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Abstract. We prove that for an arbitrary endomorphism α of a ring R the group K1(Rα[t]) splits into the

direct sum of K1(R) and Ñil(R;α). Moreover, for any such R and α Ñil(R;α) is isomorphic to Ñil(R′;α′) for

some ring R′ with α′:R′ → R′ an isomorphism.

Introduction. Let R be a ring with a unit 1 ∈ R and α:R → R an endomorphism preserving

the unit. We define Rα[t], the α - twisted ring of polynomials with coefficients in R, so that additively

Rα[t] = R[t] and the multiplication is given by the formula: (rti)(stj) = rαi(s)ti+j for r, s ∈ R.

Investigating the group K1(Rα[t]) H. Bass (in the case α = idR) and F.T. Farrell and W.C. Hsiang

(in the case α – an automorphism of R) have shown that it splits into the direct sum of K1(R) and

Ñil(R;α). The definition of the last group is recalled below. The aim of this paper is to generalize

those results. We will prove:

Theorem. For any endomorphism α:R→ R, K1(Rα[t]) ' K1(R)⊕ Ñil(R;α).
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Moreover, from the arguments used in the proof we will get the following

Corollary. If α is an arbitrary endomorphism of R then there exists a ring R′, an automorphism

α′:R′ → R′ and a ring homomorphism ι:R→ R′ such that ι∗: Ñil(R;α) → Ñil(R′;α′) is an isomor-

phism.

The author wants to express his gratitude to Dr. T. Koźniewski for his help and for the inspiration

for this work.

? ? ?

All the rings considered in this paper are assumed to be rings with a unit, homomorphisms of

rings preserve the unit. By a R-module we will mean a right R-module.

Let M , N be R - modules and α:R → R an endomorphism. We will call a map ϕ:M → N α

- linear if ϕ is additive and ϕ(mr) = ϕ(m)α(r) for all m ∈ M , r ∈ R. In the case when M and N

are free, finitely generated modules with fixed bases, the map ϕ can be represented by a matrix with

entries in R (see [F-H]).

We define the group Ñil(R;α) as follows. Let Ñil(R;α) be a category in which objects are pairs

(F,ϕ), where F is a free, finitely generated R - module and ϕ:F → F is an α - linear, nilpotent

endomorphism. A morphism f : (F,ϕ) → (F ′, ϕ′) is a R - linear homomorphism f :F → F ′ satisfying

ϕ′f = fϕ.

Now, Ñil(R;α) is an abelian group generated by the isomorphism classes of objects of Ñil(R;α)

and by relations:

(A) [F,ϕ] = [F ′, ϕ′] + [F ′′, ϕ′′] for

0 → (F ′, ϕ′) −→ (F,ϕ) −→ (F ′′, ϕ′′) → 0

a short exact sequence in Ñil(R;α);

(O) [F, 0] = 0 ∈ Ñil(R;α).

We can consider Ñil as a functor from the category of pairs (R,α), where R and α are as above,

and ring homomorphisms f :R→ R′ satisfying fα = α′f to the category of abelian groups.
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Let ε:Rα[t] −→ R be the evaluation homomorphism, ε(w(t)) = w(0) and let i:R ↪→ Rα[t] be

the inclusion. We have the induced homomorphisms ε∗, i∗ of groups K1, and since εi = idR we get

ε∗i∗ = idK1(R). Let [Rn, ϕ] ∈ Ñil(R;α) and let Mϕ represent ϕ in the coordinates of the standard

basis of Rn. As in [B] we define a homomorphism k: Ñil(R;α) −→ K1(Rα[t]) by k[Rn, ϕ] = [I−Mϕt],

where I is the identity matrix. Furthermore, using the same arguments as in [B] for α = idR one can

check that the sequence

Ñil(R;α) k−→K1(Rα[t]) ε∗−→K1(R) → 0

is exact. Therefore showing that k is a monomorphism is enough to prove that K1(Rα[t]) splits. Our

objective will be to reduce the general situation when α is an arbitrary endomorphism, to the case

when it is an automorphism and when (by [F-H]) k is known to be injective.

