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ABSTRACT

We found a family of infinitely many hyperbolic knot manifolds each member of which
has a strongly detected boundary slope with associated root of unity of order 4.
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1. Introduction

Let M be a knot manifold, i.e. a compact connected irreducible orientable
3-manifold whose boundary is a torus. Let R(M) denote the SL2(C) represen-
tation variety of M , and X(M) the character variety of M . Recall that the char-
acter χρ ∈ X(M) of a representation ρ ∈ R(M) is the complex valued function
χρ : π1(M)→C defined by χρ(γ) = trace(ρ(γ)) for γ ∈ π1(M). Each element
γ ∈ π1(M) defines a regular function τγ on X(M) by τγ(χρ) = trace(ρ(γ)), called
the trace function defined by γ. Let X0 be an irreducible algebraic curve in X(M)
and let X̃0 be the smooth projective completion of X0. Note that each trace func-
tion τγ extends to a rational function τ̃γ on X̃0. By the fundamental theorem of [4],
if x ∈ X̃0 is a pole of some trace function τ̃γ , then there is an essential surface S

in M associated to x via an action of π1(M) on a Bass–Serre simplicial tree. (Note
that the set of poles of all trace functions is equal to the set of ideal points in X̃0.)
If in addition the element γ is a peripheral element of π1(M), then any essential
surface S associated to a pole x of τ̃γ must have non-empty boundary on ∂M . In
such case, the boundary slope of S on the torus ∂M is said to be strongly detected
by the ideal point x of X̃0. Moreover, the trace function of the primitive element
β ∈ π1(∂M) (or its inverse) corresponding to the ∂-slope of S has finite value at
the ideal point x. It was proved in [1] that τ̃β(x) = λ + λ−1 for some root of unity
λ. The order of λ has geometric significance; it divides the number of boundary
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Fig. 1. The Whitehead link K1 ∪ K2, the two oriented meridians µ1, µ2, and the two oriented
longitudes λ1, λ2.

components of any non-closed component of a reduced essential surface associated
to x. (An essential surface in M associated to the ideal point x is called reduced
if it has the minimal number of boundary components among all essential surfaces
associated to x.) We call a root of unity arising this way as associated to a strongly
detected boundary slope of M .

Most of known examples of roots of unity associated to strongly detected bound-
ary slopes are±1. For instance, this is always the case for the exterior of any 2-bridge
knot in S3 (this result is implicitly contained in [8]). In [5], several examples of roots
of unity of order four and six were given. The main purpose of this paper is to pro-
duce an infinite family of knot manifolds each of which has a root of unity of order
four associated to a strongly detected boundary slope.

Let L = K1 ∪ K2 be the Whitehead link in S3 shown in Fig. 1(a), and let W

be the exterior of L. Let Ti be the component of ∂W corresponding to Ki, i = 1, 2.
The slopes on each of the tori Ti will be parameterized with respect to the standard
meridian-longitude basis of Ki (when considered as a knot in S3). The orientations
of the meridians and longitudes are chosen as shown in Fig. 1(b).

Theorem 1.1. Let Mn be the manifold obtained by Dehn filling W along T1 with
integer slope n. Then for each integer k ≥ 1, the slope 1/k on ∂M4k+2 = T2 is a
strongly detected boundary slope to which a root of unity of order four is associated.

To prove Theorem 1.1, we need to recall some more results from [1]. Let M

be a knot manifold. Fix a basis B = {µ, λ} for π1(∂M). The set of slopes in the
boundary torus ∂M is parameterized with respect to the basis B as {m/n; m, n ∈ Z,
(m, n) = 1} where m is the µ-coordinate and n is the λ-coordinate, i.e. a slope m/n

corresponds to the inverse pair µmλn and µ−mλ−n in π1(∂M). For the pair (M,B),
a two variable polynomial A(x, y) =

∑
aijx

iyj ∈ Z[x, y], called the A-polynomial
of the pair (M,B), can be uniquely defined up to sign [1]. The Newton polygon of
A(x, y) is the convex hull of the set {(i, j); aij �= 0} in the real xy-plane. Let E be
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an edge of the Newton polygon of slope n/m in the xy-plane, and let ΘE(z) be the
single variable polynomial defined by

ΘE(z) =




∑
(i,j)∈E

aijz
i, if m �= 0;

∑
(i,j)∈E

aijz
j, if m = 0.

