Regional Pelitic Rocks

Reading: Winter, Chapter 28

Metapelite Mineralogy

- Fine Al-K-rich phyllosilicates, such as clays (montmorillonite, kaolinite, or smectite), fine white micas (sericite, paragonite, or phengite) and chlorite
- The phyllosilicates may compose more than 50% of the original sediment
- Fine quartz constitutes another 10-30%
- Other common constituents include feldspars (albite and K-feldspar), iron oxides and hydroxides, zeolites, carbonates, sulfides, and organic matter

Chemical Characteristics

- High Al₂O₃ and K₂O, and low CaO
- Reflect the high clay and mica content of the original sediment and lead to the dominance of muscovite and quartz throughout most of the range of metamorphism
- High proportion of micas → common development of foliated rocks, such as slates, phyllites, and mica schists
- The chemical composition of pelites can be represented by the system K₂O-FeO-MgO-Al₂O₃-SiO₂-H₂O ("KFMASH")

Biotite Zone

- Under medium P-T the following reaction occurs at 400-450°

 \[\text{Chl} + \text{Kfs} = \text{Bt} + \text{Ms} (+ \text{Qtz} + \text{H}_2\text{O}) \]
- K-spar is generally consumed before all chlorite is consumed, thus it persists

Chlorite Zone

- AKF (Spear (1993) formulation)
- AFM (projected from Ms) diagram. Shaded areas represent the common range of pelite and granitoid rock compositions.

Biotite-in Isograd Reaction as a "Tie-line Flip."

In (a), below the isograd, the tie-lines connecting chlorite and K-Feldspar shows that the mineral pair is stable. As grade increases the Chl-Kfs field shrinks to a single tie-line. In (b), above the isograd, biotite + phengite is now stable, and chlorite + K-feldspar are separated by the new biotite-phengite tie-line, so they are no longer stable together. Winter (2001)
Biotite Zone

Series of AKF diagrams illustrating the migration of the Ms-Bt-Chl and Ms-Kfs-Chl sub-triangles to more Al-rich compositions via continuous reactions in the biotite zone of the greenschist facies above the biotite isograd. Winter (2001)

Upper Biotite Zone

AFM projection for the upper biotite zone. Garnet is limited to unusually Fe-rich compositions, and does not occur in natural pelites (shaded). Winter (2001)

Chloritoid

- Chloritoid introduction may occur at \(T > 250^\circ \)
 \[
 \text{Chl} + \text{Prl} = \text{Cld} (+ \text{Qtz} + \text{H}_2\text{O})
 \]
- Chloritoid goes out at \(T = 590^\circ \)
 \[
 \text{Cld} = \text{Grt} + \text{St} (+\text{Qtz} +\text{H}_2\text{O})
 \]

Garnet Zone

- In Fe-rich rocks at \(\sim 525^\circ \)
 \[
 \text{Fe-Chl} (+ \text{Qtz}) = \text{Alm} (+ \text{H}_2\text{O})
 \]
- Under medium P-T in normal pelites the reaction occurs at \(\sim 610^\circ \)
 \[
 \text{Chl} (+\text{Ms} + \text{Qtz}) = \text{Grt} + \text{Bt} (+ \text{H}_2\text{O})
 \]
Tie-line Flip for Garnet Reaction

Expanded view of the Grt-Cld-Chl-Bt quadrilateral illustrating the tie-line flip.

- **a.** Before flip.
- **b.** During flip (at the isograd).
- **c.** After flip (above the isograd).

Winter (2001)

Staurolite zone

- Under medium P-T may appear at 570°
 \[
 \text{Cld + Ky = St + Chl (+Qtz +H}_2\text{O)}
 \]
- An alternate reaction occurs at 610°
 \[
 \text{Grt + Chl = St + Bt (+Qtz +H}_2\text{O)}
 \]
- Staurolite goes out at ~700°
 \[
 \text{St (+Ms +Qtz) = Grt +Bt +Al}_2\text{O}_3 +H}_2\text{O}
 \]

Lower Staurolite Zone

AFM projection showing the change in topology in which the lower-grade Cld-Ky tie-line (dashed) is lost and replaced by the St-Chl tie-line. This reaction introduced staurolite to only a small range of Al-rich metapelites. After Spear (1993) and Winter (2001).

