Phase Diagrams

Best, Chapter 14

Gibbs Phase Rule

$$F = 2 + C - \phi$$

F = degrees of freedom (P-T-X)

C = components

ϕ = phases

Degrees of Freedom

- Rule applies to a phase or assemblage
- Divariant indicates two degrees of freedom
- Univariant means one degree of freedom
- Invariant means there are no degrees of freedom

Petrogenetic Grid

- The grid define stability limits
 - End-member minerals
 - Mineral assemblages
- More thermodynamic data is needed to construct a useful grid

Anhydrous Phase Diagrams

- Solid-solid reactions
- Governed by Clapeyron equation
 - $\frac{dP}{dT} = 10 \frac{\Delta H}{T} \frac{\Delta V}{\Delta S}$
 - ΔH is the heat of reaction
 - ΔS is the change in entropy
 - ΔV is the change in volume
- The slope of the stability is $\frac{dP}{dT}$

Jadeite + Quartz $=\text{Albite}$

![Phase diagram showing Jadeite + Quartz = Albite](image_url)
System Open to H_2O

- Dehydration curves
- Example of the general case
- Specific minerals
 - Breakdown of chlorite, muscovite, biotite, etc

Univariant Curves

- Curves that define reactions with one degree of freedom
- In P-T space this means that if T is changed, than P must also change to maintain equilibrium
- Many important metamorphic reactions are defined by these curves

Important Reactions

- Al_2O_3 phase stability
- Dehydration curves

Stability of Iron Oxides

- $P_{02} (f_{O2})$ vs. Temp.
- Main phases
 - Hematite
 - Magnetite
 - Fayalite
 - Native Iron/Wustite
Miyashiro’s Facies Series

- Low geothermal gradient
 - Zeolite, pumpellyite-prehnite, blueschist
- Intermediate geothermal gradient
 - Barrow’s zones
- High geothermal gradient
 - Andalusite present in pelitic rocks

Relation to Geotherms

- High pressure series
- Medium P/T series
- High temperature series

Facies in P-T Space

Granite Solidus (Wet)

Metamorphic Path

Polymetamorphism

- Sometimes there are repeated episodes of metamorphism
- The last event may be weak or of short duration
- Polymetamorphism is common in post tectonic environments and in contact aureoles
Material Transport

<table>
<thead>
<tr>
<th>Diffusion</th>
<th>Infiltration</th>
</tr>
</thead>
</table>

Diffusion
- Materials move through crystal lattices or a stationary pore fluid
- Rate of movement controlled by a diffusion coefficient (Fick’s Law)
 \[Q = k \left(\frac{\delta C}{\delta x} \right) \]
- Material moves about 1 cm/m.y.

Infiltration
- Passive mass transport of a solute in a moving fluid medium
- Driven by fluid pressure
- Microfractures are important
- Reaction-enhanced permeability
 - Volume reduction due to reactions
- Dilatency pumping

Reaction Textures

\[\text{olivine} + \text{plagioclase} = \text{hypersthene} + \text{diopside} + \text{spinel} \]