ΘE(z) was called the edge polynomial of E in [1]. The following properties con-
cerning edge polynomials were proved in [1]:

(1) Each non-zero root of an edge polynomial ΘE(z) is a root of unity;
(2) If n/m is the slope of an edge E of the Newton polygon in the xy-plane, then

m/n is a strongly detected boundary slope of M ;
(3) If E is an edge of the Newton polygon with slope n/m, then for every non-

zero root c of the edge polynomial ΘE(z), there is an irreducible curve X0 in
X(M) and an ideal point x in X̃0 such that τ̃β(x) = cm + c−m (if m �= 0) or
τβ(x) = c + c−1 (if m = 0), where β = µmλn, and the order of cm (if m �= 0)
or c (if m = 0) divides the number of boundary components of any component
of a reduced essential surface associated to x.

Note that part of property (3) is implicitly contained in [1].
Therefore to prove Theorem 1.1, we only need to show that the Newton polygon

of the A-polynomial of M4k+2 has an edge of slope k whose edge polynomial has a
root of unity of order 4, for each k > 0.

Note that each Mn is a punctured torus bundle with monodromy
(−n + 2 1

−1 0

)
(see

[7, Proposition 3], note that the slopes given in [7] differ from ours by sign). So Mn

is hyperbolic for each n > 4. Incompressible surfaces in hyperbolic punctured torus
bundles are classified in [6, 3]. According to the algorithm given in [6], M4k+2 has
two boundary slopes, 4 and 1/k, besides the boundary slope 0 of a fiber (note that
Mn has the LR-decomposition −RLn−4, and that the slopes given in [6] are the
reciprocal of ours). For any hyperbolic knot manifold M , the Newton polygon of the
A-polynomial of M contains at least two edges with different slopes corresponding
to strict boundary slopes of M . It follows that k must be the slope of an edge of the
Newton polygon of the A-polynomial of M4k+2. Also note that by [6], the boundary
slope 1/k in ∂M4k+2 bounds an incompressible surface in M with genus k

2 − 1 and
with exactly four boundary components.

In Sec. 2, we try to obtain the A-polynomial of M4k+2 formally as far as possible
following the algorithm prescribed in [1]. Nevertheless, the calculation is stuck in
the last step where a resultant is fairly difficult to calculate explicitly. However,
at that stage, we are able to calculate the edge polynomial for the edge of slope
k without knowing the final explicit expression of the A-polynomial. This part of
the calculation of the edge polynomial will be carried out in Sec. 4. On the way
to get the A-polynomial of M4k+2, we also show (and need to show) that the



December 21, 2009 14:7 WSPC/134-JKTR 00769

1626 S. Kuppum & X. Zhang

representation variety of M4k+2 has exactly one irreducible component containing
irreducible representations of π1(M4k+2). This is done in Sec. 3.

2. Getting the A-polynomial of M4k+2

Consider the Whitehead link shown in the figure above. Let µ1, µ2 be the meridians
of the two components shown in the figure. We take these two meridians as mem-
bers of generators needed in the Wirtinger presentation of π1(W ). The Wirtinger
presentation can be easily simplified to the following form:

π1(W ) = 〈µ1, µ2; µ1µ2µ
−1
1 µ−1

2 µ1µ
−1
2 µ−1

1 µ2

= µ2µ
−1
1 µ−1

2 µ1µ
−1
2 µ−1

1 µ2µ1〉.
The longitude λ1 (see Fig. 1(b)) of the component K1 of the Whitehead link can
be expressed as

λ1 = µ−1
1 µ−1

2 µ1µ2µ
−1
1 µ2µ1µ

−1
2

and the longitude λ2 for K2 is given by

λ2 = µ−1
2 µ−1

1 µ2µ1µ
−1
2 µ1µ2µ

−1
1 .

(cf. [2, proof of Lemma 9.4].)
The Dehn filling of W along T1 with the slope n gives an additional relation

λ1µ
n
1 = 1. So the fundamental group of Mn has a presentation:

π1(Mn) = 〈µ2, µ1; µ1µ2µ
−1
1 µ−1

2 µ1µ
−1
2 µ−1

1 µ2 = µ2µ
−1
1 µ−1

2 µ1µ
−1
2 µ−1

1 µ2µ1,

µ−1
1 µ−1

2 µ1µ2µ
−1
1 µ2µ1µ

−1
2 µn

1 = 1〉.
Any irreducible representation ρ of π1(W ) can be conjugated so that

ρ(µ1) =
(

M 0
t M−1

)
, ρ(µ2) =

(
p 1
0 p−1

)
.

