Isotopes

Reading:
Winter, Chapter 9, pp. 167-180

Isotopes

Have the same Z but different A (variable # of neutrons)
General notation for a nuclide: $^{14}_6\text{C}$

Superscript (n) specifies the different isotopes of an element
^{12}C, ^{13}C, ^{14}C

Stable Isotopes

- Stable means they last nearly forever
- Chemical fractionation is impossible
- Mass fractionation is the only isotopic discrimination possible

Oxygen Isotopes

^{16}O 99.756% of natural oxygen
^{17}O 0.039% “
^{18}O 0.205% “

Concentrations expressed by reference to a standard
The international standard for O isotopes is:
standard mean ocean water (SMOW)

^{18}O and ^{16}O are the commonly used isotopes and their ratio is expressed as δ:

$$\delta^{(18}\text{O}/^{16}\text{O}) = \frac{^\delta(^{18}\text{O}^{^{/^{16}}\text{O}})_{\text{sample}} - ^\delta(^{18}\text{O}^{^{/^{16}}\text{O}})_{\text{SMOW}}}{^\delta(^{18}\text{O}^{^{/^{16}}\text{O}})_{\text{SMOW}}} \times 1000$$

the result is expressed in per mille (‰)

What is δ of SMOW?
What is δ for meteoric water?

Evaporation seawater produces water vapor
 - Light isotopes are enriched in vapor > liquid
 - This is efficient since Δ mass = 1/8 total mass

$$\delta = \frac{^{18}O/^{16}O_{\text{vapor}} - ^{18}O/^{16}O_{\text{SMOW}}}{^{18}O/^{16}O_{\text{SMOW}}} \times 1000$$

therefore $^{18}O/^{16}O_{\text{vapor}} < ^{18}O/^{16}O_{\text{SMOW}}$

thus δ_{cloud} is (-)

Stable isotopes are useful in assessing relative contribution of various reservoirs, each with a distinctive isotopic signature

- O and H isotopes
 - Juvenile vs. meteoric vs. brine water
- $\delta^{18}O$ for mantle rocks \neq surface-reworked sediments
 - Evaluate contamination of mantle-derived magmas by crustal sediments

Radioactive Isotopes

- Unstable isotopes decay to other nuclides
- The rate of decay is constant, and not affected by P, T, X…
- Parent nuclide is the radioactive nuclide that decays
- Daughter nuclide(s) are the radiogenic atomic products

Isotopic variations between rocks, etc. due to:

1. Mass fractionation (as for stable isotopes)
2. Daughters produced in varying proportions resulting from previous event of chemical fractionation
 - $^{40}K \rightarrow ^{40}Ar$ by radioactive decay
 - Basalt \rightarrow rhyolite by FX (a chemical fractionation process)
 - Rhyolite has more K than basalt
 - $^{40}K \rightarrow$ more ^{40}Ar over time in rhyolite than in basalt
 - ^{40}Ar/^{39}Ar ratio will be different in each

Isotopic variations between rocks, etc. due to:

1. Mass fractionation (as for stable isotopes)
2. Daughters produced in varying proportions resulting from previous event of chemical fractionation
3. Time
 - The longer $^{40}K \rightarrow ^{40}Ar$ decay takes place, the greater the difference between the basalt and rhyolite will be
Radioactive Decay

The Law of Radioactive Decay

\[
\frac{dN}{dt} \propto N \quad \text{or} \quad \frac{dN}{dt} = \lambda N
\]

To calculate the age of a sample (t) if we know:

\[D = N e^{\lambda t} - N = N(e^{\lambda t} - 1) \]

The K-Ar System

\(^{40}\text{K}\) decays to either \(^{40}\text{Ca}\) or \(^{40}\text{Ar}\)

- \(^{40}\text{Ca}\) is common. Cannot distinguish radiogenic \(^{40}\text{Ca}\) from non-radiogenic \(^{40}\text{Ca}\)
- \(^{40}\text{Ar}\) is an inert gas which can be trapped in many solid phases as it forms in them

The Sr-Rb System

On the rubidium side of the equation:

\[^{87}\text{Rb} \rightarrow {87}\text{Sr} + \text{a beta particle} \quad (\lambda = 1.42 \times 10^{-11} \text{ a}^{-1})\]

Rb behaves like K, it concentrates in micas and alkali feldspar
Strontium Side

- Sr behaves like Ca
 - It concentrates in plagioclase and apatite (but not in clinopyroxene)
- $^{88}\text{Sr} : ^{87}\text{Sr} : ^{86}\text{Sr} : ^{84}\text{Sr}$
 - Average sample yields $10 : 0.7 : 1 : 0.07$
- ^{86}Sr is a stable isotope
 - It is not created by breakdown of any other parent

Recast age equation by dividing through by stable ^{88}Sr

$$^{87}\text{Sr}/^{86}\text{Sr} = (^{87}\text{Sr}/^{86}\text{Sr})_0 + (^{87}\text{Rb}/^{86}\text{Sr})(e^{\lambda t} - 1)$$

$$\lambda = 1.4 \times 10^{-11} \text{ a}^{-1}$$

For values of λt less than 0.1: $e^{\lambda t} \equiv \lambda t$

Thus eq. 9-15 for $t < 70$ Ga (!!) reduces to:

$$^{87}\text{Sr}/^{86}\text{Sr} = (^{87}\text{Sr}/^{86}\text{Sr})_0 + (^{87}\text{Rb}/^{86}\text{Sr})\lambda t$$

\[y = b + x \cdot m \]

$= $This is the equation for a line in a $^{87}\text{Sr}/^{86}\text{Sr}$ vs. $^{87}\text{Rb}/^{86}\text{Sr}$ plot

After some time increment ($t_0 \rightarrow t_1$) each sample loses some ^{87}Rb and gains an equivalent amount of ^{87}Sr

Isochron Technique

Requires 3 or more cogenetic samples with a range of Rb/Sr concentrations

3 cogenetic rocks may be derived from a single source by partial melting, FX, etc.

or

3 coexisting minerals with different K/Ca ratios in a single rock

Begin with 3 rocks plotting at a b c at time t_0

At time t_1 each rock system has evolved \rightarrow new line

Again still linear and steeper line
Isochron technique produces 2 valuable things:

1. The age of the rocks (from the slope = λt)
2. $(^{87}\text{Sr}/^{86}\text{Sr})_0 =$ the initial value of $^{87}\text{Sr}/^{86}\text{Sr}$