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Abstract

We introduce and study trace fields and invariant trace fields of SL2(C) and PSL2(C) represen-

tations of 3-manifold groups. We give conditions on such fields which imply that the under-

lying 3-manifold is virtually Haken or has virtually positive or 1 first Betti number. In

particular, we define the notion of an algebraically trace-proper surface subgroup in a 3-mani-

fold group, and show that any closed orientable irreducible 3-manifold with such a surface

subgroup is virtually Haken. We give infinitely many families of closed orientable hyperbolic

non-Haken 3-manifolds with algebraically trace-proper surface subgroups.

1. Introduction

In this paper a 3-manifold is always assumed to be connected and orientable, without loss of

generality for the problems to be considered. A 3-manifold is said to be Haken if it is compact,

irreducible, and contains a properly embedded incompressible surface. A 3-manifold is said to

be virtually Haken if it has a finite cover which is Haken. The well-known virtually Haken

conjecture states that every closed and irreducible 3-manifold with infinite fundamental group is

virtually Haken. It is also conjectured that every closed Haken 3-manifold has virtually positive

first Betti number, that is, the manifold has a finite cover which has positive first Betti number.

If M is a closed hyperbolic Haken 3-manifold, then it is further conjectured that M has virtually

1 first Betti number, which means that for any positive integer n, there is a finite cover Mn of M

such that the first Betti number of Mn is larger than n. These conjectures are fundamental and

difficult issues in 3-manifold topology. In this paper we provide some information about these

conjectures by studying traces of representations of 3-manifold groups into SL2ðCÞ or PSL2ðCÞ:

For a group G and a representation r : G! SL2ðCÞ; we define the trace field Kr of r to be the

field generated by the traces of all the matrices r (g), g [ G; over the base field Q of rational

numbers, that is,

Kr ¼ Qðtrðr ðgÞÞ; g [ G Þ:

Recall that the character xr of r is the complex-valued function xr : G! C defined by

xrðgÞ ¼ trðr ðgÞÞ for g [ G: Hence if two SL2(C)-representations r1, r2 of G have the same char-

acter, in particular if they are conjugate to each other, then Kr1
¼ Kr 2

:

As in [17], for any group G we use G(2) to denote the subgroup of G generated by

{g2;g [ G}: If G is finitely generated, then G(2) is a finitely generated finite-index normal

subgroup of G. For a representation r : G! SL2ðCÞ; we use r (2) to denote the restriction
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representation of r on the subgroup G(2). We also use Kð2Þ
r to denote the trace field of r (2), thus

Kð2Þ
r ¼ Kr ð2Þ: We call Kð2Þ

r the invariant trace field of r.

Recall that a representation r : G! SL2ðCÞ is called reducible if r ðGÞ; as a subgroup of

SL2ðCÞ acting on the complex vector space C2 in the standard way, has an invariant 1-dimen-

sional subspace, and called irreducible otherwise. A representation r : G! SL2ðCÞ is called

virtually reducible if there is a finite index subgroup G1 of G such that the restriction of r on G1

is a reducible representation, and called non-virtually reducible otherwise. Note that if M is a

hyperbolic 3-manifold of finite volume and if r is a discrete faithful representation of p1ðMÞ

into SL2ðCÞ then r is non-virtually reducible.

We say that a 3-manifold M has a surface subgroup if p1ðMÞ contains a subgroup which is

isomorphic to the fundamental group of a closed connected orientable surface of genus at least

one. We call a surface subgroup L of p1ðMÞ algebraically trace-proper if p1ðMÞ has a

non-virtually reducible representation r such that KrjL is a proper subfield of Kð2Þ
r ; where rjL

denotes the restriction of r on the subgroup L. Note that this notion is well associated to the

conjugacy class of r and to the conjugacy class of the subgroup L in p1ðMÞ: The following

theorem is the main result of this paper.

Theorem 1.1 Any closed irreducible 3-manifold M with an algebraically trace-proper surface

subgroup is a virtually Haken 3-manifold.

If a closed hyperbolic 3-manifold M has an immersed closed totally geodesic surface, then M

contains an algebraically trace-proper surface subgroup. In fact, let r be a discrete faithful rep-

resentation of p1ðMÞ into SL2ðCÞ; then it is well known that r ðGð2ÞÞ cannot be conjugated into

SL2ðRÞ or into SU2ðCÞ: Hence the character of r (2) is not a real-valued function by [14, Prop-

osition III.1.1]. It follows that Kð2Þ
r is a number field which is not contained in R. On the other

hand, if L , p1ðMÞ is the subgroup corresponding to an immersion of a closed totally geodesic

surface of M, then trðr ðdÞÞ [ R for every d [ L: Take L1 a finite-index subgroup of L(2) corre-

sponding to an immersion of a closed orientable surface; then trðr ðdÞÞ [ R> Kð2Þ
r ¼ F for

every d [ L1 and F is a proper subfield of Kð2Þ
r : That is, L1 is an algebraically trace-proper

surface subgroup of p1ðMÞ:

Corollary 1.2 [11] Any closed hyperbolic 3-manifold with an immersed closed totally geode-

sic surface is a virtually Haken 3-manifold.

We now give some conditions on the traces of an SL2ðCÞ-representation of a closed Haken

3-manifold to ensure that the manifold has virtually positive or virtually 1 first Betti number.