Substituting the above matrices in the relation of π1(W ) given above, we get several
defining polynomials which all have the following polynomial F (M, p, t) as the only
common factor

F (M, p, t) = −Mp + M3p + Mp3 − M3p3

+ M2t − M4t + p2t − 4M2p2t + M4p2t − p4t

+ M2p4t − Mpt2 + 2M3pt2 + 2Mp3t2 − M3p3t2 − M2p2t3.

Let R(W ) be the variety defined by this polynomial. Then, the points (M, p, t) in
R(W ) with M �= 0, p �= 0, t �= 0 is the set of irreducible representations of π1(W )
modulo the conjugation. (Note that the variety defined by the polynomial F is
the same as the variety defined by all the polynomials involved from the matrix
equation. This follows from a dimension counting argument. We omit the details.)
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Next we calculate such variety R(Mn) for Mn, n > 4 even. Considering the
second relation of π1(Mn), we calculate ρ(λ1), ρ(µn

1 ) and then ρ(λ1µ
n
1 ). The (2, 2)-

entry of ρ(λ1µ
n
1 ) minus 1 is the polynomial

1/(M2p2Mn)(M2p2 + Mpt− 2M3pt − 2Mp3t + 3M3p3t

+ Mp5t − M3p5t − M2t2 + M4t2 − p2t2 + 5M2p2t2

− 2M4p2t2 + p4t2 − 3M2p4t2 + M4p4t2 + Mpt3 − 2M3pt3 − 2Mp3t3

+ 2M3p3t3 + M2p2t4) − 1.

Multiply this polynomial by M2p2Mn and call the resulting polynomial G. We have

G(M, p, t) = M2p2 + Mpt − 2M3pt − 2Mp3t + 3M3p3t

+ Mp5t − M3p5t − M2t2 + M4t2 − p2t2 + 5M2p2t2

− 2M4p2t2 + p4t2 − 3M2p4t2 + M4p4t2 + Mpt3

− 2M3pt3 − 2Mp3t3 + 2M3p3t3 + M2p2t4 − M2p2Mn.

This polynomial depends on the surgery slope n. The resultant of F and G elimi-
nating the variable t should contain a factor which defines R(Mn). The resultant is

−M2n − M2+n + M4+n + M2+2n − M4p2 + Mnp2 + M3np2 − 2M2+np2

+ 2M2+2np2 − M4+2np2 − M2np4 − M2+np4 + M4+np4 + M2+2np4.

When n > 4 is even, this polynomial can be factored as

M4(M − 1)(M + 1)[(Mn−2 + M2n−4) + (δn + Mn−2δn − Mn−4 − M2n−2)p2

+ (Mn−2 + M2n−4)p4],

where δn = M2n−2−1
M2−1 = 1 + M2 + M4 + M6 + · · · + M2n−4.

We shall prove that the factor

U(M, p) = (Mn−2 + M2n−4)

+ (δn + Mn−2δn − Mn−4 − M2n−2)p2 + (Mn−2 + M2n−4)p4

is irreducible over C for all n = 4k + 2 ≥ 6, and thus the variety defined by U is
irreducible for all n = 4k + 2 ≥ 6. It also follows that the variety defined by the
polynomial U is R(Mn).

Our primary interest is the family of manifolds M4k+2 and for the rest of the
article, we assume that n = 4k + 2 and k ≥ 1.

To get the A-polynomial of M4k+2 formally, we take the (1, 1)-entry ρ(λ2) minus
the new variable q, and call the resulting polynomial H (up to a multiple of a power
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of M and a power of p).

H(M, p, t, q) = −M3p2 + pt − 3M2pt + 2M4pt − p3t + 2M2p3t − M4p3t − Mt2

+ 2M3t2 − M5t2 + 3Mp2t2 − 5M3p2t2 + M5p2t2 − Mp4t2

+M3p4t2 − 2M2pt3 + 2M4pt3 + 2M2p3t3

−M4p3t3 − M3p2t4 + qM3p2.