Lemma 1. Let ι: (R,α) −→ (R′, α′) satisfy

( i) ker ι ⊆
⋃
iker αi

( ii) ∀r′∈R′∃j≥0 (α′)j(r′) ∈ im ι.

Then ι∗: Ñil(R;α) −→ Ñil(R′;α′) is an isomorphism.

Let α:R → R be an endomorphism and let R′ = lim
→

(R α−→R
α−→R

α−→· · ·) with α′:R′ −→ R′

induced by α. It is easy to check that the homomorphism ι: (R,α) −→ (R′, α′) satisfies the conditions

of lemma 1. Since α′ is an isomorphism we get the corollary and the theorem (modulo the proof of

lemma 1) follows from the commutativity of the diagram:

Ñil(R;α) k−−−−→ K1(Rα[t])

'

yι∗
yῑ∗

Ñil(R′;α′) k
−−−−→

1−1

K1(R′α′ [t])

where ῑ:Rα[t] −→ R′α′ [t] is a prolongation of ι defined by ῑ(t) = t.

To prove lemma 1 we will need the following fact, the proof of which will be postponed until the

end of this paper.

Lemma 2. The homomorphism α∗: Ñil(R;α) −→ Ñil(R;α) is the identity of Ñil(R;α) for any
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endomorphism α:R→ R.

(In the case when α is an automorphism of R this fact has been proven in [F-H]).

Proof of lemma 1. Let us notice that ι∗ can be described as follows: if [Rn, ϕ] ∈ Ñil(R;α)

and Mϕ = (rij)ij is the matrix of ϕ with respect to the standard basis of Rn, then ι∗([Rn, ϕ]) =

[(R′)n, ι(ϕ)] where in the coordinates of the standard basis of (R′)n ι(ϕ) is represented by the matrix

ι(Mϕ) = (ι(rij))ij .

We will define a map:

q: {isomorphism classes of ObÑil(R;α)} −→ Ñil(R;α)

Let ((R′)n, ϕ′) ∈ ObÑil(R′;α′) and Mϕ′ = (r′ij)ij be the matrix representing ϕ′ with respect to

the standard basis of (R′)n. Let k = min{l ≥ 0|∀i,j α′l(r′ij) ∈ im ι} (such k exists by (ii)). Let

us choose sij ∈ ι−1(α′k(rij ′)). We define q((R′)n, ϕ′) = [Rn, q(ϕ′)], where q(ϕ′) is the α - linear

homomorphism represented (with respect to the standard basis of Rn) by the matrix Mq(ϕ′) = (sij)ij .

It is easy to check that q((R′)n, ϕ′) ∈ Ñil(R;α), e.i. that q(ϕ′) is nilpotent. Furthermore, q((R′)n, ϕ′)

does not depend on the choice of sij from ι−1(α′k(r′ij)). Indeed, let s′ij ∈ ι−1(α′k(r′ij)), and let

ϕ:Rn −→ Rn be the α - linear homomorphism represented by the matrix M = (s′ij)ij . We have

s′ij = sij + cij for some cij ∈ ker ι ⊆
⋃
iker αi. Therefore, for some r ≥ 0, αr(Mq(ϕ′)) = αr(M). It

follows that α∗r[Rn, ϕ] = α∗
r[Rn, q(ϕ′)], and applying lemma 2 we get [Rn, ϕ] = [Rn, q(ϕ′)]. By a

similar application of lemma 2 one can show that q((R′)n, ϕ′) does not depend on the choice of the

element from the class of isomorphism of ObÑil(R′;α′). Thus q is a well defined map. Moreover,

since q((R′)n, 0) = [Rn, 0], and

q((R′)n,
(
ϕ′ ?
0 ϕ′′

)
) = [Rn,

(
αrq(ϕ′) ?

0 αsq(ϕ′′)

)
]

for some r, s ≥ 0, q factorizes to a homomorphism q∗: Ñil(R′;α′) −→ Ñil(R;α). It is easy to check

that q∗ι∗ = id
Ñil(R;α)

, ι∗q∗ = id
Ñil(R′;α′)

, so ι∗ is an isomorphism. This completes the proof of lemma

1.

