Metamorphic Fabric Chapter 13A	Solid-state Crystal Growth • Nucleation - Crystallization of new phases • Crystal growth - Modification of existing grain boundaries
Nucleation • Homogeneous nucleation • Heterogeneous nucleation	Homogeneous Nucleation Formation of new minerals within another mineral Free energy of new phase is greater than its surface energy Rate of homogeneous nucleation is very
Heterogeneous Nucleation	slow Crystal Growth

- New minerals form along existing grain boundaries or other discontinuities
- This mechanism is common

- Nucleation
- Independent growth
- Some contacts
- Granoblastic texture

Granoblastic Texture

- Triple points
- Straight grain boundaries
- Interfacial angle controlled by surface energy of crystals in contact

Interfacial Angles

- Dihedral angles (θ)
- Controlled by facial energy
- Sine relationship applies

 $\frac{\gamma_{12}}{\gamma_{12}} \qquad I$ $\frac{\gamma_{11}}{\gamma_{12}} = \frac{\gamma_{12}}{\sin \theta_1}$

 $\frac{\gamma_{11}}{2} = \frac{\sin \theta_2}{2}$

 $\overline{\gamma_{12}} = \overline{\sin \theta_1}$

Stress Categories

- Tension
- Compression
- Shear

Hydrostatic Pressure

- Defined as a uniform stress on a point regardless of direction
- Hydrostatic pressure increases with depth in the earth
- Its value equals pgz

Pressure Solution

- Areas under high stress dissolve
- Material moves to regions of low stress
- Migration facilitated by an intergranular fluid
- Driving mechanism is a chemical potential
- Evidenced by growth into pressure shadows

Formation of Porphyroblasts

- Controlled by nucleation phenomena
- Megacrysts have a high surface energy
 - If only a few nuclei may form
 - They may grow to a very large size

Stress

- Stress is measured by F/A
- Units are Newtons/m², MPa, bars, etc.
- σ is the symbol for stress
- σ = lim Δ F/Δ A as Δ A becomes infinitely small

Directed Stress

- Tectonism produces non-uniform stress
- This causes:
 - Rock deformation
 - Preferred orientation of mineral grains
 - Development of large-scale structures

Strain

- Strain is the response to stress
- **ε** is the symbol for strain
- $\varepsilon = \lim \Delta l/l_o$ as Δl approaches zero
 - Δ l is the change in length in a line element l_0 is the original length of the same line element

Strain Measurements

- Units of strain are given as a fraction of the initial dimension
- Length strain

 $-\epsilon_l = \Delta l/l_o$

• Volume strain $-\varepsilon_v = \Delta V/V_o$

- Plastic (clay)
 - Some deformation recoverable
 - Yield strength must be overcome
- Brittle (halite)
 - Yields by fracturing
 - Generally elastic behavior prior to rupture

Rheology

- The study of the flow of materials
- Strength describes the condition of materials when they fail
- Soft materials begin to yield at their yield strength
- Brittle materials will rupture at their fracture strength

Low Temperatures **Metamorphic Tectonites** & High Strain Rates • Undulatory extinction • Undulatory extinction - Wavy extinction in quartz (a) Kink bands - Bent twin planes in crystals Deformation bands • Deformation lamellae • Deformation lamellae (b) **High Temperatures Diffusive Flow** & Slow Strain Rates • Thermally activated Recovery and recrystallization occur • Stress induced

- Sutured grain boundaries
- Small new grains form

- Diffusive recrystallization
- Sometimes called pressure solution

Role of Fluids in Deformation

- Hydraulic weakening of non-hydrous silicates
- Prograde dehydration reduces ductility
- High pore P_{H20} may cause rock to be brittle

Anisotropic Fabric

- Results from syntectonic flow under stress
- Causes include:
 - Applied nonhydrostatic stress
 - Magnitude of strain
 - Strain rate
 - T & P

Fabric Geometry

- Very complicated
- Non-homogeneous rock bodies
- Linked chain of events
- Unambiguous answers

Grain Orientation

- Foliation commonly parallel to axial plane of folds
 - Noted by orientation of platy minerals
- Lineation commonly parallels hinge line
 - Given by alignment of elongate minerals

Orientation Mechanism

- Not easy to determine
- Nucleation and growth?
- Rotation of grains?
- Pressure solution?

Segregation Layering

- Alternating bands of different minerals
 - Relict beds?
 - Mechanical transportation processes?
- Easier to determine in lower grade rocks
- Uncertain origin in higher grade rocks