The Granite System

Best, Ch. 8, p. 280-295

Important Mineral Systems

- Ab-An
- Or-Ab
- Or-Ab-An
- Ks-Q

Important Influences

- Role of water
- Oxygen partial pressure
- Oxygen isotopes
- Bowen’s Thermal Valley

Effect of Water Pressure

- Increased \(P_{H2O} \) lowers the solidus and liquidus of the Or-Ab system
Hypersolvus-Subsolvus

- Hypersolvus granites form at low water pressure
 - They crystallize a single alkali feldspar that later may exsolve to form a perthite
- Subsolidus granites form at high water pressures
 - They crystallize two alkali feldspars, albite and K-spar, simultaneously

The granite minimum

Granite system with feldspathoids

Strontium Isotopes

- 87Rubidium decays to 87Sr
- The half life is very long (50 Gy)
- 86Sr is stable and not formed by radioactive decay
- The ratio 87Sr/86Sr is a good petrologic index
Significance of Sr ratio

- Rb follows K in fractionation
- Sr follows Ca in fractionation
- MORB and the mantle have low Sr ratios ~0.703
- A lava with a ratio < 0.706 suggests mantle origin
- A higher ratio suggests melting of a continental source with high Rb/Sr or contamination of a mantle-derived magma by such material
- Old continental crust may have a very high ratio >0.710

Oxygen Isotopes

- Common isotopes are 18O and 16O
- Standard ratio of 18O/16O is mean ocean water (SMOW)
- δ is parts per mil (thousand) of sample compared to SMOW
- Fractionation of oxygen isotopes is temperature dependant

Some Oxygen Isotope Values

- Meteoric waters are enriched in 16O
 - They have negative δ values
- Rocks are enriched in 18O
 - They have $+$ δ values

Si Activity

- α_{SiO_2}
- Based on set of reactions
- Limits three main magma series