Let M be a closed Haken 3-manifold. Let S be a connected, embedded, closed, incompressible

surface in M. If S separates M into two parts M1 and M2, then p1ðMÞ ¼ p1ðM1Þ*p1ðSÞp1ðM2Þ is a

free product with amalgamation, and p1ðSÞ can be considered as a subgroup of p1ðMiÞ; and

p1ðMiÞ can be considered as subgroup of p1ðMÞ; for each i ¼ 1; 2: Here the base point for all

the involved fundamental groups is in S. If S does not separate M, then p1ðMÞ ¼ p1ðM1Þ*p1 ðSÞ
is

an HNN extension, where M1 is M\S; and p1(S) can be considered as a subgroup of p1(M1), and

p1(M1) can be considered as a subgroup of p1(M). Here the base point for all the involved fun-

damental groups is in a parallel copy of S in M1.
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Theorem 1.3 Let M be a closed Haken 3-manifold and S a connected, embedded, closed, orien-

table, incompressible surface in M.

(1) Suppose that S separates M into M1 and M2, and that there is an irreducible representation

r : p1ðMÞ! SL2ðCÞ such that Kr is a number field and Kpjp1ðSÞ
is a proper subfield of

Kpjp1 ðMiÞ
for both i ¼ 1; 2: Then M has virtually positive first Betti number. If, in addition,

Kð2Þ
rjp1 ðMiÞ

is not contained in Kpjp1 ðSÞ
for at least one of i ¼ 1; 2; then M has virtually 1 first

Betti number.

(2) Suppose that S does not separate M and that there is an irreducible representation

r : p1ðMÞ! SL2ðCÞ such that Kr is a number field and Krjp1ðSÞ
is a proper subfield of

Krjp1 ðM1 Þ
; where M1 ¼ M\S: Then M has virtually 1 first Betti number.

If a closed hyperbolic 3-manifold M contains an embedded closed totally geodesic surface S,

then some finite cover of M satisfies the conditions of (1) or (2) of Theorem 1.3. In fact, we may

assume that S is orientable (otherwise replace it by its orientable double cover). By passing to a

double cover of M, we may further assume that S is not the boundary of a twisted I-bundle in

M. Let L be the surface subgroup corresponding to S, and let r be a discrete faithful represen-

tation of p1ðMÞ into SL2ðCÞ: Then KrjL is a proper subfield of the number field Kr. If S separates

M into M1 and M2, then each Mi is not an I-bundle. Since Mi has totally geodesic boundary and

is not an I-bundle, a similar discussion as that following Theorem 1.1 shows that the character

of rj
ð2Þ
p1ðMiÞ

cannot be a real-valued function. Therefore all the conditions of the part (1) of

Theorem 1.3 are satisfied. If S is non-separating, then M1 ¼ M\S (completed with the path

metric) is a 3-manifold with totally geodesic boundary. Similarly M1 is not an I-bundle over a

surface, and the trace field of M1 is not contained in R. Hence the conditions of the part (2) of

Theorem 1.3 are satisfied. Therefore we have proved the following.

Corollary 1.4 [12] Any closed hyperbolic 3-manifold with an embedded closed totally geo-

desic surface has virtually 1 first Betti number.

More generally we may consider the trace fields and invariant trace fields of PSL2ðCÞ-

representations. For a subgroup G of SL2ðCÞ; we define its trace field to be the field over Q

generated by the traces of all the elements in G. Let F : SL2ðCÞ! PSL2ðCÞ be the canonical

quotient homomorphism. For a group G and a representation r̂ : G! PSL2ðCÞ; we define the

trace field K r̂ of r̂ to be the trace field of the subgroup F21ðr̂ðGÞÞ of SL2ðCÞ: Similarly, we use

r̂ ð2Þ to denote the restriction of r̂ to the subgroup G(2) of G, and define the invariant trace of r̂ to

be the trace field of r̂ ð2Þ: A representation r̂ : G! PSL2ðCÞ is called reducible if F21ðr̂ðGÞÞ; as a

subgroup of SL2ðCÞ; is reducible, and called irreducible otherwise. The representation r̂ is

virtually reducible if there is a finite-index subgroup G1 of G such that the restriction of r̂ on G1

is a reducible representation. It is easy to see that if r : G! SL2ðCÞ is an SL2ðCÞ-representation

and r̂ ¼ F + r is the corresponding PSL2ðCÞ-representation, then Kr ¼ K r̂ and Kr ð2Þ ¼ K r̂ ð2Þ

(although r (G) and F21ðr̂ðGÞÞ might not be equal to each other), and r is reducible or virtually

reducible if and only if r̂ is respectively. We shall also call a surface subgroup L of a 3-mani-

fold group p1(M) algebraically trace-proper if p1(M) has a non-virtually reducible PSL2(C)-

representation r̂ such that K r̂jL is a proper subfield of K r̂ ð2Þ:

Theorem 1.5 Each of Theorem 1:1 and Theorem 1.3 still holds if the SL2ðCÞ-representation

involved is replaced by a PSL2ðCÞ-representation with the corresponding property.
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The above theorems will be proved in section 2. Walter Neumann suggested an approach for

constructing hyperbolic 3-manifolds with algebraically trace-proper but not necessarily

totally geodesic surface subgroups and a similar method was suggested by Darren Long.

