18 Compactification

18.1 Proposition. Let X be a topological space. If there exists an embedding $j: X \to Y$ such that Y is a compact Hausdorff space then there exists an embedding $j_1: X \to Z$ such that Z is compact Hausdorff and $\overline{j_1(X)} = Z$.

18.2 Definition. A space Z is a *compactification* of X if Z is compact Hausdorff and there exists an embedding $j: X \to Z$ such that $\overline{j(X)} = Z$.

18.3 Corollary. Let X be a topological space. The following conditions are equivalent:

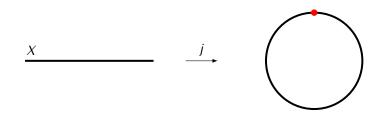
- 1) There exists a compactification of X.
- 2) There exists an embedding $j: X \to Y$ where Y is a compact Hausdorff space.

Proof. Follows from Proposition 18.1.

18.4 Example.

<u>X</u> <u>j</u>

18.5 Example.



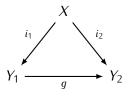
18.6 Example.

$$\frac{x}{\left\{-1\right\} \times J} \xrightarrow{j} j(X) \qquad \{1\} \times J$$

18.7 Theorem. A space X has a compactification if and only if X is completely regular (i.e. it is a $T_{31/2}$ -space).

18.9 Definition. Let X be a completely regular space and let $j_X \colon X \to \prod_{f \in C(X)} [0, 1]$ be the embedding defined in the proof of Theorem 18.7 and let $\beta(X)$ be the closure of $j_X(X)$ in $\prod_{f \in C(X)} [0, 1]$. The compactification $j_X \colon X \to \beta(X)$ is called the *Čech-Stone compactification* of X.

18.10 Definition. Let X be a space and let $i_1: X \to Y_1$, $i_2: X \to Y_2$ be compactifications of X. We will write $Y_1 \ge Y_2$ if there exists a continuous function $g: Y_1 \to Y_2$ such that $i_2 = gi_1$:



18.11 Proposition. Let $i_1: X \to Y_1$, $i_2: X \to Y_2$ be compactifications of a space X.

1) If $Y_1 \ge Y_2$ then there exists only one map $g: Y_1 \to Y_2$ satisfying $i_2 = gi_1$. Moreover g is onto.

2) $Y_1 \ge Y_2$ and $Y_2 \ge Y_1$ if and only if the map $g: Y_1 \to Y_2$ is a homeomorphism.

Proof. Exercise.

18.12 Theorem. Let X be a completely regular space and let $j_X : X \to \beta(X)$ be the Čech-Stone compactification of X. For any compactification i: $X \to Y$ of X we have $\beta(X) \ge Y$.

18.13 Lemma. If $f: X_1 \to X_2$ is a continuous map of compact Hausdorff spaces then $f(\overline{A}) = \overline{f(A)}$ for any $A \subseteq X_1$.

Proof. Exercise.

18.14 Definition. A space *Z* is a *one-point compactification* of a space *X* if *Z* is a compactification of *X* with embedding $j: X \to Z$ such that the set $Z \setminus j(X)$ consists of only one point.

18.16 Proposition. If a space X has a one-point compactification $j: X \to Z$ then this compactification is unique up to homeomorphism. That is, if $j': X \to Z'$ is another one-point compactification of X then there exists a homeomorphism $h: Z \to Z'$ such that j' = hj.

Proof. Exercise.

18.17 Definition. A topological space X is *locally compact* if every point $x \in X$ has an open neighborhood $U_x \subseteq X$ such that the the closure \overline{U}_x is compact.

18.19 Theorem. Let X be a non-compact topological space. The following conditions are equivalent:

- 1) The space X is locally compact and Hausdorff.
- 2) There exists a one-point compactification of X.

18.20 Corollary. If X is a locally compact Hausdorff space then X is completely regular.

Proof. Follows from Theorem 18.7 and Theorem 18.19.

18.21 Corollary. Let X be a topological space. The following conditions are equivalent:

- 1) The space X is locally compact and Hausdorff.
- 2) There exists an embedding $i: X \to Y$ where Y is compact Hausdorff space and i(X) is an open set in Y.

18.22 Proposition. Let X be a non-compact, locally compact space and let $j: X \to X^+$ be the one-point compactification of X. For every compactification $i: X \to Y$ of X we have $Y \ge X^+$.

Proof. Exercise.