Let V be the resultant of F and H eliminating the variable t, then

V (M, p, q) = M4p4q2 + 2M2p2q + p2q + M2q2 − M4p2q2 + M2

+ M4p2q − q − p2q2 + p4q2 − M2p4q − M2p4q3 − 2M2p2q2 − M4q.

Finally the resultant of U and V eliminating the variable M should contain a factor
which is the A-polynomial of Mn in the variables p and q (recall that generically p

and q are eigenvalues of ρ(µ2) and ρ(λ2), respectively). However, this last resultant
seems pretty hard to calculate explicitly. Even if we were able to calculate the
resultant, to determine if the resulting polynomial is irreducible and then further
determine which factor is the A-polynomial would be another two difficult tasks.
For our purpose, we get around this difficulty by calculating directly the relevant
edge polynomial for Mn when n = 4k+2, from the formal expression of the resultant
of U and V . This will be done in Sec. 4.

3. Irreducibility of R(M4k+2)

Recall that we assume n = 4k + 2 and k ≥ 1. The variety R(Mn), is defined by the
single two variable polynomial

U(M, p) = (Mn−2 + M2n−4) + (δn + Mn−2δn − Mn−4 − M2n−2)p2

+ (Mn−2 + M2n−4)p4

where δn = M2n−2−1
M2−1 . In this section we show that R(M4k+2) is an irreducible

variety. We only need to show that U is an irreducible polynomial over C.
Firstly, we observe that there is no non-trivial factorization of U = f(M)·g(M, p)

where f(M) is a non-constant polynomial in M and g(M, p) is a quartic when
viewed as a polynomial in p with coefficients from C[M ]. If there were such a
factorization, then f(M) would be a common factor of the coefficients of p0, p2 and
p4 in U(M, p) given above. The coefficient of p0 (or equivalently p4) is given by
(Mn−2 + M2n−4) = Mn−2(Mn−2 + 1). But neither zero nor any root of Mn−2 + 1
is a root of (δn + Mn−2δn − Mn−4 − M2n−2), the coefficient of p2 in U(M, p).

So the irreducibility of U is a consequence of the above observation and of
Lemma 3.1 and Lemma 3.2 given below, where it is demonstrated that the polyno-
mial U cannot be factored either as a product of a linear factor and a cubic factor
or as a product of two quadratic factors when viewed as polynomials in p.
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Lemma 3.1. The polynomial U cannot be factored as f(p)g(p) where f(p) = A +
Bp and g(p) = C + Dp + Ep2 + Fp3, for A, B, C, D, E and F polynomials in M

with complex coefficients.

Proof. Suppose otherwise that the polynomial U can be factored as f(p)g(p) as
described in the lemma. Then B �= 0 and F �= 0. We may assume that A �= 0 and
C �= 0 as p does not divide U . Multiplying out f(p)g(p) and comparing terms with
those of U , we get

(1) AC = Mn−2 + M2n−4,
(2) AD + BC = 0,
(3) AE + BD = δn + Mn−2δn − Mn−4 − M2n−2,
(4) AF + BE = 0,
(5) BF = Mn−2 + M2n−4.

We claim that D �= 0 and E �= 0. For, if D = 0, from (2) we would have BC = 0, but
this contradicts B �= 0, C �= 0. And if E = 0, from (4) we would have AF = 0 which
contradicts A �= 0, F �= 0. With this claim none of the coefficients A, B, C, D, E or
F can be zero. From (2) and (4), we get

(6) A
B = −C

D = −E
F = λ (say), a rational polynomial in M .

From (1) and (5), we get AC = BF . Together with (6), we get

(7) F = −λ2D.

From (3), (6) and (7), we have

(8) BD(λ4 + 1) = δn + Mn−2δn − Mn−4 − M2n−2

From (1) and (6), we have

(9) −λ2BD = Mn−2 + M2n−4.