The 3-manifolds they constructed are already Haken manifolds. In final section, we shall con-

struct infinitely many families of non-Haken hyperbolic 3-manifolds with algebraically trace-

proper surface subgroups using a different method. We show there the following result.

Theorem 1.6 Let K be any ð p, q, rÞ-pretzel knot in S3 with p . 0 and q . 0 odd, r . 0 even,

gcdð p; qÞ ¼ d . 1: Then infinitely many surgeries on K produce hyperbolic non-Haken 3-mani-

folds with algebraically trace-proper surface subgroups.

We do not know whether any of the non-Haken 3-manifolds given in Theorem 1.6 contains

closed immersed totally geodesic surfaces.

It seems a strong condition on a 3-manifold to ask for it to have an algebraically trace-proper

surface subgroup. It is not clear how big the class of irreducible 3-manifolds with algebraically

trace-proper surface subgroups is. This class of 3-manifolds is probably much larger than the

class of hyperbolic 3-manifolds with immersed totally geodesic surfaces, given the belief that

every number field can be realized as the trace field of a hyperbolic 3-manifold, plus the free-

dom that in the definition of an algebraically trace-proper surface subgroup, the representation is

not necessarily required to be discrete and faithful. It is not totally unreasonable to conjecture

that every closed irreducible 3-manifold M with infinite fundamental group virtually has alge-

braically trace-proper surface subgroups, that is, M has a finite cover which has algebraically

trace-proper surface subgroups. Of course this conjecture is stronger than the virtually Haken

conjecture.

2. Proofs of Theorems 1.1, 1.3 and 1.5

From now on, G denotes a finitely generated group. We use R(G) to denote the set of all repre-

sentations of G into SL2ðCÞ; and X(G) the corresponding set of characters. If M is a path con-

nected space with finitely generated fundamental group, we also use R(M) and X(M) to denote

R(p1(M)) and X(p1(M)) respectively. Both R(G) and X(G) are complex affine algebraic sets,

often called the SL2(C) representation variety and character variety of G respectively.

For any compact 3-manifold M, if for some r [ RðMÞ; the trace field Kr is not a number

field, then by the Hilbert Nullstellensatz, X(M) must be positive dimensional as an algebraic set,

and thus in such a case M contains a properly embedded essential surface by [5]. Therefore

when M is an irreducible non-Haken 3-manifold, Kr is always a number field for any represen-

tation r [ RðMÞ:

When M is a hyperbolic 3-manifold of finite volume, its fundamental group p1ðMÞ has a dis-

crete faithful representation h into PSL2ðCÞ: It is known that the PSL2ðCÞ-representation h can

be lifted to a SL2ðCÞ-representation r [21]. An argument in [14] shows that h has precisely, up

to conjugation, jH1ðM;Z2Þj such lifts. As any two such lifts of h differ only by multiplying by

an element of H1ðM;Z2Þ the trace field Kr is uniquely associated to the conjugacy class of h.

By the Mostow–Prasad rigidity there are exactly, up to conjugacy, two discrete faithful repre-

sentations h and �h from p1ðMÞ into PSL2ðCÞ; where �h is obtained from h by taking the complex

conjugation, that is, if hðgÞ ¼ ^
a b

c d

 !
then �hðgÞ ¼ ^

�a �b

�c �d

 !
: Let �r be a lift of �h: We caution

that in general Kr may not always be equal to K �r: Their precise relation is K �r ¼ �Kr: So the trace
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field of M usually referred to in the literature is only well defined up to taking the complex

conjugation.

Note also that if M is a hyperbolic 3-manifold of finite volume and if r [ RðMÞ is a discrete

faithful representation then the trace field Kr is always a number field, as follows from the

Mostow–Prasad rigidity and the Hilbert Nullstelensatz.

For r [ RðGÞ; let

Ar ¼
X

air ðgiÞ; ai [ Kr; gi [ G
n o

;

where all sums are finite.

Lemma 2.1 [1, Proposition 2.2] If r [ RðGÞ is an irreducible representation, then Ar is

a quaternion algebra over Kr , that is, Ar is a central, simple, and 4-dimensional algebra over

Kr .

A pair of matrices A and B in SL2ðCÞ is called a generic pair if A and B do not share an

eigenvector and one of the two matrices has trace not equal to ^2. If r [ RðGÞ is irreducible,

then r (G) contains a generic pair. This follows from [5, Lemma 1.5.1]. If ðr ða1Þ; r ða2ÞÞ form a

generic pair, then an argument given in [9, p. 248] shows that as a Kr-vector space, Ar has a

basis of the form {I; r ða1Þ; r ða2Þ; r ða1a2Þ}; where I is the identity matrix.

Lemma 2.2 Suppose that r [ RðGÞ is non-virtually-reducible. Then r ðGÞ contains a generic

pair of the form ðr ða2Þ; r ðb2ÞÞ such that each of r ða2Þ; rðb2Þ and rða2b2Þ has infinite order,

and that the trace of each of r ða2Þ and rðb2Þ is not equal to ^2.

