Constitution of Magmas

Magmas

Best, Ch. 8

• Hot molten rock
• $T = 700 - 1200$ degrees C
• Composed of ions or complexes
• Phase
 – Homogeneous
 – Separable part of the system
 – With an interface

Composition

• Most components
 – Low vapor pressure
 – Designated by mole fraction (X_i)
• Volatile components
 – Mainly exist as a gas
 – Designated by vapor pressure (p_i)
• Fluid pressure = sum of partial pressures

Gas Law

$PV = nRT$

Atomic Structure of Magma

• Quenched to form a glass
• Si & Al are polymerized with O
• Forming networks of Si-O chains
• Short-range structural order

Structural Model

• Network formers
 – Si, Al
• Network modifiers
 – Ca, Mg, etc
• Dissolved water has a strong effect
 $H_2O + O^2^- = 2(OH)^-$
Magma Generation

- Magmas form at perturbations in P, T, X
- Convergent plates
- Divergent plates
- Peridotite mantle source

Source Regions

- Must originate in the mantle or crust
- At Hawaii 60 km deep
- Only 1 to 3% melt in peridotite

Melting

- Heat of fusion
 - About 300 times the rock’s specific heat
 - Melting of rock consumes much heat
- Mechanisms for melting
 - Temperature increase by mass transfer
 - Decompression
 - Changes in composition reducing melting point

Temperature Increase

- Mechanical deformation
 - Friction generates heat
- Mass transfer of rock
 - Descending oceanic lithosphere
 - Basaltic underplating of continental crust

Decompression

- Upwelling mantle
 - Beneath oceanic or continental rift
- Adiabatic system
 - Pressure causes all temperature change

Changes in Composition

- Increase in water pressure
- Lowers the solidus
- Subduction zones
 - Peridotite wedge
 - Over subducting oceanic crust
Magma From Solid Rock

- Basalt & peridotite systems
- Granite systems

Basalt & Peridotite

- Equilibrium fusion
 - Solid and liquid remain in equilibrium
 - Continuous but limited composition range
- Fractional fusion
 - Liquid is immediately removed from host rock
 - Melts are both oversaturated & undersaturated with respect to Si

Influence of Pressure

- Pressure strongly influences the cotectic
- Partial melts of mantle peridotite are basalts
- At higher pressures partial melts are more silica deficient

Role of CO₂

- Polymerizes melt
- Contracts olivine field
- Favors silica-poor alkali melts
- Repeated melting episodes favors incompatible element enrichment

Role of H₂O

- Depolymerizes melt & stabilizes olivine
- Partial melts more silica rich
- Favors tholeiitic basalts
Mantle-derived Primary Melts

- Wide range of melt compositions possible
- Fractional crystallization vs. Partial melting
- Primary melt
 - Segregated from peridotite source rock
 - First crystallized minerals similar to mantle source zone
- Derivative melt
 - Modified after leaving the source region

Volcanic Rocks of Island Arcs

- Complex tectonic situation and broad spectrum
- High proportion of basaltic andesite and andesite
 - Most andesites occur in subduction zone settings

Major Elements and Magma Series

- Tholeiitic (MORB, OIT)
- Alkaline (OIA)
- Calc-Alkaline (~ restricted to SZ)

Granitic (Rhyolitic) Systems

- Impossible to generate granites by partial melting of mantle peridotite or subducted oceanic floor basalt
- Their origin is related to older sialic crust
- Granites concentrated along old subduction zones
Water Saturation

- Saturated granite melts have 10 to 15% H₂O
- Natural granite melts have about 4% H₂O

Water Undersaturation

- Common granite mineral assemblage
 - Biotite, K-spar, Fe-Ti oxide
 \[\frac{1}{2} \text{O}_2 + \text{biotite} = \text{K-spar} + \text{Fe}_3\text{O}_4 + \text{H}_2\text{O} \]
- Excess water drives this reaction to the left
- Hence, most granites are not water saturated

Origin of Granites

- Partial Melting of lower crust
- Source in mica-amphibolites
- Contain 1-2% H₂O
- Lowest T melts are K-rich granite
- Higher T, deeper melts are Ca-rich granodiorite

Subduction Zone Magma

- Subducted slab
 - Mafic primary melts
- Peridotite mantle wedge
 - Mafic primary melts

Dehydration Beneath Orogen

- Large amount of water in oceanic slab
 - Water in pore space
 - Water in alteration minerals
- Heating dehydrates the slab
- Liberated water promotes partial melting of peridotite
- Composition is Si-saturated tholeiite
Instabilities

- A layer of less dense material overlain by a denser material is unstable
- The upper layer develops undulations and bulges (Rayleigh-Taylor instabilities)
- The spacing of the bulges depends on the thickness of the light layer and its density contrast with the heavy layer

