
- Chapter 1:
 Lemma 1.3: The restriction $f_n \in D(T)$ is unnecessary since T is bounded.

- Chapter 2:
 No minus sign in equation (2.24)

- Chapter 4:
 Problem 4.10: Ω^{\pm} should be Ω^{\pm}.

- Chapter 6:
 Problem 6.3: $\Lambda = [0, L]^N$ should be $\Lambda = [0, L]^3$.

- Chapter 7:
 Problem 7.6: It would be good to also verify that $\text{Tr}(\gamma^\mu) = 0$.

- Chapter 8:
 Problem 8.10: This problem is easier if one assumes that the operator $-\Delta + m^2 + V$ is strictly positive.

- Chapter 9:
 Problem 9.3: $e^{\gamma^0 \gamma^1 \beta/2}$ should be $e^{-\gamma^0 \gamma^1 \beta/2}$.

 For a mathematical treatment of the Dirac sea as discussed in section 9.3.1 see the paper ”The Dirac Sea” by J. Dimock, Letters in Mathematical Physics 105, 959-987, (2015).

 Theorem 9.5: The equation $(-\Box + m^2)A = 0$ should of course be just $\Box A = 0$.

- Chapter 10
 In the sentence below equation (10.4) replace ”minimizing” by ”maximizing”.

1
• Chapter 11:
In the second line of equation (11.18) there is an extraneous "x".
At the bottom of page 166 the statement that $X^x_s = X^x_s - X^x_0$ is not correct unless $x = 0$. But the conclusion is still correct.
In equation (11.62) the $e^{-t\|V\|_\infty}$ should be $e^{t\|V\|_\infty}$.

• Chapter 12: In equation (12.80), second line, the 2ω should be $\sqrt{2}\omega$.

• Chapter 13:
In equation (13.33) H_L should be replaced by $H_L - E_L$.
At the bottom of page 198 the equation $e^{-iH_L^t\Omega_L} = \Omega_L$ should read $e^{-iH_L^t\Omega_L} = e^{-iE_L^t\Omega_L}$.
Equation (13.49) should read $\phi(f)F = (0, F_0 \otimes f, F_1 \otimes f, F_2 \otimes f, \ldots)$