Proof. By Selberg’s lemma, r (G) has a finite-index torsion free normal subgroup H. Then

G1 ¼ r21ðHÞ is a finite-index subgroup of G. Since r is non-virtually reducible, the restriction of

r on G1 is irreducible. Thus, as noted immediately above, r ðG1Þ ¼ H contains a generic pair

ðr ðaÞ; r ða1ÞÞ with trðr ðaÞÞ – ^2; a;a1 [ G1: So r ða2Þ has infinite order. As trðr ðaÞÞ – ^2

and trðr ðaÞÞ – 0 (since r ðaÞ has infinite order), trðr ða2ÞÞ ¼ ðtrðr ðaÞÞÞ2 2 2 cannot be equal to

^2. Now for the given element r ða2Þ we apply [5, Lemma 1.5.1] to see that there is an element

r ðbÞ in H such that trðr ðbÞÞ – ^2 and that r ða2Þ and r ðbÞ form a generic pair. So r ðb2Þ is

also of infinite order and has trace – ^ 2. Now r ða2Þ and r ðb2Þ also form a generic pair since

r ðbÞ and r ðb2Þ have the same invariant 1-dimensional subspaces. As r ða2b2Þ [ H is

non-trivial, it has infinite order.

Lemma 2.3 Suppose that r [ RðGÞ is non-virtually reducible. Then

Kð2Þ
r ¼ Qðtrðr ðg2ÞÞ; g [ GÞ:

Proof. Obviously by definition Kð2Þ
r ¼ Krð2Þ ¼ Qðtrðr ðdÞÞ;d [ Gð2ÞÞ . Qðtrðr ðg 2ÞÞ;g [ GÞ:

So we need to show that Krð2Þ , Qðtrðr ðg 2ÞÞ; g [ GÞ: Note also that Qðtrðr ðg 2ÞÞ; g [ GÞ ¼

Qððtrðr ðgÞÞÞ2; g [ GÞ as trðr ðg 2ÞÞ ¼ ðtrðr ðgÞÞÞ2 2 2: Thus we only need to show that Krð2Þ ,
Qððtrðr ðgÞÞÞ2; g [ GÞ:

By Lemma 2.2, r ðGÞ contains a generic pair of the form ðr ða2Þ; r ðb2ÞÞ such that the trace of

each of r ða2Þ and r ðb2Þ is not equal to ^2 and that all r ða2Þ; r ðb2Þ; r ða2b2Þ have infinite

order (in particular their traces are not equal to 0). Therefore Ar has a basis of the form
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{I; r ða2Þ; r ðb2Þ; r ða2b2Þ} by the note following Lemma 2.1. Now one can follow exactly the

arguments used in the proof of [20, Proposition 4] to show that the vector space A0 spanned by

{I; r ða2Þ; r ðb2Þ; r ða2b2Þ} over the field Qððtrðr ðgÞÞÞ2; g [ GÞ is a quaternion algebra over

Qððtrðr ðgÞÞÞ2; g [ GÞ; that r ðGð2ÞÞ is contained in A0, and that trðDÞ [ Qððtrðr ðgÞÞÞ2; g [ GÞ for

every element D [ A0: It follows that Krð2Þ , Qððtrðr ðgÞÞÞ2; g [ GÞ.

Note that if M is a hyperbolic 3-manifold of finite volume and if r [ RðMÞ is a discrete faith-

ful representation, then Kð2Þ
r is the usual invariant trace field Kð2Þ

M of M defined in [17]. It is well

associated to M up to taking the complex conjugation. It is proved in [17] that Kð2Þ
M is an invar-

iant of the commensurability class of M, that is, if M and M1 have a finite-sheeted common

cover, then Kð2Þ
M ¼ Kð2Þ

M1
: For a group G, Kð2Þ

r has the following property.

Proposition 2.4 Suppose that r [ RðGÞ is a non-virtually reducible representation. Let G1 be

any finite-index subgroup of G. Let r1 [ RðG1Þ be the restriction of r on G1. Then Kð2Þ
r1

¼ Kð2Þ
r :

Proof. We follow an idea used in [17], originating from [20]. Choose a finite-index subgroup G2

of G
ð2Þ
1 such that G2 is a normal subgroup of G (such subgroup exists). Let r 2 [ RðG2Þ be the

restriction of r on G2. By definition, we have Kr 2
, Kð2Þ

r1
, Kð2Þ

r : So it suffices to show that

Kð2Þ
r , Kr 2

: By Lemma 2.3 we only need to show that trðr ðg 2ÞÞ [ Kr 2
for every g [ G:

The element r (g) induces an automorphism fg of the group r 2ðG2Þ ¼ r ðG2Þ defined by

r 2ðaÞ
fg

�! r ðgÞr 2ðaÞr ðgÞ
21 ¼ r 2ðgag

21Þ for any r 2ðaÞ [ r 2ðG2Þ:

Note that r2 [ RðG2Þ is an irreducible representation since r is non-virtually reducible. Thus

Ar 2
is a quaternion algebra over Kr 2

by Lemma 2.1. The above automorphism fg extends natu-

rally to an automorphism, which we still denote by fg, of the algebra Ar 2
. By the Skölem–

Noether theorem, which states that any automorphism of a finite-dimensional central simple

algebra is an inner automorphism, there is an invertible element D0 of Ar 2
such that

fgðDÞ ¼ D0DD
21
0 for any D [ Ar 2

; that is, r ðgÞDrðgÞ21 ¼ D0DD
21
0 for any D [ Ar 2

: As

Ar 2
^Kr 2

C ø M2ðCÞ; where M2ðCÞ is the algebra over C of all 2 £ 2 matrices, D21
0 r ðgÞ com-

mutes with all elements of M2ðCÞ and thus is a non-zero scalar matrix, that is, D21
0 r ðgÞ ¼ aI;

a [ C*; where I is the identity matrix. Since detðr ðgÞÞ ¼ 1; a2 ¼ 1=detðD0Þ [ Kr 2
: Hence

trðr ðg 2ÞÞ ¼ trða2D2
0Þ ¼ a2trðD2

0Þ ¼ a2ððtrðD0ÞÞ
2 2 2detðD0ÞÞ [ Kr 2

: The proof is complete.

