13 | Metrization of Manifolds

13.1 Definition. A topological manifold of dimension n is a topological space M which is a Hausdorff, second countable, and such that every point of M has an open neighborhood homeomorphic to an open subset of \mathbb{R}^n (we say that M is locally homeomorphic to \mathbb{R}^n).

13.2 Note. Let M be a manifold of dimension n. If $U \subseteq M$ is an open set and $\varphi: U \to V$ is a homeomorphism of U with some open set $V \subseteq \mathbb{R}^n$ then we say that U is a *coordinate neighborhood* and φ is a *coordinate chart* on M.

13.3 Lemma. If *M* is an *n*-dimensional manifold then:

- 1) for any point $x \in M$ there exists a coordinate chart $\varphi: U \to V$ such that $x \in U, V$ is an open ball V = B(y, r), and $\varphi(x) = y$;
- 2) for any point $x \in M$ there exists a coordinate chart $\psi: U \to V$ such that $x \in U, V = \mathbb{R}^n$, and $\psi(x) = 0$.

Proof. Exercise.

13.4 Example. A space M is a manifold of dimension 0 if and only if M is a countable (finite or infinite) discrete space.

13.5 Example. If U is an open set in \mathbb{R}^n then U is an *n*-dimensional manifold. The identity map id: $U \rightarrow U$ is then a coordinate chart defined on the whole manifold U. In particular \mathbb{R}^n is an *n*-dimensional manifold.

13.6 Example. The *n*-dimensional sphere

$$S^{n} := \{ (x_{1}, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid x_{1}^{2} + \dots + x_{n+1}^{2} = 1 \}$$

is an *n*-dimensional manifold.

13.7 Proposition. If *M* is an *m*-dimensional manifold and *N* is an *n*-dimensional manifold then $M \times N$ is an *m* + *n*-dimensional manifold.

Proof. Exercise.

13.9 Note. There exist topological spaces that are locally homeomorphic to \mathbb{R}^n , but do not satisfy the the other conditions of the definition of a manifold (13.1).

13.10 Invariance of Dimension Theorem. If M is a non-empty topological space such that M is a manifold of dimension m and M is also a manifold of dimension n then m = n.

13.11 Definition. A topological n-dimensional manifold with boundary is a topological space M which is a Hausdorff, second countable, and such that every point of M has an open neighborhood homeomorphic to an open subset of \mathbb{H}^n .

13.12 Let $\partial \mathbb{H}^n = \{(x_1, \ldots, x_n) \in \mathbb{H}^n \mid x_n = 0\}$. If M is an n-dimensional manifold with boundary, $\varphi: U \to V$ is a coordinate chart, and $x \in U$ then there are two possibilities:

- 1) $\varphi(x) \in \partial \mathbb{H}^n$
- 2) $\varphi(x) \notin \partial \mathbb{H}^n$

In the first case we say that the point x is a *boundary point* of M, and in the the second case that x is an *interior point* of M.

13.13 Theorem. Let M be an n-dimensional manifold with boundary, let $x_0 \in M$ and let $\varphi: U \to V$ be a local coordinate chart such that $x_0 \in U$. If $\varphi(x_0) \in \partial \mathbb{H}^n$ then for any other local coordinate chart $\psi: U' \to V'$ such that $x_0 \in U'$ we have $\psi(x_0) \in \partial \mathbb{H}^n$.

13.14 Definition. Let *M* be a manifold with boundary. The subspace of *M* consisting of all boundary points of *M* is called *the boundary of M* and it is denoted by ∂M .

13.15 Example. The space \mathbb{H}^n is trivially an *n*-dimensional manifold with boundary.

13.16 Example. For any *n* the closed *n*-dimensional ball

$$\overline{B}^n = \{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid x_1^2 + \cdots + x_n^2 \le 1\}$$

is an *n*-dimensional manifold with boundary (exercise). In this case we have $\partial \overline{B}^n = S^{n-1}$.

13.17 Example. If *M* is a manifold (without boundary) then we can consider it as a manifold with boundary. where $\partial M = \emptyset$.

13.19 Proposition. If *M* is an *n*-dimensional manifold with boundary then:

- 1) $M \setminus \partial M$ is an open subset of M and it is an n-dimensional manifold (without boundary);
- 2) ∂M is a closed subset of M and it is an (n 1)-dimensional manifold (without boundary).

Proof. Exercise.

13.20 Theorem. Every topological manifold (with or without boundary) is metrizable.

13.21 Lemma. Let M be an n-dimensional topological manifold, and let $\varphi \colon U \to V$ be a coordinate chart on M. If $\overline{B}(x, r)$ is a closed ball in \mathbb{R}^n such that $\overline{B}(x, r) \subseteq V$ then the set $\varphi^{-1}(\overline{B}(x, r))$ is closed in M.