Proof of lemma 2. Let [Rn, ϕ] ∈ Ñil(R;α), and let Mϕ = (aij)ij be the matrix of ϕ with

respect to the standard coordinates in Rn. We want to show that [Rn, ϕ] = [Rn, α(ϕ)], where Mα(ϕ) =
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(α(aij))ij . Let bij = α(aij). We have a short exact sequence in Ñil(R;α):

0 −→ (Rn
3
, 0)

f−−−→ (Rn
3+n, ϕ′1)

g−−−→ (Rn, ϕ) −→ 0

where

f((rijk)1≤i,j,k≤n) = ((rijk)1≤i,j,k≤n,−
∑

ij
aijr1ji,

∑
ij
aijr2ji, . . . , −

∑
aijrnji)

g((rijk)1≤i,j,k≤n, r1, r2, . . . , rn) = (r1 +
∑

ij
aijr1ji, r2 +

∑
ij
aijr2ji, . . . , rn +

∑
aijrnji)

(rijk)1≤i,j,k≤n = (r111, r112, . . . , r11n, r121, . . . , r1nn, r211, . . . , rnnn), and ϕ′1 is the α - linear map

represented in the standard coordinates ofRn
3+n by the matrix:

Mϕ′1 =



B1 0 0 0 . . . 0 e11
0 B1 0 0 . . . 0 e12
0 0 B1 0 . . . 0 e13
. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . B1 e1n
B2 0 0 0 . . . 0 e21
0 B2 0 0 . . . 0 e22

. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . Bn enn
0 0 0 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 0 0


Here Bi ∈ Mn,n2(R) has the i-th row of the form (b11, b21, . . . , bn1, b12, . . . , bnn) and all other

entries equal 0, and eij ∈ Mn,n(R) has only one non-zero ij-th entry equal 1. Thus in Ñil(R;α) we

get

[Rn, ϕ] = [Rn
3+n, ϕ1

′]− [Rn
3
, 0] = [Rn

3+n, ϕ1
′] = [Rn

3
, ϕ1]

where the matrix Mϕ1 representing ϕ1 is obtained by deleting the last n rows and columns of Mϕ1′ .

Let us notice that Mϕ1 has (n− 1)n2 rows with zero entries only. Permuting the elements of the

standard basis e1, e2,. . ., en3 of Rn
3

so that the elements whose indices correspond to the indices of

the zero rows come last, and the relative order of other elements is unchanged, we get a basis with

respect to which ϕ1 is represented by the matrix:
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Nϕ1 =



C1 0 . . . 0 ?
0 C2 . . . 0 ?
. . . . . . . . . . . . . . .
0 0 . . . Cn ?
C1 0 . . . 0 ?
0 C2 . . . 0 ?
. . . . . . . . . . . . . . .
0 0 . . . Cn ?

. . . . . . . . . . . . . . .

C1 0 . . . 0 ?
0 C2 . . . 0 ?
. . . . . . . . . . . . . . .
0 0 . . . Cn ?
0 0 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . 0 0


where Ck ∈ M1,n(R) = (bk1, bk2, . . . , bkn) is the k-th row of Mα(ϕ), and each Ck repeats n times

in Nϕ1 . Let ϕ2:Rn
3 −→ Rn

3
be the α- linear homomorphism such that Mϕ2 = Nϕ1 . Since ϕ2 is

obtained by conjugation of ϕ1 with an R- linear automorphism of Rn
3
, we have [Rn

3
, ϕ1] = [Rn

3
, ϕ2],

and [Rn
3
, ϕ2] = [Rn

2
, ϕ3], where we get Mϕ3 by deleting the last (n− 1)n2 rows and columns of Mϕ2 .

The matrix Mϕ3 has n different rows, each one repeating n times. Conjugating ϕ3 with a suitable

R-linear automorphism of Rn
2

we can get an α - linear homomorphism ψ:Rn
2 −→ Rn

2
, the matrix

Mψ of which will have only n non-zero rows. In particular, if the conjugating automorphism will

assign to the element ei of the standard basis of Rn
2

the vector e′i =
∑
k=0

(n−1)
enk+i for i ≤ n and

e′i = ei for i > n we will get:

Mψ =
(
Mα(ϕ) ?

0 0

)
So finally: [Rn

2
, ϕ3] = [Rn

2
, ψ] = [Rn, α(ϕ)] .
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