Lemma 2.5 Suppose that r [ RðGÞ is irreducible and Kr is a number field. Then Kr has a finite

field extension L such that r ðG Þ can be conjugated into SL2ðLÞ:

Proof. Since r is irreducible, r (G) contains a generic pair ðr ðaÞ; r ðbÞÞ: Now we apply [13,

Proposition 3.2] to see that the assertion of the lemma follows. In fact if trðr ðaÞÞ – ^2 and l is

an eigenvalue of r (a) (note that l must be an algebraic number since trðr ðaÞÞ is), then we may

take L ¼ KrðlÞ [9, Lemma 1.6].

It is known that if M is a hyperbolic 3-manifold of finite volume, then the trace field KM of M

is a Zm
2 -extension of the invariant trace field Kð2Þ

M of M for some non-negative integer m [15].

Proposition 2.6 If r [ RðMÞ is non-virtually reducible, then Kr is a Zm
2 -extension of Kð2Þ

r for

some non-negative integer m. If M is a Z2-homology 3-sphere, then Kr ¼ Kð2Þ
r for any

r [ RðMÞ:
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Proof. Set G ¼ p1ðMÞ: Then G=Gð2Þ is a finite abelian group of exponent 2. In particular if M is

a Z2-homology 3-sphere, then G ¼ Gð2Þ
: The conclusions of the proposition follow from Lemma

2.3 and the definition of Kð2Þ
r :

Lemma 2.7 (Jaco [18, Corollary 2.3]) Let M be an irreducible closed 3-manifold. Suppose that

p1ðMÞ has a surface subgroup which is contained in infinitely many distinct subgroups of finite

index in p1ðMÞ. Then M is virtually Haken.

For any field J and any field automorphism s of J, s extends naturally to a group automor-

phism s* : SL2ðJÞ! SL2ðJÞ by

s*
a b

c d

 ! !
¼

s ðaÞ s ðbÞ

s ðcÞ s ðdÞ

 !
:

If r : G! SL2ðJÞ is a group representation, then s*+r is also a representation of G into

SL2ðJÞ: In general, s*+r may not be conjugate to r.

We are now ready to prove Theorem 1.1. Set G ¼ p1ðMÞ and let L , G be a surface sub-

group which is algebraically trace-proper with respect to a non-virtually reducible representation

r [ RðMÞ; that is, if we set F ¼ KpjL ; then F is a proper subfield of Kð2Þ
r : By the note given in

the second paragraph of this section, we may assume that Kr is a number field. By Lemma 2.5,

we have a finite-degree field extension L of Kr such that r (G) can be conjugated into SL2ðLÞ:

Since Kr (as well as each of Kð2Þ
r and F) is invariant under replacing r by a conjugate of r, we

may assume that r (G) is already contained in SL2ðLÞ for the given r.

By Lemma 2.7, we only need to show that L is contained in infinitely many distinct finite

index subgroups of G. It is equivalent to show that if G has a finite-index proper subgroup Gj

which contains L, then Gj itself has a finite-index proper subgroup Gjþ1 which contains L.

By Proposition 2.4, if rj is the restriction of r on the finite-index subgroup Gj of G, then

Kð2Þ
rj

¼ Kð2Þ
r : Thus Krj

is not contained in the field F. So there is an element g* of Gj such that

trðr ðg*ÞÞ is not contained in F. It is now enough to show that there is a homomorphism h of Gj

into a finite group such that hðg*Þ is not contained in h(L). For Gjþ1 ¼ h21ðhðLÞÞ will be a finite

index proper subgroup of Gj containing L.

To find such a homomorphism h, we extend an idea used in [11]. Let J be the Galois closure

of L as a number field, that is, J is the minimal normal extension of Q containing L. Since

trðr ðg*ÞÞ is not in F, there is an element s of the Galois group G ¼ AutðJ=FÞ such that

sðtrðr ðg*ÞÞÞ2 trðr ðg*ÞÞ – 0: Suppose that Gj is generated by elements g1,…,gn. Then r ðGjÞ is

generated by r ðg1Þ;…; r ðgnÞ: Let R be the subring of J generated by all the entries of

r ðg1Þ;…; r ðgnÞ; and all the images of these entries under the map s, together with the identity

element 1. Then R is a finitely generated integral domain with 1, and both r ðGjÞ and s*ðr ðGjÞÞ

are contained in SL2ðRÞ: For such R the intersection of all the maximal ideals is the zero element

and the quotient of R by any maximal ideal is a finite field (see, for example, [22, 4.1]). Now

since sðtrðr ðg*ÞÞÞ2 trðr ðg*ÞÞ – 0; there is a maximal ideal I of R which does not contain the

element sðtrðr ðg*ÞÞÞ2 trðr ðg*ÞÞ: Let f : SL2ðRÞ! SL2ðR=IÞ be the canonical projection homo-

morphism and let c : SL2ðRÞ! SL2ðR=IÞ £ SL2ðR=IÞ be the map defined by sending a matrix D of