Diapirs

- Velocity of ascent depends on diapir size and shape
- A sphere is the most efficient shape
- Surface area ~ frictional resistance
- Volume ~ buoyant driving force
- Rise velocity proportional to area squared

Neutral Buoyancy

- Positively buoyant
 - Melt less dense than surrounding rocks
 - Primary basalt magma surrounded by mantle peridotite
- Negatively buoyant
 - Melt more dense than surrounding rocks
 - Olivine basalt intruded into continental crust
Density Filter

- Crustal rocks block the ascent of denser magmas
- Heat from these magmas melt the lower crust
- Residual melts may rise
- Exsolved volatiles also facilitate rise

Emplacement Process

- Stoping
- Brecciation
- Doming
- Ballooning
- Void zones

Magma Diversification

- Magmatic differentiation
- Gravitational settling
- Liquid immiscibility

Crystal-liquid Fractionation

- Regular pattern of compositional variation
- Variation of MgO is a good measure of olivine fractionation
- Computer mixing programs can be used
Magma Mixing

- Two different magmas may blend to produce a hybrid
- Common with calc-alkali magma
- Blended magmas should have linear composition with the parents

Volcanic Rocks of Island Arcs

- Complex tectonic situation and broad spectrum
- High proportion of basaltic andesite and andesite
 - Most andesites occur in subduction zone settings

Major Elements and Magma Series

- Tholeiitic (MORB, OIT)
- Alkaline (OIA)
- Calc-Alkaline (~ restricted to SZ)

Magma Ascent and Emplacement

Best
Chapter 9

Topics

- How does magma ascend?
- How do dikes form?
- How is magma emplaced?

Magma Generation

- Partial melting
 - Upper mantle
 - Deep crust
- Magma density
- Less than surroundings
Magma Rise

- **Buoyancy**
 - Driving force is density difference
 - Resisting force is the magma viscosity
- **Silicic magma**
 - High viscosity requires large volume
- **Mafic magma**
 - Low viscosity allows small volumes to rise

Energy Sources

- **Thermal energy**
 - Melting caused by decompression or volatile flux
- **Gravitational energy**
 - Driven by density differential

Instabilities

- A layer of less dense material overlain by a denser material is unstable
- The upper layer develops undulations and bulges (Rayleigh-Taylor instabilities)
- The spacing of the bulges depends on the thickness of the light layer and its density contrast with the heavy layer

Diapirs

- Velocity of ascent depends on diapir size and shape
- A sphere is the most efficient shape
- Surface area ~ frictional resistance
- Volume ~ buoyant driving force
- Rise velocity proportional to area squared

Neutral Buoyancy

- **Positively buoyant**
 - Melt that is less dense than surrounding rocks
 - Primary basalt magma surrounded by mantle peridotite
- **Negatively buoyant**
 - Melt that is more dense than surrounding rocks
 - Olivine basalt intruded into continental crust
Density Filter
- Crustal rocks block the ascent of denser magmas
- Heat from these magmas melt the lower crust
- Residual melts may rise
- Exsolved volatiles also facilitate rise

How Can Dense Magma Rise?
- Volumetric expansion on melting?
- Exsolution of bubbles?
- There must be another cause.

Magma Overpressure
- For a magma lens, pressure is equal to the lithostatic load
 \[P_m = \rho \, g \, z \]
- The pressure can be greater in a conduit connecting a deeper pocket to the surface
- This overpressure can be great enough to bring denser magma to the surface

Magma Ascent
- Dikes
 - Sub-vertical cracks in brittle rock
- Diapirs
 - Bodies of buoyant magma
 - They squeeze through ductile material

Dikes
- Intrusions with very small aspect ratio
- Aspect: width/length = 10^{-2} to 10^{-4}
- Near vertical orientation
- Generally 1 - 2 meters thick
Dike Swarms

- Hundreds of contemporaneous dikes
- May be radial
- Large radial swarms associated with mantle plumes

Intrusion into Dikes

- Stress perpendicular to the fracture is less than magma pressure
- Pressure must overcome resistance to viscous flow
- Magma can hydrofracture to rock and propagate itself

Stress for Dikes

- Dikes are hydraulic tensile fractures
- They lie in the plane of σ_1 and σ_2
- They open in the direction of σ_3
- They are good paleostress indicators

Orientation

- Near-vertical dikes imply horizontal σ_3
- Typical in areas of tectonic extension
- Can be used to interpret past stress fields

En Echelon Dikes

Dikes commonly form fingers upwards
Sub-parallel overlapping alignments
Suggest a rotation of σ_3 in the horizontal
Radial Dikes

- Stress orientation around a central intrusion
 - σ_1 is perpendicular to the contact (radial)
 - σ_3 is horizontal and tangential to contact
- Radial dikes are radial from intrusion
- Far dikes assume the regional trend