From (8) and (9), we have − δn+Mn−2δn−Mn−4−M2n−2

Mn−2+M2n−4 = λ4+1
λ2 = (λ + 1

λ)2 − 2, i.e.
2(Mn−2+M2n−4)−(δn+Mn−2δn−Mn−4−M2n−2)

Mn−2+M2n−4 = (λ + 1
λ)2 = 2L−H

L ,
where L = Mn−2 + M2n−4 and H = δn + Mn−2δn − Mn−4 − M2n−2. Since λ is a
rational polynomial in M, 2L−H

L must be a perfect square of a rational polynomial
in C(M). However, L and H are relatively prime (no common roots in C) which
implies 2L−H and L are relatively prime. Hence, L = (Mn−2+M2n−4) must be the
square of a polynomial in C[M ]. Now, (Mn−2 +M2n−4) = Mn−2(Mn−2 +1) where
the first factor Mn−2 = M4k is a perfect square but the other factor Mn−2 + 1 is
not a perfect square as it has n − 2 distinct roots of negative unity.

Lemma 3.2. The polynomial U cannot be factored as a product f(p)g(p) where
f(p) = A+Bp+Cp2 and g(p) = D+Ep+Fp2 for A, B, C, D, E and F, polynomials
in M over complex numbers.



December 21, 2009 14:7 WSPC/134-JKTR 00769

1630 S. Kuppum & X. Zhang

Proof. As in Lemma 3.1, we may assume A �= 0, C �= 0, D �= 0, F �= 0. Multiplying
out the polynomials f and g and comparing terms with those of U , we have:

(1) AD = Mn−2 + M2n−4,
(2) AE + BD = 0,
(3) AF + BE + CD = δn + Mn−2δn − Mn−4 − M2n−2,
(4) CE + BF = 0,
(5) CF = Mn−2 + M2n−4.

The proof is broken into the cases: E = 0 and E �= 0.

Case 1: E = 0.
From (2), we get B = 0. So (3) becomes

(6) AF + CD = δn + Mn−2δn − Mn−4 − M2n−2.

Using (1) and (5) in (6), we have (Mn−2+M2n−4

D )F + (Mn−2+M2n−4

F )D = δn +
Mn−2δn − Mn−4 − M2n−2. Set F

D = λ, a rational polynomial in M .
Then λ + 1

λ = δn+Mn−2δn−Mn−4−M2n−2

Mn−2+M2n−4 .
Denote the numerator above as H = δn + Mn−2δn − Mn−4 − M2n−2 and the

denominator as L = Mn−2 + M2n−4. Solving the above equation λ + 1
λ = H

L ,

λ =
H ± √

(H + 2L)(H − 2L)
2L

.

Since λ is a rational polynomial in M , (H +2L)(H−2L) should be a perfect square
of a polynomial in C[M ]. Clearly, L and H are relatively prime (no common root
over C), which implies H+2L and H−2L are relatively prime. Hence it is necessary
that each of H + 2L and H − 2L be a perfect square as a polynomial in M . But by
Lemma 3.3, this is not true.

Case 2: E �= 0. It follows from (2) that B �= 0. From (2) and (4), we have

(7) A
D = −B

E = C
F = λ (say), a rational in M .

From (1), (5) and (7), we get λD2 = λF 2. Hence D2 = F 2 (as λ �= 0, else A = 0
from (7)). So D = ±F . This leads to the following two subcases:

Subcase 2a: D = F ;
Subcase 2b: D = −F .

In Subcase 2a, we have A = λF = C from (7). Now from (1) and (7), we have

(8) λ = (Mn−2+M2n−4)
D2

Using (7) and (8) in (3), we get

(9) (Mn−2 + M2n−4)
(

F
D

) − (Mn−2 + M2n−4)
(

E
D

)2
+ (Mn−2 + M2n−4)

(
F
D

)
=

(δn + Mn−2δn − Mn−4 − M2n−2).
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Now (9) would imply

E2

D2
=

(
E

D

)2

= 2 − δn + Mn−2δn − Mn−4 − M2n−2

(Mn−2 + M2n−4)

=
2(Mn−2 + M2n−4) − (δn + Mn−2δn − Mn−4 − M2n−2)

(Mn−2 + M2n−4)
,

which must be the square of a rational in C(M). However, (Mn−2 + M2n−4) and
(δn + Mn−2δn −Mn−4 −M2n−2) are relatively prime and hence (Mn−2 + M2n−4)
and 2(Mn−2 + M2n−4)− (δn + Mn−2δn −Mn−4 −M2n−2) are relatively prime. So
(Mn−2 +M2n−4) must be a square of a polynomial in M , which is not true as seen
in the proof of previous lemma.

