FQE Problems for 9/15/03

1. Let \(A \) be an \(n \times n \) matrix with complex entries. If \(A^m = 0 \) for some positive integer \(m \), prove that \(A^n = 0 \).

2. Let \(T : \mathbb{R}^4 \rightarrow \mathbb{R}^3 \) be the linear transformation represented by the matrix
\[
\begin{bmatrix}
0 & 1 & 2 & -2 \\
1 & 0 & 2 & -3 \\
1 & 1 & 4 & -5
\end{bmatrix}
\]
(a) Find a basis for the kernel (null space) of \(T \)
(b) Find a basis for the range (image) of \(T \).

3. Let \(A \) be a square matrix with distinct eigenvalues \(\lambda_1, \ldots, \lambda_m \) and corresponding eigenvectors \(v_1, \ldots, v_m \). Prove that \(v_1, \ldots, v_m \) are linearly independent.

4. Let \(V \) be an \((n-1) \)-dimensional subspace of \(\mathbb{R}^n \). Prove that there exists \(x_0 \) in \(\mathbb{R}^n \) such that
\[
V = \{ x \in \mathbb{R}^n \mid x \cdot x_0 = 0 \}
\]

5. Let \(K \) be the vector space of \(n \times n \) skew-symmetric matrices \((A^t = -A) \) with real coefficients, and let \(S \) be the vector space of \(n \times n \) symmetric matrices \((A^t = A) \) with real coefficients. Define a linear transformation \(T : K \rightarrow S \) as follows. If the \((i,j) \)-th entry of \(A \) is \(a_{ij} \), then the \((i,j) \)-th entry of \(T(A) \) is given by
\[
T(A)_{ij} = \begin{cases}
 a_{ij} & \text{if } i < j \\
 0 & \text{if } i = j \\
 -a_{ij} & \text{if } i > j
\end{cases}
\]

i. Is \(T \) one to one? Explain why or why not.

ii. Is \(T \) onto? Explain why or why not.

6. Let \(T : \mathbb{R}^n \rightarrow \mathbb{R}^m \) be a linear transformation. Show that if \(T \) is onto (surjective), then \(n \geq m \).
7. Prove that a 2×2 matrix A with positive entries is diagonalizable over \mathbb{R}.

8. (08/23/01) Let \mathcal{P}_{ξ} denote the vector space consisting of all real polynomials of the form $p(x) = a_0 + a_1 x + a_2 x^2$. For any two polynomials p and q in \mathcal{P}_{ξ}, define a symmetric, bilinear form $\langle p, q \rangle$ by $\langle p, q \rangle = p(0)q(0) + p(\frac{1}{2})q(\frac{1}{2}) + p(1)q(1)$.

a. Show that $\langle p, q \rangle$ is an inner product on \mathcal{P}_{ξ}. (Note: it is routine to check that $\langle p, q \rangle$ is symmetric and bilinear. You need not do this part of the argument.)

b. Find an orthonormal basis for the subspace of \mathcal{P}_{ξ} that is spanned by $p(x) = x$ and $q(x) = x^2$.

9. Denote by P_n the vector space of all real polynomials of degree $\leq n$. It is well known that $\{1, x, x^2, \ldots, x^n\}$ is a basis for P_n.

(a) Must every basis for P_n contain a polynomial of degree n? Verify your assertion.

(b) Find a basis for P_n which consists entirely of polynomials of degree n.

10. Suppose A and B are linear transformations from \mathbb{R}^3 to \mathbb{R}^5, both of rank 3. Show that there are non-zero vectors x and y such that $Ax = By$.

11. Let V be the vector space of real polynomials of degree ≤ 2. Define a linear transformation $L : V \to V$ by

$$L(P(x)) = (-3x + x^2)P''(x) + 3P'(x) + P(x) + 3xP(0),$$

where $P(x) = ax^2 + bx + c$.

a) Find the matrix representations of L and L^{-1} with respect to the basis $x^2, x, 1$ in V.

b) Find a basis for V consisting of eigenvectors for L.

12. Let V be a vector space over a field F and let $T : V \to V$ be a linear transformation which is nilpotent ($T^k = 0$ for some $k > 0$). Prove that $I + T$ is invertible.