SL2ðRÞ to ðfðDÞ;fðs*ðDÞÞÞ: Then c is a well-defined group homomorphism. The composition

h ¼ c +r is the required homomorphism from Gj to the finite group SL2ðR=IÞ £ SL2ðR=IÞ: In fact,
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for any element d of L, h(d) is a pair of matrices with the same trace (since s fixes F pointwise),

while h(g*) is a pair of matrices with distinct traces. The proof of Theorem 1.1 is now complete.

Now we prove part (1) of Theorem 1.3. Set G ¼ p1ðMÞ; Vi ¼ p1ðMiÞ and L ¼ p1ðSÞ: Then

G ¼ V1 �L V2 is a free product with amalgamation. We apply the following lemma from [12].

Recall that a group G is said to have virtually free quotient if G has a finite-index subgroup

which has a homomorphism onto a non-abelian free group. Note that virtually free quotient

implies virtually 1 first Betti number.

Lemma 2.8 [12, Lemma 2.2] (a) Assume that the group G ¼ V1�LV2 has a finite quotient

q : G! G such that q ðLÞ is a proper subgroup of qðViÞ for both i ¼ 1; 2; then G has virtually

positive first Betti number.

(b) If, in addition to (a), the index of qðLÞ in qðViÞ is larger than 2 for at least one of

i ¼ 1; 2; then G has virtually free quotient.

So to prove the first assertion of part (1) of Theorem 1.3, we only need to provide a finite

quotient of G satisfying the conditions of part (a) of Lemma 2.8. As KrjL is a proper subfield of

KrjVi
; there is an element gi [ Vi; for each i ¼ 1; 2; such that trðr ðgiÞÞ is not contained in KrjL:

The proof of 1.1 implies that has a finite-index subgroup Gi such that Gi contains L but does not

contain g
i
. So G3 ¼ G1 > G2 is a finite-index subgroup of G which contains L but contains

neither g1 nor g2. Let G4 be the intersection of all the conjugates of G3 in G. Then G4 is a finite-

index normal subgroup of G and q : G! G=G4 is the finite quotient sought as qðLÞ – qðViÞ

because qðLÞ , qðG3Þ but qðgiÞ � qðG3Þ; for each i ¼ 1; 2:

Similarly to prove the second assertion of part (1) of Theorem 1.3 we use the additional

hypothesis to find a finite quotient of G as described in part (b) of Lemma 2.8. By that hypo-

thesis there is gi [ Vi such that trðg 2
i Þ is not contained in KrjL for at least one of i ¼ 1; 2; say

i ¼ 1 (applying Lemma 2.3). Again we can find a finite index subgroup G1 of G which contains

L but does not contain g 2
1: As above one constructs G2;G3 ¼ G1 > G2;G4; and q : G! G/G4: But

now the index of qðLÞ in qðV1Þ is larger than 2 since qðg 2
1Þ is not contained in qðG3Þ and part

(b) of Lemma 2.8 may be applied to complete the proof.

The proof for part (2) of Theorem 1.3 is similar to that of part (1) but applying another

lemma of [12] recorded below.

Lemma 2.9 [12, Lemma 2.4] Let G ¼ V1*L be an HNN-extension. Suppose that there is a finite

quotient q : G! G such that qðLÞ is not contained in qðV1Þ: Then G has virtually free quotient.

Finally we prove Theorem 1.5, that is, we prove Theorem 1.1 and Theorem 1.3 in the

PSL2ðCÞ setting. To prove the PSL2ðCÞ-counterpart of Theorem 1.1, let M be a closed irreduci-

ble 3-manifold with a non-virtually reducible PSL2ðCÞ representation r̂ and with a surface sub-

group L such that K r̂jL is a proper subfield of K r̂ ð2Þ : Set G ¼ p1ðMÞ and consider the subgroup

F21ðr̂ðGÞÞ of SL2ðCÞ: By definition K r̂ is the trace field of F21ðr̂ðGÞÞ: The group F21ðr̂ðGð2ÞÞÞ is

generated by ðF21ðr̂ðGÞÞÞð2Þ and 2 I, where I is the identity matrix. Hence the trace field of

ðF21ðr̂ðGÞÞÞð2Þ is equal to the trace field of F21ðr̂ðGð2ÞÞÞ: Now if G1 is a finite-index subgroup of

G, then F21ðr̂ðG1ÞÞ is a finite-index subgroup of ðF21ðr̂ðGÞÞÞð2Þ: By Proposition 2.4 the trace

field of ðF21ðr̂ðG1ÞÞÞ
ð2Þ is the same as that of ðF21ðr̂ðGÞÞÞ; It follows that K

r̂
ð2Þ

1

¼ K r̂ ð2Þ ; that is,

Proposition 2.4 holds for PSL2ðCÞ-representations as well.

