
12 | Urysohn
Metrization
Theorem

12.1 Urysohn Metrization Theorem. Every second countable normal space is metrizable.

12.2 Definition. A continuous function i : X → Y is an embedding if its restriction i : X → i(X ) is ahomeomorphism (where i(X ) has the topology of a subspace of Y ).
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12.5 Lemma. If j : X → Y is an embedding and Y is a metrizable space then X is also metrizable.

12.6 Definition. Let {Xi}i∈I be a family of topological spaces. The product topology on ∏i∈I Xi is thetopology generated by the basis
B = {∏i∈I Ui | Ui is open in Xi and Ui 6= Xi for finitely many indices i only}
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12.8 Proposition. Let {Xi}i∈I be a family of topological spaces and for j ∈ I let

pj : ∏
i∈I

Xi → Xj

be the projection onto the j-th factor: pj ((xi)i∈I ) = xj . Then:
1) for any j ∈ I the function pj is continuous.
2) A function f : Y →∏

i∈I Xi is continuous if and only if the composition pj f : Y → Xj is continuous
for all j ∈ I

Proof. Exercise.
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12.10 Proposition. If {Xi}∞i=1 is a countable family of metrizable spaces then
∏∞
i=1 Xi is also a

metrizable space.

12.11 Example. The Hilbert cube is the topological space [0, 1]ℵ0 obtained as the infinite countableproduct of the closed interval [0, 1] : [0, 1]ℵ0 = ∞∏
i=1 [0, 1]

Elements of [0, 1]ℵ0 are infinite sequences (ti) = (t1, t2, . . . ) where ti ∈ [0, 1] for i = 1, 2, . . . TheHilbert cube is a metric space with a metric ρ given by
ρ((ti), (si)) = ∞∑

i=1
12i |ti − si|
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12.12 Theorem. If X is a second countable normal space then there exists an embedding j : X → [0, 1]ℵ0 .

12.13 Definition. Let X be a topological space and let {fi}i∈I be a family of continuous functions
fi : X → [0, 1]. We say that the family {fi}i∈I separates points from closed sets if for any point x0 ∈ Xand any closed set A ⊆ X such that x0 6∈ A there is a function fj ∈ {fi}i∈I such that fj (x0) > 0 and
fj |A = 0.
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12.14 Embedding Lemma. Let X be a T1-space. If {fi : X → [0, 1]}i∈I is a family that separates points
from closed sets then the map

f∞ : X →∏
i∈I

[0, 1]
given by f∞(x) = (fi(x))i∈I is an embedding.
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Proof of Theorem 12.12.
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12.16 Proposition. Every second countable regular space is normal.

Proof. Exercise.

12.17 Urysohn Metrization Theorem (v.2). Every second countable regular space is metrizable.

12.18 Definition. Let X be a topological space. A collection U = {Ui}i∈I of open sets in X is locally
finite if each point x ∈ X has an open neighborhood Vx such that Vx ∩ Ui 6= ∅ for finitely many i ∈ Ionly.A collection U is countably locally finite if it can be decomposed into a countable union U = ⋃∞n=1 Unwhere each collection Un is locally finite.

12.19 Nagata-Smirnov Metrization Theorem. Let X be a topological space. The following conditions
are equivalent:

1) X is metrizable.
2) X is regular and it has a basis which is countably locally finite.
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