Staurolite Zone

AFM projection showing the topology associated with the reaction in which chloritoid is lost, yielding to the Grt-St-Chl sub-triangle that surrounds it. Winter (2001)

Tie-line Flip

AFM diagram showing the tie-line flip associated with reaction which introduces staurolite into many low-Al common pelites (shaded). After Carmichael (1970) and Winter (2001).

Tie-line Flip: Staurolite

Expanded Grt-St-Chl-Bt quadrilateral.
- **a.** At the isograd tie-line flip. Composition Y loses Grt and gains St.
- **b.** As reaction proceeds, Fe-rich chlorite breaks down and the Chl-Grt-Bt triangle shifts to the right.
Staurolite Zone

AFM diagram showing the tie-line flip which introduces staurolite into many low-Al common pelites (shaded). After Carmichael (1970) and Winter (2001).

Kyanite Zone

- Under medium P-T at ~630°

 \[
 \text{St + Chl (+Ms +Qtz)} = \text{Ky + Bt (+H}_{2}\text{O)}
 \]

- This reaction is considered the transition to the granulite facies in pelitic rocks

Sillimanite Zone

- A polymorphic transformation occurs at ~ 690°

 \[
 \text{Ky} = \text{Sil}
 \]

- Sillimanite nucleates as tiny needles on micas

- Muscovite goes out at ~ 790°

 \[
 \text{Ms + Qtz} = \text{Kfs + Sil + H}_{2}\text{O}
 \]

- Cordierite appears at higher temperatures

 \[
 \text{Phl + Sil (+Qtz)} = \text{Mg-Cdr (+Kfs + H}_{2}\text{O)}
 \]

AFM projection above the sillimanite and “staurolite-out” isograds. Winter (2001).

Granulite Facies

AFM diagram above the cordierite-in isograd, granulite facies. Cordierite forms and then the dashed Sil-Bt tie-line is lost and the Grt-Crd tie-line forms. Winter (2001).

Low P/T Metapelites

a. Cordierite forms between andalusite and chlorite in the albite-epidote hornfels facies.
b. The compositional range of chloritoid is reduced and that of cordierite expands. Andalusite may be introduced into Al-rich pelites.
c. Cordierite comes in to many Al-rich pelites in the lowermost hornblende hornfels facies.
(d) Chlorite is lost in Ms-bearing pelites (Spear, 1999) and Winter (2001).

Pyroxene Hornfels

AFM diagrams (projected from Kfs) in the lowermost pyroxene hornfels facies. a. The compositional range of cordierite is reduced as the Crd-And-Bt sub-triangle migrates toward more Mg-rich compositions. Andalusite may be introduced into Al-rich pelites b. Garnet is introduced to many Al-rich pelites via reaction (28-27). Winter (2001).

Epidote Hornfels

AFM diagrams (projected from muscovite) for the eclogite facies of high P/T metamorphism of pelites. a. Talc forms between biotite and chlorite along the Mg-rich side of the diagram. b. At a higher grade the Chl-Bt tie-line flips to the Tlc-Cld tie-line c. After chlorite breaks down the kyanite forms in many metapelites. After Spear (1993) and Winter (2001).
Melting of Pelites

- Assume all the water is due to metamorphic dehydration reactions

- Muscovite decomposition causes melting, provided the pressure is high enough to retain the water

\[
\text{Ms + Ab + Qtz = Al}_2\text{SiO}_5 + \text{Kfs + liquid}
\]

Migmatites

- Dehydrated rocks become granulites
- Some high-grade rocks appear “mixed”
 - Dark schistose layers (melanosome) alternate with
 - Light-colored igneous-looking layers (leucosome)
- The leucosome has a tonalite composition
 - (Not that of a minimum melt!)
- They represent high-grade metamorphic rocks in which melting is important

Migmatites

Some textures of migmatites.

a. Breccia structure in agmatite.
b. Net-like structure.
c. Raft-like structure.
d. Vein structure.
e. Stromatic, or layered, structure.
f. Dilation structure in a boudinaged layer.
g. Schleiren structure.
h. Nebulitic structure.

From Mehnert (1968)