Again by the Hilbert Nullstellensatz and [5] (cf. [3]) we may assume that K r̂ is a number

field. By Lemma 2.5, we have a finite-degree field extension L of K r̂ such that F21ðr̂ðGÞÞ can be
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conjugated into SL 2ðLÞ: Since K r̂ (as well as each of K r̂ ð2Þ and K r̂ jL) is invariant under replacing

r̂ by a conjugate of r̂; we may assume that F21ðr̂ ðGÞÞ is already contained in SL 2ðLÞ for the

given r̂: By Lemma 2.7, we only need to show that L is contained in infinitely many distinct

finite-index subgroups of G. This is equivalent to showing that the group F21ðr̂ ðLÞÞ is contained

in infinitely many distinct finite-index subgroups of the group F21ðr̂ ðGÞÞ: The proof that the

latter holds now goes exactly as the part of proof of Theorem 1.1 given after Lemma 2.7,

considering F21ðr̂ðLÞÞ and F21ðr̂ðGÞÞ as subgroups of SL 2ðJÞ:

Theorem 1.3 can be similarly generalized to the PSL 2ðCÞ-setting. We omit the obvious

details.

3. Non-Haken 3-manifolds with algebraically trace-proper surfaces

In this section we construct many closed orientable hyperbolic non-Haken 3-manifolds with

algebraically trace-proper surface subgroups.

Let M be a hyperbolic knot manifold, that is, M is a compact 3-manifold whose boundary is a

torus and whose interior admits a complete hyperbolic metric of finite volume. We use M(a) to

denote the Dehn filling of M with slope a and use Dða;bÞ to denote the distance between two

slopes a and b on ›M:

Let ðF; ›FÞ , ðM; ›MÞ be a connected compact orientable properly embedded incompressible

and ›-incompressible surface with non-empty boundary such that F separates M. Let b be the

number of components of ›F and g the genus of F. Since F separates M, b is even. Let b1;… ;bb

be the boundary components of F indexed so that they appear successively on ›M, and let b be

the slope represented by each bi. Let X1 and X2 be the two components into which F separates M.

Let Sk be the closed immersed surface in M constructed from F by Freedman–Freedman tub-

ing; that is, connecting each pair {b2i21;b2i} of boundary components of F by an immersed

annulus Ai,k which winds around ›M (within a regular neighbourhood of ›M) k times, starting at

the X1-side. See Fig. 1 for an illustration when b ¼ 2 and k ¼ 3: It is shown in [4] that Sk is an

incompressible closed surface in M and remains incompressible in M(a) if k is sufficiently large

and if the distance Dða;bÞ between the slopes a and b is sufficiently large. Explicit lower

bounds for k and for Dða;bÞ are given in [10]. It is shown in [10] that if k $ PðFÞ þ 1; then Sk
is p1-injective in M, where PðFÞ ¼ 6gþ 4b2 6; and that if k $ ð3PðFÞ þ 1Þ=2 and

Dða;bÞ $15PðFÞ þ 3; then Sk remains p1-injective in M(a). A better estimate for P(F) is

Fig. 1 The immersed closed surface Sk ¼ F < Ak in M (when b ¼ 2 and k ¼ 3).
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independently obtained in [2], which is 4g þ 3b 2 3. (That is, [10, Lemma 2.3] can be replaced

by [2, Theorem 6.2.1].) We summarize this discussion as follows.

Lemma 3.1 The closed immersed surface Sk is p1-injective in MðaÞ if k $ 6gþ 9
2
b2 4 and if

Dða;bÞ $ 60gþ 45b2 42:

Let j be a primitive nth root of unity, where n . 2: It is well known that the extension degree

of the field QðjÞ over Q is equal to w(n), where w is the Euler function, and the degree of the

field Qðjþ j21Þ is w ðnÞ=2: For simplicity, we just take a special case of this as given in the

following lemma. Note that if p is a prime factor of n, then wðnÞ $ wð pÞ ¼ p2 1:

Lemma 3.2 Let j be a primitive nth root of unity such that n contains a prime factor p . 2.

Then ½Qðj Þ;Q� $ p2 1 and ½Qðjþ j21Þ;Q� $ ð p2 1Þ=2:

Let G be a triangle group with the presentation G ¼ kx; y; xm ¼ yn ¼ ðxyÞkl: If 1
m
þ 1

n
þ 1

k
, 1;

the triangle group is hyperbolic, it is thus orbifold fundamental group of the hyperbolic 2-orbi-

fold which is a 2-sphere with three cone points of indices m, n, k. It is well known that any tri-

angle group can be embedded in PSL2ðCÞ as a discrete subgroup. So we may and will consider

G as a discrete subgroup of PSL2ðCÞ: If G is hyperbolic, then it is a non-virtually reducible

subgroup of PSL2ðCÞ:

Suppose G is a group with a representation r̂ : G! PSL2ðCÞ whose image is a hyperbolic tri-

angle group G with a presentation as given above. Then r̂ is non-virtually reducible. The trace

field of r̂ is generated by the traces of three fixed elements in SL2ðCÞ with orders 2m, 2n and 2k

respectively. The trace of a matrix in SL2ðCÞ of order 2k is jþ j21; where j is a 2kth root of

unity. Hence, by Lemma 3.2, if k is a prime number larger than 4 then ½K r̂ : Q� $ 1
2
ðk2 1Þ . 1:

