22 | Mapping Spaces

22.1 Definition. Let *X*, *Y* be topological spaces. By Map(*X*, *Y*) we will denote the set of all continuous functions $f: X \to Y$.

22.2 Definition. Let X, Y be a topological spaces, and let T be a topology on Map(X, Y).

- 1) We will say that the topology \mathcal{T} is *lower admissible* if for any continuous function $F: Z \times X \to Y$ the function $F_*: Z \to Map(X, Y)$ is continuous.
- 2) We will say that the topology \mathcal{T} is *upper admissible* if for any function $F: Z \times X \to Y$ if the function $F_*: Z \to Map(X, Y)$ is continuous then F is continuous.
- 3) We will say that the topology T is *admissible* if it is both lower and upper admissible.

22.3 Definition. Let *X*, *Y* be topological spaces. The *evaluation map* is the function

ev: Map(X, Y) × $X \rightarrow Y$

given by ev((f, x)) = f(x).

22.4 Lemma. Let X, Y be topological spaces, and let \mathcal{T} be a topology on Map(X, Y). The following conditions are equivalent:

- 1) The topology T is upper admissible.
- 2) The evaluation map ev: $Map(X, Y) \times X \rightarrow Y$ is continuous.

22.6 Proposition. *Let X*, *Y be topological spaces.*

- 1) If $\mathcal{U}, \mathcal{U}'$ are two topologies on Map(X, Y) such that $\mathcal{U} \subseteq \mathcal{U}'$ and \mathcal{U} is upper admissible, then \mathcal{U}' also is upper admissible.
- 2) If $\mathcal{L}, \mathcal{L}'$ are two topologies on Map(X, Y) such that $\mathcal{L}' \subseteq \mathcal{L}$ and \mathcal{L} is lower admissible, then \mathcal{L}' also is lower admissible.
- 3) If \mathcal{U} , \mathcal{L} are two topologies on Map(X, Y) such that \mathcal{U} is upper admissible and \mathcal{L} is lower admissible then $\mathcal{L} \subseteq \mathcal{U}$.

22.7 Corollary. Given spaces X and Y, if there exists an admissible topology on Map(X, Y) then such topology is unique.

22.8 Proposition. Let X be completely regular space. If there exist an admissible topology on $Map(X, \mathbb{R})$ then X is locally compact.

22.10 Definition. Let *X*, *Y* be topological spaces. For sets $A \subseteq X$ and $B \subseteq Y$ denote

 $P(A, B) = \{ f \in \operatorname{Map}(X, Y) \mid f(A) \subseteq B \}$

22.11 Lemma. Let X, Y topological spaces, and let $\mathcal{U} = \{U_i\}_{i \in I}$ be an open cover of X. Let \mathcal{T} be a topology on Map(X, Y) with subbasis given by all sets P(A, V) where $A \subseteq X$ is a closed set such that $A \subseteq U_i$ for some $i \in I$, and $V \subseteq Y$ is an open set. If X is a regular space then \mathcal{T} upper admissible.

Proof. Exercise.

Proof of Proposition 22.8.

22.12 Definition. Let *X*, *Y* be topological spaces. The *compact-open* topology on Map(*X*, *Y*) is the topology defined by the subbasis consisting of all sets P(A, U) where $A \subseteq X$ is compact and $U \subseteq Y$ is an open set.

22.13 Theorem. For any spaces X, Y the compact-open topology on Map(X, Y) is lower admissible.

22.14 Theorem. Let X, Y be topological spaces. If X is locally compact Hausdorff space then the compact-open topology on Map(X, Y) is upper admisible.

22.15 Corollary. If X is a locally compact Hausdorff space and Y is any space then the compact-open topology on Map(X, Y) is admissible.

22.17 Proposition. Let X be a topological space, and let S be a set considered as a discrete topological space. There exists a homeomorphism

$$\mathsf{Map}(S, X) \cong \prod_{s \in S} X$$

where Map(S, X) is taken with the compact-open topology, and $\prod_{s \in S} X$ with the product topology.

Proof. Exercise.

22.19 Proposition. Let X be a compact Hausdorff space, and let (Y, ϱ) be a metric space. For $f, g \in Map(X, Y)$ define

$$d(f,g) = \max\{\varrho(f(x), g(x)) \mid x \in X\}$$

Then d is a metric on Map(X, Y). Moreover, in the topology induced by this metric is the compact-open topology.

Proof. Exercise.

22.20 Theorem. Let X, Y, Z be topological spaces. Let

 $\Phi: \operatorname{Map}(X, Y) \times \operatorname{Map}(Y, Z) \to \operatorname{Map}(X, Z)$

be a function given by $\Phi(f, g) = g \circ f$. If Y is a locally compact Hausdorff space, and all mapping spaces are equipped with the compact-open topology then Φ is continuous.

22.21 Lemma. Let X be a locally compact Hausdorff space, and let A, $W \subseteq X$ be sets such that A is compact, W is open, and $A \subseteq W$. Then there exists an open set $V \subseteq X$ such that $A \subseteq V$, $\overline{V} \subseteq W$, and \overline{V} is compact.

Proof. Exercise.

Proof of Theorem 22.20.