Similarly in Subcase 2b, we would get

E2

D2
=

−2(Mn−2 + M2n−4) − (δn + Mn−2δn − Mn−4 − M2n−2)
(Mn−2 + M2n−4)

and as in Subcase 2a, (Mn−2 + M2n−4) would be a perfect square, which is not
true as before.

Lemma 3.3. For a given n, (δn +Mn−2δn−Mn−4−M2n−2)+2(Mn−2 +M2n−4)
and (δn + Mn−2δn − Mn−4 − M2n−2) − 2(Mn−2 + M2n−4) cannot both be perfect
squares in C[M ].

Proof. For k = 1,

(δn + Mn−2δn − Mn−4 − M2n−2) + 2(Mn−2 + M2n−4)

= 1 + 4M4 + 2M6 + 4M8 + M12

= (M2 − M + 1)(M2 + M + 1)(M4 − M3 + M + 1)(M4 + M3 − M + 1)

has a primitive cube root of unity as an unrepeated root and hence is not a perfect
square.
For k > 1,

(δn + Mn−2δn − Mn−4 − M2n−2) − 2(Mn−2 + M2n−4)

= (1 + M2 + M4 + · · · + M4k−4) + 2M4k+2(1 + M2 + M4 + · · · + M4k−4)

+ 2M4k+2 + M8k+4(1 + M2 + M4 + · · · + M4k−4)

= (1 + M2 + M4 + · · · + M4k−4)(1 + M4k+2)2

is a perfect square only if (1 + M2 + M4 + · · · + M4k−4) = (M2)2k−1−1
M2−1 is a perfect

square. However, every root of the latter polynomial is a root of M4k−2 − 1 = 0
which has distinct (4k−2) roots of unity. Thus, for k > 1, (δn +Mn−2δn−Mn−4−
M2n−2) − 2(Mn−2 + M2n−4) is not a perfect square.

This completes the proof of the lemma.
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4. Edge polynomial Computations

Recall from Sec. 2 we have polynomials V (M, p, q) = a + bM2 + cM4, where a =
p2p + p4q2 − q − p2q2 while b = −p4q3 + q2 − 2p2q2 + 2p2q − p4q + 1, and

U(M, p, q) = (Mn−2 + M2n−4) + (δn + Mn−2δn − Mn−4 − M2n−2)p2

+ (M2n−4 + Mn−2)p4

= (Mn−2 + M2n−4) + (1 + M2 + M4 + M6 + · · · (M2)n−2

+ Mn−2(1 + M2 + M4 + M6 + · · · (M2)n−2) − Mn−4 − M2n−2)p2

+ (Mn−2 + M2n−4)p4

= p2 + p2M2 + p2M4 + · · · + p2Mn−6

+ (0)Mn−4 + (1 + 2p2 + p4)Mn−2 + (2p2)Mn + (2p2)Mn+2 + · · ·
+ (2p2)M2n−6 + (1 + 2p2 + p4)M2n−4

+ (0)M2n−2 + p2M2n + · · · + p2M3n−6,

and the A-polynomial of Mn is a factor of the resultant of the two polynomials
U and V eliminating the variable M . Actually we may simply treat U and V as
polynomials in M2, instead of M . So the A-polynomial of Mn is a factor of the
following determinant of the square matrix of size 3n−6

2 + 4
2 = 3n

2 − 1 = 6k + 2 (see
Table 1).

It looks fairly difficult to calculate this determinant. In Sec. 1, we have shown
that the Newton polygon of the A-polynomial of M4k+2 must have an edge of slope
k. We notice that one can calculate directly this edge polynomial, without knowing
explicit expression of the A-polynomial. The procedure is as follows. First we make
a change of bases: from the standard basis (µ2, λ2) to (λ2, β2 = µ2λ

k
2). Let w be

the eigenvalue of ρ(β2). Then the A-polynomial of M4k+2 with respect to the new
basis {λ2, β2} can be obtained from the old one by making the simple substitution
p = w

qk (up to a multiple of a certain power of q). The new A-polynomial will be in
variables q and w and the Newton polygon of this polynomial will have an edge of
slope 1/0 in the (q, w)-plane. So if we simply let q = 0 in the new A-polynomial,
then the resulting polynomial in w must contain a factor which is the required edge
polynomial. Also this factor cannot be just a power of w (i.e. it contains at least
two terms). Now we give the detailed calculation.

