Uniaxial Indicatrix

Conoscopic Viewing

Optic Figures

Conoscopic observations of uniaxil minerals

- Circular Section is normal to the optic axis (all ω's)
- Principal Sections have ω and true ε (max & min n's)
- Random Sections (ϵ' and ω)
 - Always have ω!!
- Any cut through center of a uniaxial indicatrix will have w as one *semiaxis*

Convergent Light Observations

- Use high magnification
- Insert Condenser and Bertrand lens
- Observe interference figures
 - Optic axes
 - Isogyres
 - Isochromatic lines
 - Optic figures
 - Optic sign

A condensing lens below the stage

A Bertrand lens above it

Light rays are refracted by condensing lens & pass through crystal in different directions

Thus exhibit different properties

Only light in the center of field of view is vertical & like ortho

Interference Figures are very useful for determining optical properties of crystals

Microscope as a Conoscope

Optic Axes

- Directions along which minerals appear isotropic with X-polars
- Minerals with this orientation are easy to identify in thin section
- Uniaxial minerals have one optic axis
- · Biaxial minerals have two optic axes

Isogyres

- These are dark zones that appear in optic figures
- They locate where the vibration directions are perpendicular to the polarizers
- They form a simple cross for uniaxial minerals but a complex separating pair of lines for biaxial figures

Isochromatic Lines

- These are lines of equal interference that appear in iconoscope observation
- In uniaxial figures they appear as concentric rings
- In biaxial figures they are concentric, but more complex arrangements.

Uniaxial Figures

- Optic axis figure is a simple cross
- Flash figure is a cross that disperses rapidly
- Flash figures separate in the direction of the c axis. Test with a 1st order plate

Uniaxial Figure

- Circles of isochromes
- Note vibration directions:
 ω tangential
 - ε' radial & variable magnitude
- Black cross (isogyres) results from locus of extinction directions
- Center of cross (melatope) represents optic axis
- Approx 30° inclination of OA will put it at margin of field of view

Uniaxial Figure

- Centered axis figure as 7-14: when rotate stage cross does not rotate
- Off center: cross still E-W and N-S, but melatope rotates around center
- Melatope outside field: bars sweep through, but always N-S or E-W at center
- Flash Figure: OA in plane of stage
 Diffuse black fills field brief time as rotate

Uniaxial Optic Sign

- Positive sign for addition in 1st and 3rd quadrants
- Negative sign for addition in 2nd and 4th quadrants

Optic Sign Determination

For all crystals remember ε' vibrates in plane of ray and OA, w vibrates normal to plane of ray and OA

Find a crystal in which the optic axis (OA) is vertical (normal to the stage) 2) Go to high power, insert condensing and Bertrand lenses to \rightarrow optic axis interference figure

Accessory Plates

Suppose we view an anisotropic crystal with $\Delta = 100$ nm (1-order gray) at 45° from extinction

If $N_{gyp} \parallel N_{xl} \rightarrow Addition$

- Addition since ray in xl $\parallel N_{gyp}$ • already behind by 100nm & it gets further retarded by 550nm in the gypsum plate
- $100 + 550 \rightarrow 650$ nm
- · On your color chart what will result?
- Original 1° grey $\rightarrow 2^{\circ}$ blue

Optic Sign Determination

Inserting plate for a (+) crystal: \rightarrow subtraction in NW & SE where n∥N

> \rightarrow addition in NE & SW where N||N Whole NE (& SW) quads add 550nm

· isochromes shift up 1 order Isogyre adds \rightarrow red

In NW & SE where subtract

· Each isochrome loses an order Near isogyre (~100nm)

• get yellow in NW & SE

1111 . . NTE 0 CXV

(+) OA Figure without plate

Positive Case

(+) OA Figure with plate Yellow in NW is (+)

Optic Sign Determination

(-) crystals:

Inserting plate for a (-) crystal: \rightarrow subtraction in NE & SW where n∥N

 \rightarrow addition in NW & SE where N||N Whole NW (& SE) quads add 550nm · isochromes shift up 1 order

Isogyre still adds \rightarrow red $c < \omega$ so ω slower In NE & SW where subtract

· Each isochrome loses an order Near isogyre (~100nm)

• get 650 blue in NW & SE

• and 450 yellow in NE & SW

(-) OA Figure without plate (same as (+) figure)

Negative Case

(-) OA Figure with plate Blue in NW is (-)

Sign of Elongation

Sign of Elongation

Sign of Elongation

