6 An1 < 2k = k(nl + 2) 6 3(nl + 2) 

with 

(2) 

ifandonlyifpi= fori=l,2,...,k. (3) 

As nt 3 3 (Lemma 2.3), we immediately deduce that k > 1 and that A < 5. Furthermore, 

if A = 5, then the second and third inequalities in (2) are equalities, which forces the 

identity nt = 3 and so by (3), pi = 2.5 for each i, which is clearly false. Thus we must 

have A < 4. 

Claim. A = 3. 
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Fig. 4. 

Proof of the claim. If A # 3, then it must be either 2 or 4. Assume this and rewrite 

identity (1) as 

$Pi = ($)nl. 
Then if ei,...,ePi is one of the families of mutually parallel edges in r2, the eveness 

of A implies that the labels of the ends of these edges are labeled (mod nt) as shown 

in Fig. 4. But then by Lemma 2.5(4), we have pi = 2, and the edges form an S-cycle. 

Thusforeachi= l,... , k the ith family of edges forms an S-cycle. Finally, as nt 2 3, 

the first two S-cycles have distinct labeling pairs, which contradicts Lemma 2.5(l). The 

claim is therefore proved. 

Assume then that A = 3. Substituting this value into identity (1) shows that ni is even, 

and so by Lemma 2.3 we have ni 3 4. On the other hand, if we suppose now that k = 2, 

inequalities (2) show that ni 6 4, and so ni = 4. Note then that An1 = 2k(n1/2 + l), 

and therefore from identity (3) we obtain pl = pz = 3. Appealing to Fig. 3 shows that 

there is an edge of I5 having identical labels at both of its ends, which contradicts the 

parity rule. Thus we must have k = 3. 

We observed in the previous paragraph that ni 3 4 is even, say ni = 2m where m > 1. 

FixiE {1,2,3}sothatp~=max{pi,p~,ps},andletei,. . , ePi be the associated family 

of parallel edges. Then from identity (1) we see that pi > m. But by Lemma 2.5(3), 

pi < m + 1, and therefore pi = m or pi = m + 1. The latter is impossible, for if 

it held, identity (1) would imply that the ends of en, (see Fig. 5) would be labeled 

p~=m+landpt+pz+p3+1=3m+l~ m + 1 (mod nt), which contradicts the 

parity rule. Thus pi = m. Given our choice of pi and considering identity (l), we see 

that pi = p2 = p3 = m. Therefore r2 is a graph shown in Fig. 6. 
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Fig. 5. 

Fig. 6. 

From Fig. 6, we see that in rz there are two Scharlemann cycles of length 3, one 

with label pair {m, m + 1) and the other with the different label pair { 1, nt }. But by the 

minimality assumption on nt, there can never be two such Scharlemann cycles. This is 

proved using an argument similar to that found in the proof of [13, Lemma 2.21. This 

final contradiction completes the proof of Lemma 4.1. 0 

Theorem 4.2. Genus one knots in S3 satisfy the cabling conjecture. 

Proof. Let K C S3 be a genus one knot which is not a cabled knot, but which admits a 

surgery slope which yields a reducible manifold. According to [ 121, K is not a satellite 

knot. Hence K is a hyperbolic knot, i.e., M = S3 - int N(K) is a hyperbolic manifold. 

According to [3], M(0) is an irreducible manifold. Thus Lemma 2.1 shows that the 
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Fig. 7. 

hypothesized genus one Seifert surface for K will produce an essential nonseparating 
torus T in M(0). 

Now suppose that M(r) is a reducible manifold for some slope T. By [5,6], T is an 
integral slope with ]r] 2 2. But then A(0, r) = Irl 2 2, which contradicts Lemma 4.1. 
Thus there is no such knot, and the proof is complete. 0 

Lemma 4.3. Suppose that nz = 2, then A 6 3. 

Proof. We assume that A 2 4 so as to obtain a contradiction. It may be argued that the 
reduced graph 72 of r2 in T, is a subgraph of the graph illustrated in Fig. 7 (for a proof 
see [4, Lemma 5.21). Hence there are at most five families of mutually parallel edges in 
r2 incident to each of the two vertices, and one of the five families is a set of parallel 
loops. Let pi > 0 be the number of edges in each of the five families, i = 1,2,3,4,5, 
with pi being the number of the parallel loops. Note then that 

Ani =2p1 +PZ+P~+P~+PS. (4) 

Now by Lemma 2.5(3), pl < (q/2 + l), and by Lemma 2.6 pi < (nl - 1) for 
2 < i 6 5. Thus identity (4) shows that A < 4, and so we may assume that A = 4. 
Substituting this value for A into (4) and using a similar reasoning, we see that pi > 0 
foreachi= l,... ,5. So we may assume that r2 is as shown in Fig. 8. It follows that 
without loss of generality, we may assume that pl + p2 + p3 > 2nl. 

Now consider the labels around one of the two vertices {yt , yz} of T2, say around 
yt , and let er , . . . , ePl be the edges of TZ which form the pl parallel loops. Let T E 
{1,2,...,nt}bethelabeloftheotberendofe,,. Now from the form of r2 (see Fig. 8), 
T = pt + pz + p3 + 1 (mod nt). On the other hand, by construction 

2nl <PI +p2+p3+1 < : 
( > 

+1 +2(n1-1)+1=~+2n*<3~,. 
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Fig. 8. 

p1=r+2n1-( + p2 p3 + 1) > T + 2ni - 2(nt - 1) - 1 = T + 1, 

i.e., 1 6 T < pl - 1. Therefore there are two edges amongst {et, . . . , er,,} which have pl 

as a common label. Applying Lemma 2.5(4) we see that { eP1 _ 1, ep, } are part of an S-cycle 
in rz. In particular r = pt - 1. But we have already seen that pl + pz + p3 + 1 = T -t- 2nt, 
and so p2 + p3 = 2ni - 2. From Lemma 2.6 we deduce that p2 = p3 = nl - 1. 

Next apply the same argument to the family of edges forming a loop at y2 to deduce 
that they also contain an S-cycle in r2 which is situated as indicated in Fig. 9, and also 
has label pair {PI - l,pt} by Lemma 2.5(l). 

Suppose now that the two vertices of r2 are parallel. According to Lemma 2.3 and 
Lemma 2.5(3), 3 < ni < 4. On the other hand, l’2 contains an S-cycle, so nl is even by 
Lemma 2.2(2) and Remark 1.2. Hence ni = 4, pz = p3 = ni - 1 = 3, and 

2$pl<:+1=3. 

In the case pi = 2, all S-cycles in r2 are labeled {1,2}. The labels at the ends of 
the family of p2 = 3 parallel edges, connecting the two vertices in rz, are therefore 
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I PI 
Pl+l 

PI +1 

PI+2 
PI +2 PI +3 

* 

I 
i 1 

p3-q-1 

pi-3 i 

P1-2 
P1-2 

PI -1 

Fig. 9. 

determined and it can be seen that there is an edge both of whose labels are 4, which 
contradicts the parity rule. A similar argument shows that it is impossible for pl to be 3. 
Thus yt and y2 cannot be parallel. 

Assume then that the two vertices of l5 are antiparallel. We may fill in the labels at 
y2 and then apply the parity rule to the ends of the ~2 edges from the second family 
to deduce that all the vertices of Tr are parallel (see Fig. 9). But this is impossible as 
the existence of a loop in r2 means that there are two antiparallel vertices in Tr. This 
contradiction completes the proof of Lemma 4.5. 0 
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