Magmas

Best, Ch. 8

Composition

- Most components
 - Low vapor pressure
 - Designated by mole fraction (X_i)
- Volatile components
 - Mainly exist as a gas
 - Designated by vapor pressure (p_i)
- Fluid pressure = sum of partial pressures

Constitution of Magmas

- · Hot molten rock
- T = 700 1200 degrees C
- Composed of ions or complexes
- Phase
 - Homogeneous
 - Separable part of the system
 - With an interface

Gas Law

PV = nRT

Atomic Structure of Magma

- · Quenched to form a glass
- Si & Al are polymerized with O
- Forming networks of Si-O chains
- Short-range structural order

Structural Model

- · Network formers
 - Si, Al
- · Network modifiers
 - Ca, Mg, etc
- Dissolved water has a strong effect

$$H_2O + O^{-2} = 2(OH)^{-1}$$

Magma Generation

- Magmas form at perturbations in P.T.X
- Convergent plates
- · Divergent plates
- · Peridotite mantle source

Melting

- · Heat of fusion
 - About 300 times the rock's specific heat
 - Melting of rock consumes much heat
- · Mechanisms for melting
 - Temperature increase by mass transfer
 - Decompression
 - Changes in composition reducing melting point

Decompression

- Upwelling mantle
 - -Beneath oceanic or continental rift
- Adiabatic system
 - Pressure causes all temperature change

Source Regions

- Must originate in the mantle or crust
- At Hawaii 60 km deep
- Only 1 to 3% melt in peridotite

Temperature Increase

- · Mechanical deformation
 - Friction generates heat
- · Mass transfer of rock
 - Descending oceanic lithosphere
 - Basaltic underplating of continental crust

Changes in Composition

- · Increase in water pressure
- · Lowers the solidus
- Subduction zones
 - -Peridotite wedge
 - Over subducting oceanic crust

Magma From Solid Rock

- Basalt & peridotite systems
- Granite systems

Basalt & Peridotite

- Equilibrium fusion
 - Solid and liquid remain in equilibrium
 - Continuous but limited composition range
- Fractional fusion
 - Liquid is immediately removed from host rock
 - Melts are both oversaturated & undersaturated with respect to Si

Influence of Pressure

- · Pressure strongly influences the cotectic
- · Partial melts of mantle peridotite are basalts
- At higher pressures partial melts are more silica deficient

Role of CO₂

- · Polymerizes melt
- Contracts olivine field
- · Favors silica-poor alkali melts
- Repeated melting episodes favors incompatible element enrichment

Role of H₂O

- Depolymerizes melt & stabilizes olivine
- · Partial melts more silica rich
- · Favors tholeiitic basalts

Mantle-derived Primary Melts

- Wide range of melt compositions possible
- Fractional crystallization vs. Partial melting
- · Primary melt
 - Segregated from peridotite source rock
 - First crystallized minerals similar to mantle source zone
- · Derivative melt
 - Modified after leaving the source region

Volcanic Rocks of Island Arcs

- Complex tectonic situation and broad spectrum
- High proportion of basaltic andesite and andesite
 - Most andesites occur in subduction zone settings

Major Elements and Magma Series

- Tholeiitic (MORB, OIT)
- Alkaline (OIA)
- Calc-Alkaline (~ restricted to SZ)

Granitic (Rhyolitic) Systems

- Impossible to generate granites by partial melting of mantle peridotite or subducted oceanic floor basalt
- Their origin is related to older sialic crust
- Granites concentrated along old subduction zones

Water Saturation

- Saturated granite melts have 10 to 15% H₂O
- Natural granite melts have about 4% H₂O

Origin of Granites

- Partial Melting of lower crust
- Source in mica-amphibolites
- Contain 1-2% H₂O
- Lowest T melts are K-rich granite
- Higher T, deeper melts are Ca-rich granodiorite

Occuric lithosphere The C is CA is

600

Water Undersaturation

- · Common granite mineral assemblage
 - Biotite, K-spar, Fe-Ti oxide

$$\frac{1}{2}$$
 O₂ + biotite = K-spar + Fe₃O₄ + H₂O

- Excess water drives this reaction to the left
- Hence, most granites are not water saturated

Subduction Zone Magma

- Subducted slab
 - -Mafic primary melts
- Peridotite mantle wedge
 - -Mafic primary melts

Dehydration Beneath Orogen

- · Large amount of water in oceanic slab
 - Water in pore space
 - Water in alteration minerals
- · Heating dehydrates the slab
- Liberated water promotes partial melting of peridotite
- Composition is Si-saturated tholeiite

Martin lithosphere Martin lithosphere Authorophere Bessell Jane

Structure of an Island Arc

Schematic cross section through a typical island arc after Gill (1981)

Instabilities

- A layer of less dense material overlain by a denser material is unstable
- The upper layer develops undulations and bulges (Rayleigh-Taylor instabilities)
- The spacing of the bulges depends on the thickness of the light layer and its density contrast with the heavy layer