In the old determinant expression above (which formally contains the A-
polynomial of M4k+2 as a factor), let p = w

qk . Then the resulting polynomial in
variables q and w should contain the new A-polynomial of M4k+2 (with respect to
the basis {λ2, β2}) as a factor (up to a multiple of power of q). Now we need to
find out all the terms in the standard expansion of the new determinant which have
the lowest power in q (a negative power). Say, the power is −m for some positive
integer m. If the sum of these terms is not zero, then the product of qm and the
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determinant is a polynomial in Z[q, w] which contains, when valued at q = 0, the
edge polynomial we are seeking as a factor. So to find such terms, we may replace
σ, a and b in the old determinant above only by ( w

qk )4, w4

q4k−2 and − w4

q4k−1 respectively.
Then the determinant becomes (see Table 2).

The standard expansion of the above determinant consists of the sum over
all possible terms, where each term is a product of entries, one from each row
and each column. Appropriate sign factors have to be included. Through a series
of observations, we now try to determine all the terms in the expansion of this
determinant which have the highest power of q in the denominator.

The first and the last columns each have only 2 non-zero entries. Name these
entries as follows: (1, 1) entry as A, (3, 1) entry as B, (2, 6k + 2) entry as C and
(6k+2, 6k+2) entry as D. Then every non-zero term in the expansion of the above
determinant has one of the following four factors: AC, AD, BC or BD. This leads
to the following four cases.

Case AC. Of all the terms which contain AC in the expansion of the determinant,
the term which is the product of A and C and the entries (3, 2), (4, 3), . . . , (6k +
2, 6k + 1) gives the maximal power of q in the denominator. The total power of q

of this term is 24k2 − 2k. The corresponding power of w is 24k + 4. That is, this
term is equal to w24k+4

q24k2−2k
.

Case AD. Of all the terms which contain AD in the expansion of the determi-
nant, the term which is the product of A, D, the entry (2, 4k + 2) with the entries
(3, 2), (4, 3), (5, 4), . . . , (4k + 2, 4k + 1) along with the entries (4k + 3, 4k + 3), (4k +
4, 4k + 4), . . . , (6k, 6k), (6k + 1, 6k + 1) gives the maximal power of q in the denom-
inator. This term is equal to w24k+6

q24k2−2k
.

Case BC. Of all the terms which contain BC in the expansion of the determi-
nant, the term which is the product of B,C,the entry (1, 2k + 1) with the entries
(4, 2), (5, 3), . . . , (2k + 1, 2k − 1), (2k + 2, 2k) along with the entries (2k + 3, 2k +
2), (2k + 4, 2k +3), . . . , (6k + 2, 6k +1) gives the maximal power of q in the denom-
inator. This term is equal to w24k+6

q24k2−2k
.

Case BD. Of all the terms which contain BD in the expansion of the determinant,
the term which is the product of B, D, the entries (1, 2k + 1) and (2, 4k + 2),
with the entries (4, 2), (5, 3), . . . , (2k+1, 2k−1), (2k+2, 2k), with the entries (2k+
3, 2k + 2), (2k + 4, 2k + 3), . . . , (4k + 1, 4k), (4k + 2, 4k + 1) along with the entries
(4k + 3, 4k + 3), . . . , (6k, 6k), (6k + 1, 6k + 1) gives the maximal power of q in the
denominator. This term is equal to w24k+8

q24k2−2k
.

In calculating the terms above, we have taken into consideration the signs of these
terms; they all have positive sign. From the above four cases, the negative highest
possible power of q among all terms in the expansion of the determinant is −(24k2−
2k). We have four such terms. Their numerators sum up to w24k+4(1 + w2 + w2 +
w4) = w24k+4(w2 + 1)2. As we noted already, if we multiply the whole determinant
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by q24k2−2k we get a polynomial P (q, w) in Z[w, q] which has no q as a factor and
which contains the A-polynomial of M4k+2 as a factor, and further if we set q = 0
in P (q, w), we get the polynomial w24k+4(w2 + 1)2 which should contain the edge
polynomial, which we are seeking, as a factor. Obviously w2 + 1 must be a factor
of the edge polynomial. This polynomial has a root of unity of order 4. Now the
conclusion of Theorem 1.1 follows from property (3) of an edge polynomial listed
in Sec. 1, noticing that the slope of the edge we have now in the qw-plane is 1/0.
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