FQE Problems for 10/27/03

1. Let

\[f(x, y) = \begin{cases}
 x^2 y & \text{for } (x, y) \neq (0, 0) \\
 x^6 + 3y^2 & \text{for } (x, y) = (0, 0)
\end{cases} \]

(a) Use the definition of directional derivative to show that \(f \) has a directional derivative in every direction at \((0, 0)\).

(b) Show that \(f \) is not continuous at \((0, 0)\).

2. Prove or disprove the following:

(a) If \(\sum_{n=1}^{\infty} a_n \) converges absolutely, then so does \(\sum_{n=1}^{\infty} a_n^2 \).

(b) If \(\sum_{n=1}^{\infty} a_n \) converges and \(\lim_{n \to \infty} \frac{b_n}{a_n} = 1 \), then \(\sum_{n=1}^{\infty} b_n \) converges.

3. Does \(\lim_{n \to \infty} x^n(1 - x^n) = 0 \) uniformly on the closed interval \(0 \leq x \leq 1 \)? Justify your answer.

4. Let \(f(x) = \sqrt{x} \) for \(x \in A = [0, \infty) \).

(a) Prove that \(f \) is uniformly continuous on \(A \).

(b) Does there exist a real constant \(K \) such that

\[|f(x) - f(y)| \leq K|x - y| \]

for all \(x \) and \(y \) in \(A \)?

5. For each continuously differentiable simple closed curve \(C \) (oriented counter-clockwise) in \(\mathbb{R}^2 \), define \(\tau(C) \) by

\[\tau(C) = \int_C 2y^3 \, dx + (3x - 2x^3) \, dy. \]

Use Green’s Theorem to find the continuously differentiable simple closed curve \(C \) for which \(\tau(C) \) is maximal.

6. Let \(f: [a, b] \to \mathbb{R} \) be continuous. If \(\int_a^b f(x)g(x) \, dx = 0 \) for all continuous functions \(g \) on \([a, b] \) such that \(g(a) = g(b) = 0 \), prove that \(f \) is identically 0.
7. Determine the convergence or divergence of the sequence
\[a_n = \frac{1}{n + 1} + \cdots + \frac{1}{2n} \].

8. Let
\[F(u, v, x, y) := u^2 + v^3 + x^2 - 3y \]
\[G(u, v, x, y) := u^2 + v^4 + 3x + y^4. \]
a. Justify the existence of a unique solution \(x = h(u, v), y = k(u, v) \) to the simultaneous equations \(F(u, v, x, y) = 0, G(u, v, x, y) = 0 \) on a neighborhood of the point \((u, v, x, y) := (1, 1, -1, 1)\), where \(h \) and \(k \) are continuously differentiable.
b. Let \(x = h(u, v), y = k(u, v) \) be the solution from part a. Calculate \(\frac{\partial h}{\partial u}(1, 1) \).

9. Let \(f(x) \) be a real-valued function, defined and continuous for each \(x \) in \(\mathbb{R} \). Let \(a \) be a fixed real number. Prove there is a point on the graph of \(f(x) \) whose distance to \((a, 0)\) is a minimum.

10. Let \(f(x) \) be continuous on \([0, 1]\) and let \(n \geq 2 \) be a fixed integer. If \(f(0) = f(1) \), prove that there exists a number \(c \) in \([0, 1]\) such that \(f(c) = f(c + \frac{1}{n}) \). Hint: consider the function \(g(x) := f(x + \frac{1}{n}) - f(x) \).

11. Let \(f: [a, b] \rightarrow \mathbb{R} \) be continuous on \([a, b]\) and differentiable on \((a, b)\). Prove that if \(\lim_{x \to a^+} f'(x) = A \), then the (one-sided) derivative \(f'(a) \) exists and \(f'(a) = A \).

12. Assume \(f \) is a real-valued continuous function on the rectangle \(\{(x, y) \mid a \leq x \leq b, c \leq y \leq d\} \). Let
\[F(x) = \int_c^d f(x, y)dy. \]
Prove that \(F \) is a continuous function on \([a, b] \).