20 Simplicial Complexes

20.1 Definition. A simplicial complex K = (V, S) consists of a set V together with a set S of finite, non-empty subsets of V such that the following conditions are satisfied:

- 1) For each $v \in V$ the set $\{v\}$ is in S.
- 2) If $\sigma \in S$ and $\emptyset \neq \tau \subseteq \sigma$ then $\tau \in S$.

20.2 Notation. If K = (V, S) is a simplicial complex then:

- Elements of V are called *vertices* of K.
- Elements of *S* are called *simplices* of *K*.
- If a simplex $\sigma \in S$ consists of n + 1 elements then we say that σ is an *n*-simplex.
- If $\sigma \in S$ and $\tau \subseteq \sigma$ then we say that τ is a *face* of σ . If $\tau \neq \sigma$ then τ is a *proper face* of σ . The inclusion $j_{\tau}^{\sigma}: \tau \to \sigma$ is called a *face map*.
- We say that K is a simplicial complex of dimension n if K has n-simplices, but it does not have m-simplices for m > n. We write: dim K = n. If K has simplices in all dimensions then dim $K = \infty$.
- We say that K is a finite simplicial complex if K consists of finitely many simplices.

20.6 Definition. If K = (V, S) is a simplicial complex, then a *subcomplex* of K is a simplicial complex L = (V', S') such that $V' \subseteq V$ and $S' \subseteq S$. In such case we write $L \subseteq K$.

20.8 Definition. Let $e_1 = (1, 0, 0, ..., 0)$, $e_2 = (0, 1, 0, ..., 0)$, ..., $e_{n+1} = (0, 0, 0, ..., 1)$ be the standard basis vectors in \mathbb{R}^{n+1} . The standard geometric *n*-simplex is a subspace $\Delta^n \subseteq \mathbb{R}^{n+1}$ given by

$$\Delta^{n} = \left\{ \sum_{i=1}^{n+1} t_{i} e_{i} \in \mathbb{R}^{n+1} \mid t_{i} \in [0, 1], \sum_{i=0}^{n} t_{i} = 1 \right\}$$

20.9 Definition. Let *A* be a finite set. The *geometric A*-*simplex* is a metric space (Δ^A, ϱ) , such that elements of Δ^A are formal sums $\sum_{a \in A} t_a a$ where $t_a \in [0, 1]$ for each $a \in A$, and $\sum_{a \in A} t_a = 1$. If $x = \sum_{a \in A} t_a a$ and $y = \sum_{a \in A} t'_a a$ then

$$\varrho(x,y) = \sqrt{\sum_{a \in A} (t_a - t'_a)^2}$$

20.10 Proposition. If A is a set consisting of n + 1 elements then Δ^A is homeomorphic to the standard *n*-simplex Δ^n .

Proof. Exercise.

20.11 Definition. Let *K* be a simplicial complex. The *geometric realization* of *K* is the topological space |K| defined by:

$$|K| = \bigsqcup_{\sigma \in K} \Delta^{\sigma} / \sim$$

where the equivalence relation ~ is given by $x \sim \Delta(j_{\tau}^{\sigma})(x)$ for each face map $j_{\tau}^{\sigma} \colon \tau \to \sigma$ and $x \in \Delta^{\tau}$.

20.13 Proposition. If *L* is a subcomplex of a simplicial complex *K*, then |L| is a closed subspace of |K|.

Proof. Exercise.

20.14 Definition. Let *K* be a finite simplicial complex. For n = 0, 1, 2, ... let $s_n(K)$ denote the number of *n*-simplices of *K*. The *Euler characteristic* of *K* is the integer

$$\chi(K) = \sum_{n=0}^{\infty} s_n(K)$$

20.15 Theorem. If K, L are finite simplicial complexes such that |K| is homeomorphic to |L| then $\chi(K) = \chi(L)$.

20.17 Definition. If X is a topological space such that $X \cong |K|$ for some finite simplicial complex K then we define the Euler characteristic $\chi(X)$ of X as the Euler characteristic $\chi(K)$ of K.

20.18 Proposition. The Euler characteristic is a topological invariant: if X, Y are spaces such that $X \cong Y$ and $\chi(X)$ is defined, then $\chi(Y)$ is defined and $\chi(Y) = \chi(X)$.

20.19 Example. We will use the Euler characteristic to show that the 2-dimensional sphere S^2 is not homeomorphic to the torus $T = S^1 \times S^1$.

Topological data analysis.

a set of data points

data points and the hypothetical underlying space X

20.21 Theorem. If K is a simplicial complex then the geometric realization |K| is a normal space.

20.22 Definition. The *n*-skeleton of a simplicial complex K is a subcomplex $K^{(n)} \subseteq K$ given as follows:

- vertices of $K^{(n)}$ are the same as vertices of K;
- *m*-simplices of K^n are the same as *m*-simplices of *K* for any m < n;
- $K^{(n)}$ has no *m*-simplices for m > n.

20.23 Proposition. Let K be a simplicial complex, and let X be a topological space. A function $f: |K| \to X$ is continuous if and only if $f|_{|K^{(n)}|}: |K^{(n)}| \to X$ is continuous for each n = 0, 1, ...

Proof. Exercise.

20.24 Lemma. Let K be a simplicial complex, and let $f_n : |K^{(n)}| \to X$ be a continuous function. Assume that for each $\sigma \in S_{n+1}$ we have a continuous function $f_{\sigma} : |\overline{\sigma}| \to X$ such that $f_{\sigma}|_{|\partial\sigma|} = f_n|_{|\partial\sigma|}$. Then f_n extends to a function $f_{n+1} : |K^{(n+1)}| \to X$ such that $f_{n+1}|_{|\overline{\sigma}|} = f_{\sigma}$.

Proof. Exercise.

Proof of Theorem 20.21.