14 | Compact Spaces

14.1 Definition. Let X be a topological space. A cover of X is a collection Y = {Y;}ics of subsets of
X such that [ J,¢, Yi= X.

Y Y,

If the sets Y; are open in X for all i € [ then Y is an open cover of X. If Y consists of finitely many
sets then Y is a finite cover of X.

14.2 Definition. Let Y = {Y;},c/ be a cover of X. A subcover of Y is cover Y of X such that every
element of Y is in Y.
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14.4 Definition. A space X is compact if every open cover of X contains a finite subcover.
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14.8 Proposition. Let f: X — Y be a continuous function. If X is compact and f is onto then Y is
compact.

Proof Exercise. O

14.9 Corollary. Let f: X — Y be a continuous function. If A C X is compact then f(A) C Y is compact.

14.10 Corollary. Let X, Y be topological spaces. If X is compact and Y = X then Y is compact.
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14.12 Proposition. For any a < b the closed interval [a, b] C R is compact.
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14.13 Proposition. Let X be a compact space. If Y is a closed subspace of X then Y is compact.

Proof Exercise. O

14.14 Proposition. Let X be a Hausdorff space and let Y C X. If Y is compact then it is closed in X.

14.15 Lemma. Let X be a Hausdorff space, let Y C X be a compact subspace, and let x € X \ Y.
There exists open sets U,V C X such thatx e U, Y CVand UNV = @.
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14.16 Corollary. Let X be a compact Hausdorff space. A subspace Y C X is compact if and only if Y
is closed in X.

Proof. Let A C X be a closed set. By Proposition 14.13 A is a compact space and thus by Corollary
14.9 f(A) is a compact subspace of Y. Since Y is a Hausdorff space, using Proposition 14.14 we obtain
that f(A) is closed in Y. O

14.18 Proposition. Let f: X — Y be a continuous bijection. If X is a compact space and Y is a
Hausdorff space then f is a homeomorphism.
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14.19 Theorem. If X is a compact Hausdorff space then X is normal.
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