1 Some Set Theory

Sets. In general sets will be denoted by capital letters: *A*, *B*, *C*, . . . We will also use the following notation for sets that will be of a particularly interest:

 \varnothing = the empty set (i.e. the set that contains no elements) $\mathbb{N} = \{0, 1, 2, ...\}$ the set of natural numbers $\mathbb{Z}^+ = \{1, 2, 3, ...\}$ the set of positive integers $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ the set of integers \mathbb{Q} = the set of rational numbers \mathbb{R} = the set of real numbers

We will write $a \in B$ to denote that a is an element of the set B and $a \notin B$ to indicate that a is not an element of B.

1.1 Definition. A set *B* is a *subset* of a set *A* if every element of *B* is in *A*. In such case we write $B \subseteq A$.

A set *B* is a *proper subset* of *A* if $B \subseteq A$ and $B \neq A$.

1.3 Example. Here are some often used subsets of \mathbb{R} :

1) an open interval:

2) a closed interval:

$$(a, b) = \{x \in \mathbb{R} \mid a < x < b\}$$

$$a = \{x \in \mathbb{R} \mid a \le x \le b\}$$

$$a = \{x \in \mathbb{R} \mid a \le x \le b\}$$

$$(a, b] = \{x \in \mathbb{R} \mid a < x \le b\}$$

$$a = \{x \in \mathbb{R} \mid a < x \le b\}$$

3) a half open interval:

1.4 Definition. The *union* of sets *A* and *B* is the set $A \cup B$ that consists of all elements that belong to either *A* or *B*:

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$

The *intersection* of sets A and B is the set $A \cap B$ that consists of all elements that belong to both A and B:

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\}$$

1.5 Example. If $A = \{a, b, c, d\}$, $B = \{c, d, e, f\}$

1.7 Definition. If $A \cap B = \emptyset$ then we say that A and B are *disjoint sets*.

Definition 1.4 can be extended to unions and intersections of arbitrary families of sets. If $\{A_i\}_{\in I}$ is a family of sets then

$$\bigcup_{i \in I} A_i = \{x \mid x \in A_i \text{ for some } i \in I\}$$
$$\bigcap_{i \in I} A_i = \{x \mid x \in A_i \text{ for all } i \in I\}$$

1.10 Definition. The *difference* of sets *A* and *B* is the set $A \\ B$ consisting of the elements of *A* that do not belong to *B*:

$$A \setminus B = \{x \mid x \in A \text{ and } x \notin B\}$$

1.12 Definition. If $A \subseteq B$ then the set $B \setminus A$ is called the *complement* of A in B.

1.13 Properties of the algebra of sets.

Distributivity:

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$
$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

De Morgan's Laws:

$$A \smallsetminus (B \cup C) = (A \smallsetminus B) \cap (A \smallsetminus C)$$
$$A \smallsetminus (B \cap C) = (A \smallsetminus B) \cup (A \smallsetminus C)$$

1.14 Definition. The *Cartesian product* of sets *A*, *B* is the set consisting of all ordered pairs of elements of *A* and *B*:

 $A \times B = \{(a, b) \mid a \in A, b \in B\}$

1.16 Notation. Given a set *A* by *Aⁿ* we will denote the *n*-fold Cartesian product of *A*:

$$A^n = \underbrace{A \times A \times \cdots \times A}_{n \text{ times}}$$

1.18 Infinite products.

1.24 Definition. A binary relation on a set A is a subset $R \subseteq A \times A$. If $(a, b) \in R$ then we write aRb.

1.27 Definition. Let *A*, *B* be sets

1) A function $f: A \rightarrow B$ is 1-1 if f(x) = f(x') only if x = x'.

2) A function $f: A \rightarrow B$ is *onto* if for every $y \in B$ there is $x \in A$ such that f(x) = y

3) A function $f: A \rightarrow B$ is a *bijection* if f is both 1-1 and onto.

1.29 Definition. Sets *A*, *B* have the same cardinality if there exists a bijection $f : A \rightarrow B$. In such case we write |A| = |B|.

