Isotopes

Same Z, different A (variable # of neutrons) $^{14}_{6}C$ General notation for a nuclide:

Isotopes

Reading: Winter, Chapter 9, pp. 167-180

Isotopes

Have the same Z but different A (variable # of neutrons) ${}^{14}_{6}C$

General notation for a nuclide:

Superscript (n) specifies the different isotopes of an element

 $^{12}C ^{13}C ^{14}C$

Stable Isotopes

- Stable means they last nearly forever
- Chemical fractionation is impossible
- Mass fractionation is the only isotopic discrimination possible

Oxygen Isotopes

 ^{16}O 99.756% of natural oxygen

"

"

- ^{17}O 0.039%
- 18O0.205%

Concentrations expressed by reference to a standard

The international standard for O isotopes is:

standard mean ocean water (SMOW)

¹⁸O and ¹⁶O are the commonly used isotopes and their ratio is expressed as δ :

 $\delta ({}^{18}O/{}^{16}O) =$

$$\frac{({}^{18}\text{O}/{}^{16}\text{O})_{\text{sample}} - ({}^{18}\text{O}/{}^{16}\text{O})_{\text{SMOW}}}{({}^{18}\text{O}/{}^{16}\text{O})_{\text{SMOW}}} \times 1000$$

the result is expressed in per mille (‰)

What is δ of SMOW?

What is δ for meteoric water?

Evaporation seawater produces water vapor

- Light isotopes are enriched in vapor > liquid
- This is efficient since Δ mass = 1/8 total mass

$$\delta = \frac{\left(\frac{{^{18}}\text{O}/{^{16}}\text{O}\right)_{\text{vapor}} - \left(\frac{{^{18}}\text{O}/{^{16}}\text{O}\right)_{\text{SMOW}}}{\left(\frac{{^{18}}\text{O}/{^{16}}\text{O}\right)_{\text{SMOW}}} x \,1000$$

therefore $({\rm ^{18}O/^{16}O})_{Vapor}<({\rm ^{18}O/^{16}O})_{SMOW}$ thus δ_{clouds} is (-)

Relationship between d(¹⁸O/¹⁶O) and mean annual temperature for meteoric precipitation, after Dansgaard (1964). *Tellus*, **16**, 436-468.

- Stable isotopes are useful in assessing relative contribution of various reservoirs, each with a distinctive isotopic signature
 - O and H isotopes
 - · Juvenile vs. meteoric vs. brine water
 - δ¹⁸O for mantle rocks ≠ surface-reworked sediments
 - Evaluate contamination of mantle-derived magmas by crustal sediments

Radioactive Isotopes

- Unstable isotopes decay to other nuclides
- The rate of decay is constant, and not affected by P, T, X...
- Parent nuclide is the radioactive nuclide that decays
- Daughter nuclide(s) are the radiogenic *atomic* products

Isotopic variations between rocks, etc. due to:

- 1. Mass fractionation (as for stable isotopes)
- 2. Daughters produced in varying proportions resulting from previous event of chemical fractionation
- ${}^{40}\mathrm{K} \to {}^{40}\mathrm{Ar}$ by radioactive decay
- Basalt \rightarrow rhyolite by FX (a *chemical* fractionation process)
- Rhyolite has more K than basalt
- ${}^{40}\mathrm{K} \to \mathrm{more}\; {}^{40}\mathrm{Ar}$ over time in rhyolite than in basalt
- 40Ar/39Ar ratio will be different in each

Isotopic variations between rocks, etc. due to:

- 1. Mass fractionation (as for stable isotopes)
- 2. Daughters produced in varying proportions resulting from previous event of chemical fractionation
- 3. Time

The longer ${}^{40}\text{K} \to {}^{40}\text{Ar}$ decay takes place, the greater the difference between the basalt and rhyolite will be

Radioactive Decay

The Law of Radioactive Decay

$$D = Ne^{\lambda t} - N = N(e^{\lambda t} - 1)$$

To calculate the age of a sample (t) if we know:

- D the amount of the daughter nuclide produced
- N the amount of the original parent nuclide remaining
- λ the decay constant for the system in question

The K-Ar System

⁴⁰K decays to either ⁴⁰Ca or ⁴⁰Ar

- ⁴⁰Ca is common. Cannot distinguish radiogenic

⁴⁰Ca from non-radiogenic ⁴⁰Ca

- ⁴⁰Ar is an inert gas which can be trapped in

many solid phases as it forms in them

The appropriate decay equation is: eq 9-16 ${}^{40}Ar = {}^{40}Ar_o + \left(\frac{\lambda_e}{\lambda}\right) {}^{40}K(e^{-\lambda t} - 1)$

Where $\lambda_e = 0.581 \text{ x } 10^{-10} \text{ a}^{-1}$ (proton capture) and $\lambda = 5.543 \text{ x } 10^{-10} \text{ a}^{-1}$ (whole process)

The Sr-Rb System

On the rubidium side of the equation:

 ${}^{87}\text{Rb} \rightarrow {}^{87}\text{Sr} + a \text{ beta particle} (\lambda = 1.42 \text{ x } 10^{-11} \text{ a}^{-1})$

Rb behaves like K, it concentrates in micas and alkali feldspar

⁴⁰Ar-³⁹Ar technique grew from this discovery

Blocking temperatures for various minerals

differ

Strontium Side

- Sr behaves like Ca
 - It concentrates in plagioclase and apatite (but not in clinopyroxene)
- ⁸⁸Sr: ⁸⁷Sr: ⁸⁶Sr: ⁸⁴Sr
 - Average sample yields 10:0.7:1:0.07
- ⁸⁶Sr is a stable isotope
 - It is not created by breakdown of any other parent

Isochron Technique

Requires 3 or more cogenetic samples with a range of Rb/Sr concentrations

3 cogenetic rocks may be derived from a single source by partial melting, FX, etc.

single rock

or 3 coexisting minerals with different K/Ca ratios in a

Recast age equation by dividing through by stable ⁸⁶Sr

$$\label{eq:stars} \begin{split} ^{87}Sr/^{86}Sr &= \left(^{87}Sr/^{86}Sr \right)_{\rm o} + \left(^{87}Rb/^{86}Sr \right) (e^{\lambda t} - 1) \\ \lambda &= 1.4 \ x \ 10^{-11} \ a^{-1} \end{split}$$

For values of λt less than 0.1: $e^{\lambda t} = \lambda t$

Thus eq. 9-15 for t < 70 Ga (!!) reduces to:

 ${}^{87}Sr/{}^{86}Sr = ({}^{87}Sr/{}^{86}Sr)_{0} + ({}^{87}Rb/{}^{86}Sr)\lambda t$

y = b + x m

=This is the equation for a line in a ⁸⁷Sr/⁸⁶Sr vs. ⁸⁷Rb/⁸⁶Sr plot

Begin with 3 rocks plotting at a b c at time t_o

After some time increment $(t_0 \rightarrow t_1)$ each sample loses some ⁸⁷Rb and gains an equivalent amount of ⁸⁷Sr

At time t_2 each rock system has evolved \rightarrow new line Again still linear and steeper line

Isochron technique produces 2 valuable things:

- 1. The age of the rocks (from the slope = λt)
- 2. $\left({}^{87}Sr/{}^{86}Sr\right)_{o}$ = the initial value of ${}^{87}Sr/{}^{86}Sr$

Figure 9-9. Rb-Sr isochron for the Eagle Peak Pluton, central Sierra Nevada Batholith, California, USA. Filled circles are whole-rock analyses, open circles are homblende separates. The regression equation for the data is also given. After Hill et al. (1998). Amer. J. Sc., 284-A, 213-241.

Figure 9-13. Estimated Rb and Sr isotopic evolution of the Earth's upper mantle, assuming a large-scale melting event producing granitic-type continental rocks at 3.0 Ga b.p. After Wilson (1989). Igneous Petrogenesis. Unwin Hyman/Kluwer.