Uniaxial Indicatrix

- Circular Section is normal to the optic axis (all ω 's)
- Principal Sections have ω and true ε (max \& min n's)
- Random Sections (ε^{\prime} and ω)
- Always have ω !!

Any cut through center of a uniaxial indicatrix will have w as one semiaxis

Conoscopic Viewing

A condensing lens below the stage
A Bertrand lens above it

Microscope as a Conoscope

Optic Axes

- Directions along which minerals appear isotropic with X-polars
- Minerals with this orientation are easy to identify in thin section
- Uniaxial minerals have one optic axis
- Biaxial minerals have two optic axes

Isogyres

- These are dark zones that appear in optic figures
- They locate where the vibration directions are perpendicular to the polarizers
- They form a simple cross for uniaxial minerals but a complex separating pair of lines for biaxial figures

Uniaxial Figures

- Optic axis figure is a simple cross
- Flash figure is a cross that disperses rapidly
- Flash figures separate in the direction of the c axis. Test with a $1^{\text {st }}$ order plate

Isochromatic Lines

- These are lines of equal interference that appear in iconoscope observation
- In uniaxial figures they appear as concentric rings
- In biaxial figures they are concentric, but more complex arrangements.

Uniaxial Figure

- Centered axis figure as 7-14: when rotate stage cross does not rotate
- Off center: cross still E-W and N-S, but melatope rotates around center
- Melatope outside field: bars sweep through, but always N-S or E-W at center
- Flash Figure: OA in plane of stage Diffuse black fills field brief time as rotate

Uniaxial Optic Sign

- Positive sign for addition in $1^{\text {st }}$ and $3^{\text {rd }}$ quadrants
- Negative sign for addition in $2^{\text {nd }}$ and $4^{\text {th }}$ quadrants

Optic Sign Determination

For all crystals remember ε^{\prime} vibrates in plane of ray and OA, ω vibrates normal to plane of ray and OA

Find a crystal in which the optic axis (OA) is vertical (normal to the stage)
(+) crystals:
ε '
$>\omega$
so ω faster
2) 2) Go to high power, insert condensing and Bertrand lenses to \rightarrow optic axis interference figure

Accessory Plates

If $\mathrm{N}_{\text {gyp }} \| \mathrm{N}_{\mathrm{xl}} \rightarrow$ Addition

- Addition since ray in xl $\| \mathrm{N}_{\text {gyp }}$
- already behind by $100 \mathrm{~nm} \&$ it gets further retarded by 550 nm in the gypsum plate
- $100+550 \rightarrow 650 \mathrm{~nm}$
- On your color chart what will result?
- Original 1° grey $\rightarrow 2^{\circ}$ blue

Accessory Plates

Now rotate the microscope stage and crystal $90^{\circ} \rightarrow \mathrm{N}_{\mathrm{gyp}} \| \mathrm{n}_{\mathrm{xl}}(\Delta$ still $=100 \mathrm{~nm})$
$-\mathrm{N}_{\mathrm{gyp}} \| \mathrm{n}_{\mathrm{xl}} \rightarrow$ Subtraction

- Now the ray in the crystal that is parallel to $\mathrm{N}_{\text {gyp }}$ is ahead by $100 \mu \mathrm{~m}$
- $550 \mu \mathrm{~m}$ retardation in gypsum plate $\rightarrow 450 \mathrm{~nm}$ behind
- On your color chart what will result?
- 1^{0} orange

Optic Sign Determination

Inserting plate for a (+) crystal:

(+) crystals:
$\varepsilon^{\prime}>\omega$
so ω faster
Isogyre adds \rightarrow red
In NW \& SE where subtract

- Each isochrome loses an order

Near isogyre ($\sim 100 \mathrm{~nm}$)

- get yellow in NW \& SE

(+) OA Figure without plate

Positive Case

(+) OA Figure with plate Yellow in NW is (+)

Optic Sign Determination

(-) crystals:
$\varepsilon^{\prime}<\omega$
so ω slower

Inserting plate for a (-) crystal: \rightarrow subtraction in NE \& SW where $\mathrm{n} \| \mathrm{N}$
\rightarrow addition in NW \& SE where $\mathrm{N} \| \mathrm{N}$
Whole NW (\& SE) quads add 550 nm

- isochromes shift up 1 order

Isogyre still adds \rightarrow red
In NE \& SW where subtract

- Each isochrome loses an order

Near isogyre ($\sim 100 \mathrm{~nm}$)

- get 650 blue in NW \& SE
- and 450 yellow in NE \& SW

(-) OA Figure without plate (same as (+) figure)

Negative Case

(-) OA Figure with plate Blue in NW is $(-)$

Sign of Elongation

If $\beta \|$ elongation
Sometimes will add \rightarrow length slow
Sometimes will subtract \rightarrow length fast

Sign of Elongation

Sign of Elongation

Platy minerals may appear elongated too

Can still use sign of elongation on edges