1.30 Definition. A set *A* is *finite* if either $A = \emptyset$ or A has the same cardinality as the set $\{1, ..., n\}$ for some $n \ge 1$.

1.31 Definition. A set A is *infinitely countable* if it is has the same cardinality as the set $\mathbb{Z}^+ = \{1, 2, 3, ...\}$

1.32 Definition. A set *A* is *countable* if it is either finite or infinitely countable.

1.33 Example. The set of natural numbers $\mathbb{N} = \{0, 1, 2, ...\}$ is countable since we have a bijection $f: \mathbb{Z}^+ \to \mathbb{N}$ given by f(k) = k - 1.

1.34 Example. The set of integers $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ is countable since we have a bijection $f: \mathbb{Z}^+ \to \mathbb{Z}$ given by

$$f(k) = \begin{cases} k/2 & \text{if } k \text{ is even} \\ (1-k)/2 & \text{if } k \text{ is odd} \end{cases}$$

In other words:

$$f(1) = 0, f(2) = 1, f(3) = -1, f(4) = 2, f(5) = -2, f(6) = 3, \dots$$

1.35 Example. The set of rational numbers \mathbb{Q} is countable. A bijection $f : \mathbb{Z}^+ \to \mathbb{Q}$ can be constructed as follows:

1.36 Theorem. 1) If A is a countable set and $B \subseteq A$ then B is countable.

2) If $\{A_1, A_2, ...\}$ is a collection of countably many countable sets then the set $\bigcup_{i=1}^{\infty} A_i$ is countable. 3) If $\{A_1, A_2, ..., A_n\}$ is a collection of finitely many countable sets then the set $A_1 \times \cdots \times A_n$ is countable. **1.37 Example.** The set of all real numbers in the interval (0, 1) is not countable.

f(1) = 0.31415... f(2) = 0.12345... f(3) = 0.75149... f(4) = 0.00032...f(5) = 0.11111...

1.38 Example. The function $f: (0, 1) \to \mathbb{R}$ given by $f(x) = \tan(\pi x - \frac{\pi}{2})$ is a bijection. It follows that $|\mathbb{R}| = |(0, 1)|$. In particular \mathbb{R} is an uncountable set.

1.39 Notation. 1) If *A* is a finite set of *n* elements then we write |A| = n.

2) If $|A| = |\mathbb{Z}^+|$ (i.e. *A* is an infinitely countable set) then we say that *A* has the *cardinality aleph naught* and we write $|A| = \aleph_0$.

3) If $|A| = |\mathbb{R}|$ then we say that A has the *cardinality of the continuum* and we write $|A| = \mathfrak{c}$.

Infima and Suprema.

1.40 Definition. Let $A \subseteq \mathbb{R}$. The set A is *bounded below* if there exists a number b such that $b \leq x$ for all $x \in A$. The set A is *bounded above* if there exists a number c such that $x \leq c$ for all $x \in A$. The set A is *bounded* if it is both bounded below and bounded above.

1.41 Definition. Let $A \subseteq \mathbb{R}$. If the set A is bounded below then the *greatest lower bound* of A (or *infimum* of A) is a number $a_0 \in \mathbb{R}$ such that:

- 1) $a_0 \leq x$ for all $x \in A$
- 2) if $b \leq x$ for all $x \in A$ then $b \leq a_0$

We write: $a_0 = \inf A$.

If the set *A* is not bounded below then we set $\inf A := -\infty$.

1.43 Theorem. For any non-empty bounded below subset $A \subseteq \mathbb{R}$ the number inf A exists.

1.44 Definition. Let $A \subseteq \mathbb{R}$. If the set A is bounded above then the *least upper bound* of A (or *supremum* of A) is a number $a_0 \in \mathbb{R}$ such that:

1) $x \le a_0$ for all $x \in A$ 2) if $x \le b$ for all $x \in A$ then $a_0 \le b$

We write: $a_0 = \sup A$.

If the set *A* is not bounded above then we set $\sup A := +\infty$.

1.46 Theorem. For any non-empty bounded above subset $A \subseteq \mathbb{R}$ the number sup A exists.