
20 | Simplicial
Complexes

20.1 Definition. A simplicial complex K = (V , S) consists of a set V together with a set S of finite,non-empty subsets of V such that the following conditions are satisfied:1) For each v ∈ V the set {v} is in S.2) If σ ∈ S and ∅ 6= τ ⊆ σ then τ ∈ S.
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20.2 Notation. If K = (V , S) is a simplicial complex then:
• Elements of V are called vertices of K .
• Elements of S are called simplices of K .
• If a simplex σ ∈ S consists of n+ 1 elements then we say that σ is an n-simplex.
• If σ ∈ S and τ ⊆ σ then we say that τ is a face of σ . If τ 6= σ then τ is a proper face of σ . Theinclusion jστ : τ → σ is called a face map.
• We say that K is a simplicial complex of dimension n if K has n-simplices, but it does not havem-simplices for m > n. We write: dimK = n. If K has simplices in all dimensions then dimK =∞.
• We say that K is a finite simplicial complex if K consists of finitely many simplices.
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20.6 Definition. If K = (V , S) is a simplicial complex, then a subcomplex of K is a simplicial complex
L = (V ′, S′) such that V ′ ⊆ V and S′ ⊆ S. In such case we write L ⊆ K .

20.8 Definition. Let e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en+1 = (0, 0, 0, . . . , 1) be thestandard basis vectors in Rn+1. The standard geometric n-simplex is a subspace ∆n ⊆ Rn+1 given by
∆n = {n+1∑

i=1 tiei ∈ Rn+1 | ti ∈ [0, 1], ∑n
i=0 ti = 1}
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20.9 Definition. Let A be a finite set. The geometric A-simplex is a metric space (∆A, ρ), such thatelements of ∆A are formal sums ∑a∈A taa where ta ∈ [0, 1] for each a ∈ A, and ∑a∈A ta = 1. If
x =∑a∈A taa and y =∑a∈A t′aa then

ρ(x, y) =√∑a∈A(ta − t′a)2

20.10 Proposition. If A is a set consisting of n+ 1 elements then ∆A is homeomorphic to the standard
n-simplex ∆n.

Proof. Exercise.
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20.11 Definition. Let K be a simplicial complex. The geometric realization of K is the topologicalspace |K | defined by:
|K | = ⊔

σ∈K
∆σ/
∼

where the equivalence relation ∼ is given by x ∼ ∆(jστ )(x) for each face map jστ : τ → σ and x ∈ ∆τ .

20.13 Proposition. If L is a subcomplex of a simplicial complex K , then |L| is a closed subspace of |K |.

Proof. Exercise.
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20.14 Definition. Let K be a finite simplicial complex. For n = 0, 1, 2, . . . let sn(K ) denote the numberof n-simplices of K . The Euler characteristic of K is the integer
χ(K ) = ∞∑

n=0 sn(K )

20.15 Theorem. If K , L are finite simplicial complexes such that |K | is homeomorphic to |L| then
χ(K ) = χ(L).

|K3| |K4| |K5| |K6|
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20.17 Definition. If X is a topological space such that X ∼= |K | for some finite simplicial complex Kthen we define the Euler characteristic χ(X ) of X as the Euler characteristic χ(K ) of K .

20.18 Proposition. The Euler characteristic is a topological invariant: if X , Y are spaces such that
X ∼= Y and χ(X ) is defined, then χ(Y ) is defined and χ(Y ) = χ(X ).
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20.19 Example. We will use the Euler characteristic to show that the 2-dimensional sphere S2 is nothomeomorphic to the torus T = S1 × S1.
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Topological data analysis.

a set of data points data points and the hypotheticalunderlying space X
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20.21 Theorem. If K is a simplicial complex then the geometric realization |K | is a normal space.

20.22 Definition. The n-skeleton of a simplicial complex K is a subcomplex K (n) ⊆ K given as follows:– vertices of K (n) are the same as vertices of K ;– m-simplices of K n are the same as m-simplices of K for any m < n;– K (n) has no m-simplices for m > n.

20.23 Proposition. Let K be a simplicial complex, and let X be a topological space. A function
f : |K | → X is continuous if and only if f ||K (n)| : |K (n)| → X is continuous for each n = 0, 1, . . . .
Proof. Exercise.

20.24 Lemma. Let K be a simplicial complex, and let fn : |K (n)| → X be a continuous function. Assume
that for each σ ∈ Sn+1 we have a continuous function fσ : |σ | → X such that fσ ||∂σ | = fn||∂σ |. Then fn
extends to a function fn+1 : |K (n+1)| → X such that fn+1||σ | = fσ .

Proof. Exercise.
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Proof of Theorem 20.21.
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