Diapirs

Diapir Ascent

- Velocity of ascent depends on diapir size and shape
- A sphere is the most efficient shape
- Surface area ~ frictional resistance
- Volume ~ buoyant driving force
- Rise velocity proportional to area squared

Neutral Buoyancy

- · Positively buoyant
 - Melt less dense than surrounding rocks
 - Primary basalt magma surrounded by mantle peridotite
- Negatively buoyant
 - Melt more dense than surrounding rocks
 - Olivine basalt intruded into continental crust

Density Filter

- Crustal rocks block the ascent of denser magmas
- Heat from these magmas melt the lower crust
- · Residual melts may rise
- Exsolved volatiles also facilitate rise

Emplacement Process

- Stoping
- Brecciation
- Doming
- Ballooning
- Void zones

Magma Diversification

- Magmatic differentiation
- · Gravitational settling
- · Liquid immiscibility

Crystal-liquid Fractionation

- Regular pattern of compositional variation
- Variation of MgO is a good measure of olivine fractionation
- Computer mixing programs can be used

Magma Mixing

- Two different magmas may blend to produce a hybrid
- Common with calc-alkali magma
- Blended magmas should have linear composition with the parents

Volcanic Rocks of Island Arcs

- Complex tectonic situation and broad spectrum
- High proportion of basaltic andesite and andesite
 - Most andesites occur in subduction zone settings

Major Elements and Magma Series

- Tholeiitic (MORB, OIT)
- Alkaline (OIA)
- Calc-Alkaline (~ restricted to SZ)

Magma Ascent and Emplacement

Best Chapter 9

Topics

- How does magma ascend?
- How do dikes form?
- How is magma emplaced?

Magma Generation

- · Partial melting
 - Upper mantle
 - Deep crust
- · Magma density
- · Less than surroundings

Magma Rise

- Buoyancy
 - Driving force is density difference
 - Resisting force is the magma viscosity
- · Silicic magma
 - High viscosity requires large volume
- · Mafic magma
 - Low viscosity allows small volumes to rise

Energy Sources

- Thermal energy
 - Melting caused by decompression or volatile flux
- Gravitational energy
 - Driven by density differential

Instabilities

- A layer of less dense material overlain by a denser material is unstable
- The upper layer develops undulations and bulges (Rayleigh-Taylor instabilities)
- The spacing of the bulges depends on the thickness of the light layer and its density contrast with the heavy layer

Diapirs

Diapir Ascent

- Velocity of ascent depends on diapir size and shape
- · A sphere is the most efficient shape
- Surface area ~ frictional resistance
- Volume ~ buoyant driving force
- · Rise velocity proportional to area squared

Neutral Buoyancy

- Positively buoyant
 - Melt that is less dense than surrounding rocks
 - Primary basalt magma surrounded by mantle peridotite
- Negatively buoyant
 - Melt that is more dens than surrounding rocks
 - Olivine basalt intruded into continental crust

Density Filter

- Crustal rocks block the ascent of denser magmas
- Heat from these magmas melt the lower crust
- · Residual melts may rise
- Exsolved volatiles also facilitate rise

How Can Dense Magma Rise?

- Volumetric expansion on melting?
- Exsolution of bubbles?
- There must be another cause.

Magma Overpressure

 For a magma lens, pressure is equal to the lithostatic load

$$P_m = \rho_r g z$$

- The pressure can be greater in a conduit connecting a deeper pocket to the surface
- This overpressure can be great enough to bring denser magma to the surface

Magma Ascent

- Dikes
 - -Sub-vertical cracks in brittle rock
- Diapirs
 - -Bodies of buoyant magma
 - -They squeeze through ductile material

Dikes

- Intrusions with very small aspect ratio
- Aspect: width/length = 10⁻² to 10⁻⁴
- Near vertical orientation
- Generally 1 2 meters thick

Dike Swarms

- Hundreds of contemporaneous dikes
- May be radial
- Large radial swarms associated with mantle plumes

Intrusion into Dikes

- Stress perpendicular to the fracture is less than magma pressure
- Pressure must overcome resistance to viscous flow
- Magma can hydrofracture to rock and propagate itself

Stress for Dikes

- Dikes are hydraulic tensile fractures
- They lie in the plane of σ_1 and σ_2
- They open in the direction of σ_3
- They are good paleostress indicators

σ_1 vertical

σ₃ vertical

Orientation

- Near-vertical dikes imply horizontal σ₃
- Typical in areas of tectonic extension
- Can be used to interpret past stress fields

En Echelon Dikes

Dikes commonly form fingers upwards

Sub-parallel overlapping alignments

Suggest a rotation of σ_3 in the horizontal

Radial Dikes

- Stress orientation around a central intrusion
 - $-\sigma_1$ is perpendicular to the contact (radial)
 - $-\,\sigma_3$ is horizontal and tangential to contact
- Radial dikes are radial from intrusion
- Far dikes assume the regional trend

