Early Tertiary Magmatism

Part II

Reference:
DNAG v. 3, Ch. 7, pp 294-314

Magmatism in Western Cascades Arc

• Active from 38 to 17 Ma
• New volcanic activity west of Clarno Fm and south into Oregon
• Western Cascade volcanism was mostly andesitic
• Some rhyolitic ash-flow sheets
• Broad curving continuous belt of volcanoes

Washington Magmatism

• Overlapped older Challis and Tuscarora belts
 – Numerous shallow batholiths
 – Snowqualamie Batholith
 – Tatoosh Pluton
• Represent subvolcanic magmatism
• Younger High Cascades follows the same trend

Western Oregon

• Oligocene calc-alkaline volcanic rocks
 – Unconformable on Eocene rocks
• Andesite-dacite-rhyolite erupted from numerous centers
• Few shallow subvolcanic intrusives

Southern Oregon

• No units younger than 17 Ma present
• Mafic alkalic rocks developed in front of the western Cascades
• Nepheline syenite, Camptonite, Ferrogabbro
Northern California

- Basaltic to rhyolitic volcanism
- Age range of 31 to 20 Ma
- Andesite mudflow breccias in Sierra foothills
 - Cedarville Volcanics
 - Extend into Nevada
 - Andesite breccias and rhyolite tuffs

John Day Magmatic Region

- Age of 36 to 18 Ma
- Much downwind fall out from Western Cascades volcanism
- High-silica, alkali rhyolite is common
- Local alkali basalt to trachyte eruptions

Southern Oregon

- Rhyolite to bimodal rhyolite-trachyandesite
- Summer lake, Goose Lake, Albert Rim
 - Rhyolites and tuffs
- Steens Mountain
 - Trachyandesite

Other Locations

- Lovejoy basalt in California
 - Alkali basalts and trachyandesites
- Owyhee Mountains, Idaho
 - Fluid alkali basalt
- SW Montana
 - Bimodal rhyolites and basalts
 - Volcanism coincided with tectonic extension
Sierra-Wasatch Magmatic Belt

- Constructional volcanic plain
 - Built before 43 Ma
 - Tuscarora belt of 43 to 37 Ma
- A new belt established in central Nevada
 - A series of south-stepping arcs

Early Activity 37 To 34 Ma

- Continuous E-W belt
- Mainly rhyolitic volcanism
- General sequence of eruption
 - Andesites from central volcanoes
 - Voluminous silicic ash-flow s
 - Huge calderas

Later Activity 34 To 21 Ma

- Belt is continuous in the west
- Splits into three prongs in the east
- A few stocks and other small intrusives
- Intermediate to silicic tuffs with associated calderas

West and South Wasatch

- A band of volcanism started later (28 Ma)
- Continued into the following episode of volcanism
- Rocks are more mafic
 - K-rich mafic lavas and andesites
Hydrothermal Ore Deposits

- Numerous deposits associated with this episode
- Chalcophile deposits
- Uranium mineralization

Southern USA Cordillera

- Between 55 and 25 Ma (mid-Tertiary)
- Some areas with little or no volcanism
 - Southern Nevada
 - Eastern California
 - Western Arizona

Sierra Madre of Mexico

- Continuous volcanism from Laramide through mid-Tertiary times
- Mainly caldera forming ash-flow eruptions of silicic magmas
- Some andesites

West Texas

- Began 49 Ma along Rio Grande
- Potassic andesite to rhyolite volcanism
- Mafic and alkalic volcanism farther east
- Major caldera forming eruptions 38 to 28 Ma

SW New Mexico

- Calc-alkaline volcanism began 43 Ma
- Mogollon-Datil Volcanic Field
- Initial andesitic magmas followed by silicic caldera-forming eruptions
- Basalt was scarce
- Mogollon Plateau (34 to 28 Ma)
 - Upper crustal batholith emplaced
 - Associated with tuffs and calderas
Southern Rockies

- Potassic calc-alkaline volcanism began with 41 Ma andesites
- 37 to 27 Ma stratovolcanoes in N. New Mexico
- Evolved to 27 Ma calderas associate with crustal extension
- Small intrusions with Mo mineralization 23 to 21 Ma

San Juan Mountains

- 31 to 27 Ma
- Large ash-flow sheets overlying supracrustal batholith
- Huge calderas formed
- Rhyodacite to rhyolite composition
- Epizonal intrusions in Colorado Mineral belt have Mo mineralization

Mogollon Highland of Arizona

- Earliest activity was 37 to 25 Ma
- Mainly Potassic andesites
- May represent metasomatism associated with detachment faulting

Arizona Belt of Rhyolite Tuffs

- Chiricahua Mountains
 - Andesite lavas followed by rhyolitic tuffs
 - 32 to 23 Ma
- Galiuro Mountains
 - Age of 29 to 23 Ma
 - Andesite lava overlain by rhyolitic tuff
- Superstition Mountains
 - 29 to 25 Ma basalt to andesite
 - 24-20 Ma dacite to rhyolite tuffs
Mineral Deposits

- Less differentiated centers host chalcophile base-metal deposits
- Younger rhyolites host lithophile mineral deposits (Li, Be, Sn)
- Major Mo porphyries in southern Rockies 30-23 Ma

Sonoran-Mojave-Coast Range

- Magmatism began 35 to 27 Ma
- Magmatism became more silicic with time
- Composition is potassic, calc-alkaline
- Major silicic volcanism about 25 Ma
- Volcanic fields offset by the San Andreas Fault
 - Displacements as much as 300 km

Southern Foreland Magmatism

- Alkaline magmatism
- Younger analogue of Eocene alkaline magmatism on the northern Great Plains

Trans-Pecos Province

49 to 32 Ma

Stocks, sills, laccoliths, and shields

- Two series
 - Hawaii, mugearite, nepheline trachyte, phonolite
 - Trachy andesite, quartz trachyte, peralkaline rhyolite
- Compositions resemble rift environments
Localities of Alkalic Rocks

- Ruidoso-Carrizozo, central New Mexico
 - 35 to 25 Ma syenite stock
 - Mo deposits

- Laughlin Peak
 - 37 to 26 Ma
 - Mugearite, trachyte, phonolite
 - Th, REE veins

Southern Colorado

- Spanish Peaks,
 - 26 to 20 Ma
 - Stocks and dikes
 - Trachy basalt to trachy andesite

- Cripple Creek
 - 34 Ma trachyte-phonolite volcano
 - Gold deposits

Colorado Plateau

- Navajo Volcanic Field
 - 30 Ma diatremes and pipes
 - Biotite and leucite-bearing rocks
 - Trachy basalts and minettes

- Abajo Mountains
 - 28 Ma stocks
 - Hornblende diorite porphyry

Utah

- La Sal Mountains
 - 24 Ma hornblende diorite
 - Minor monzonite, syenite, and sodalite syenite

- Henry Mountains
 - 48 to 44 Ma hornblende diorite porphyry
Trans-Pecos Southern Great Plains