19 Quotient Spaces

19.1 Definition. Let X be a set. An *equivalence relation on* X is a binary relation \sim satisfying three properties:

- 1) $x \sim x$ for all $x \in X$ (reflexivity)
- 2) if $x \sim y$ then $y \sim x$ (symmetry)
- 3) if $x \sim y$ and $y \sim z$ then $x \sim z$ (transitivity)

19.4 Definition. Let *X* we a set with an equivalence relation \sim and let $x \in X$. The *equivalence class* of *x* is the subset $[x] \subseteq X$ consisting of all elements that are in the relation with *x*:

$$[x] = \{y \in X \mid x \sim y\}$$

19.7 Proposition. Let X be a set with an equivalence relation \sim , and let $x, y \in X$.

1) If x ~ y then [x] = [y].
2) If x ≁ y then [x] ∩ [y] = Ø.

19.9 Definition. Let X be a set with an equivalence relation \sim . The *quotient set* of X is the set X/\sim whose elements are all distinct equivalence classes of \sim . The function

$$\pi \colon X \to X/\sim$$

given by $\pi(x) = [x]$ is called the *quotient map*.

19.11 Definition. Let X be a topological space and let ~ be an equivalence relation on X. The *quotient topology* on the set X/\sim is the topology where a set $U \subseteq X/\sim$ is open if the set $\pi^{-1}(U)$ is open in X. The set X/\sim with this topology is called the *quotient space* of X taken with respect to the relation ~.

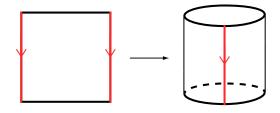
19.12 Proposition. Let X be a topological space and let ~ be an equivalence relation on X. A set $A \subseteq X/\sim$ is closed if and only the set $\pi^{-1}(A)$ is closed in X.

Proof. Exercise.

19.13 Proposition. Let X, Y be a topological spaces and let \sim be an equivalence relation on X. A function $f: X / \sim \rightarrow Y$ is continuous if and only if the function $f \pi: X \rightarrow Y$ is continuous.

Proof. Exercise.

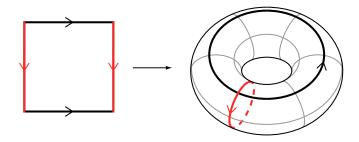
19.17 Example. Take the square $[0, 1] \times [0, 1]$ with the equivalence relation defined as in Example 19.2: $(0, t) \sim (1, t)$ for all $t \in [0, 1]$. Using arguments similar as in Example 19.15 we can show that the quotient space is homeomorphic to the cylinder $S^1 \times [0, 1]$:



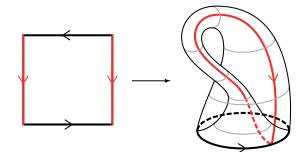
19.18 Example. Take the square $[0, 1] \times [0, 1]$ with the equivalence relation given by $(0, t) \sim (1, 1 - t)$ for all $t \in [0, 1]$. The space obtained as a quotient space is called the *Möbius band*:



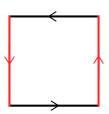
19.19 Example. Take the square $[0, 1] \times [0, 1]$ with the equivalence relation given by $(0, t) \sim (1, t)$ for all $t \in [0, 1]$ and $(s, 0) \sim (s, 1)$ for all $s \in [0, 1]$. Using arguments similar to these given in Example 19.15 one can show that the quotient space in this case is homeomorphic to the torus:



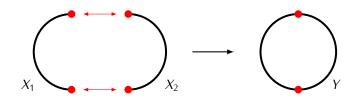
19.20 Example. Take the square $[0, 1] \times [0, 1]$ with the equivalence relation given by $(0, t) \sim (1, t)$ for all $t \in [0, 1]$ and $(s, 0) \sim (1 - s, 1)$ for all $s \in [0, 1]$. The resulting quotient space is called the *Klein bottle*. One can show that the Klein bottle is a two dimensional manifold.



19.21 Example. Following the scheme of the last two examples we can consider the square $[0, 1] \times [0, 1]$ with the equivalence relation given by $(0, t) \sim (1, 1 - t)$ and $(s, 0) \sim (1 - s, 1)$ for all $s, t \in [0, 1]$:



Disjoint unions



19.25 Proposition. For any family of continuous functions $\{f_i : X_i \to Y\}_{i \in I}$, there exists a unique continuous function $f : \bigsqcup_{i \in I} X_i \to Y$ such that $k_j f = f_j$ for each $j \in I$.

Proof. Exercise.