Let K be a ð p; q; rÞ pretzel knot in S3, where p, q, r are all positive integers larger than one

such that r is an even integer, p and q are odd integers with their greatest common divisor

d ¼ gcdðp; qÞ $ 3: By [16], K is a small knot, that is, its exterior M in S3 does not contain

closed orientable incompressible non-boundary parallel surfaces. Hence by [7] all but finitely

many Dehn surgeries on K produce non-Haken 3-manifolds. By [21] all but finitely many sur-

geries on K produce hyperbolic manifolds. By [8] (or by [6, Lemma 2.1] since K is an alternat-

ing knot), the natural spanning surface (see Fig. 2(a) for an illustration) is a p1-injective

incompressible non-orientable surface (a punctured Klein bottle) in M with boundary slope

2( p þ q) (with respect to the standard meridian-longitude basis of K). The orientable double

cover of this spanning surface in M is an incompressible twice punctured torus. In fact, K

embeds in the boundary surface of a standard genus-two handlebody H1 in S3 such that

F ¼ ›H\ �NðKÞ is the incompressible twice punctured torus. Let H2 be the other genus-two han-

dlebody separated by ›H1 in S3. The knot exterior M is equal to X1 <F X2; where each Xi is a

genus-two handlebody. Note that X1 is a regular neighbourhood of the spanning surface of K

mentioned above. (Fig. 2 illustrates the situation for the (3, 3, 2)-pretzel knot.) Let b1 and b2 be

the two boundary components of F. Fix a point x0 in b1 as a base point for all the fundamental

groups we shall be considering. Note that K is a hyperbolic knot since K is small and since any

torus knot cannot have an embedded incompressible twice punctured torus in its exterior.

It is proved in [19] that H1ðX1;FÞ ¼ Z2 and H1ðX2;FÞ ¼ Zd; where d ¼ gcdð p; qÞ: It follows

that there is a surjective homomorphism f from p1ðMÞ ¼ p1ðX1Þ*p1ðFÞp1ðX2Þ to Z2*Zd with

fðp1ðX1ÞÞ ¼ Z2; fðp1ðX2ÞÞ ¼ Zd and fðp1ðFÞÞ ¼ 1: Let m an element in p1ð›MÞ represented

by an oriented meridian of K and let b [ p1ð›MÞ be an element represented by the boundary

component b1 of F with an orientation. Then m and b form a basis for p1ð›MÞ: From Fig. 2(b),
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we see that m can be expressed as g1g2 for some g1 [ p1ðX1Þ and some g2 [ p1ðX2Þ: Since m

normally generates p1ðMÞ; it follows that fðmÞ ¼ fðg1Þfðg2Þ ¼ xy; where x is a generator of Z2

and y is a generator of Zd. For any positive integer k, p1(M) has a representation r̂ into PSL 2(C)

whose image is a triangle group of the form kx; y; x2 ¼ yd ¼ ðxyÞk ¼ 1l: Furthermore if a is a

slope on ›M represented by mkmbn; then r̂ factors through p1ðMðaÞÞ; that is, r̂ can be considered

as a representation of p1ðMðaÞÞ:

Now using this surface F, we construct a closed immersed surface Sk in M by Freedman–

Freedman tubing as described earlier in this section. By Lemma 3.1, Sk is p1-injective in M(a)

if k $ 11 and if Dða;bÞ $ 108: Now choose k to be any fixed prime integer larger than 11.

From Fig. 1 and Fig. 2(b), it is easy to see that p1ðSkþ1Þ is generated by p1(F) and m kd for some

element d [ p1(X1). Hence the image of p1ðSkþ1Þ under the representation r̂ is generated by

r̂ðmkdÞ ¼ r̂ðdÞ: Thus the trace field K r̂ jp1ðSkþ1 Þ
is generated by the traces of elements in F21ðr̂ðdÞÞ

over Q. But elements in F21ðr̂ðdÞÞ are of order at most 4. Hence their traces are in Q. There-

fore, K r̂ jp1ðSkþ1Þ
¼ Q:

Let a be the slope represented by m kmbn with ðkm; nÞ ¼ 1: Then Dða;bÞ ¼ km: So if m $ 10;

then Skþ1 is p1-injective in M(a). Also p1(M(a)) has the representation r̂ whose image is the tri-

angle group kx; y; x2 ¼ yd ¼ ðxyÞkl: As k . 10; the triangle group is hyperbolic and thus r̂ is

non-virtually reducible. If m is odd, then the first homology of M(a) is cyclic of odd order. Thus

if we set G ¼ p1ðMðaÞÞ; then Gð2Þ ¼ G: Therefore the invariant trace field of r̂ (as a represen-

tation of G) is equal to the trace field of r̂; whose extension degree is at least 1
2
ðk2 1Þ by the

discussion following Lemma 3.2.

In summary we have shown that for any slope a represented by mmkbn with ðmk; nÞ ¼ 1;

k $ 11 prime, m $ 10 odd, p1(M(a)) has an algebraically trace-proper surface subgroup. Theo-

rem 1.6 follows.
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Fig. 2 (a) The spanning surface for a (p, q, r)-pretzel knot; (b) a ( p, q, r)-pretzel knot in the boundary of a standard

genus-two handlebody. (When p ¼ 3; q ¼ 3 and r ¼ 2:)
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