Eutectic Systems

Example: Diopside - Anorthite No solid solution

Isobaric T-X phase diagram at atmospheric pressure. After Bowen (1915), Amer. J. Sci. 40, 161-185.

Eutectic and Peritectic Systems

Winter, Chapter 6

bulk composition = An_{70}

- + Cooling continues as $X_{\mbox{\scriptsize liq}}$ varies along the liquidus
- Continuous reaction: $liq_A \rightarrow anorthite + liq_B$

First crystal forms at 1455°C (point b) with a compositon of pure An

At 1274°C $\phi = 3$ (three phases co-exist) Therefore, F = 2 - 3 + 1 = 0 This is an invariant point

- (P) T and the composition of all phases is fixed
- Must remain at 1274°C as a discontinuous reaction proceeds until a phase is lost

A discontinuous reaction occurs at d

- Temperature remains constant at 1274
 - Use geometry to determine liquid crystal ratios

Left of the eutectic there is a similar relationship

•The melt crystallizes over a T range up to ~280°C •A sequence of minerals forms over this interval - And the number of minerals increases as T drops •The minerals that crystallize depend upon T

Augite Forms Before Plagioclase

the

This forms on the left side of the eutectic

Plagioclase Forms Before Augite

This forms on the right side of the eutectic

- The last melt to crystallize in any binary eutectic mixture is the eutectic composition
- Equilibrium melting is the opposite of equilibrium crystallization
- Thus the first melt of any mixture of Di and An must be the eutectic composition as well

Fractional Crystallization

Isobaric T-X phase diagram at atmospheric pressure. After Bowen (1915), Amer. J. Sci. 40, 161-185.

Partial Melting

Binary Peritectic Systems

Three phases involved: enstatite = forsterite + SiO_2

Figure 6-12. Isobaric T-X phase diagram of the system Fo-Silica at 0.1 MPa. After Bowen and Anderson (1914) and Grieg (1927). Amer. J. Sci.

Binary Peritectic Systems

Figure 6-12. Isobaric T-X phase diagram of the system Fo-Silica at 0.1 MPa. After Bowen and Anderson (1914) and Grieg (1927). Amer. J. Sci.

- At 1557°C there is colinear equilibrium of Fo-En-liq
 - \sim geometry indicates a reaction: Fo + liq = En
 - \sim consumes olivine (and liquid) \rightarrow resorbed textures

When is the reaction finished?

Incongruent Melting of Enstatite

- Melt of En does not produce a melt of same composition
- \sim Rather En goes to Fo + Liq *i* at the peritectic
- Partial Melting of Fo + En (harzburgite) mantle
- \mathscr{P} En + Fo also \rightarrow firsl liq = *i*
- ☞ Remove *i* and cool
- ☞ Result = ?

