3 | Open Sets

3.1 Definition. Let g1 and g2 be two metrics on the same set X. We say that the metrics g1 and g, are
equivalent if for every x € X and for every r > 0 there exist sq,s2 > 0 such that By, (x, s1) C By,(x, r)
and By,(x, s2) € By, (x, r).

BQZ(er)

3.2 Proposition. Let g1, 02 be equivalent metrics on a set X, and let p1, 1y be equivalent metrics on
a set Y. A function f: X — Y is continuous with respect to the metrics o1 and 1 if and only if it is
continuous with respect to the metrics g and p1;.
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3.3 Example. The Euclidean metric d, the orthogonal metric g,,+ and the maximum metric gpqx are
equivalent metrics on R" (exercise).

3.4 Example. The following metrics on R? are not equivalent to one another: the Euclidean metric d,
the hub metric g, and the discrete metric ggisc (exercise).

3.5 Definition. Let (X, g) be a metric space. A subset U C X is an open set if U is a union of (perhaps
infinitely many) open balls in X: U = J,¢; B(xi, ri).

3.6 Proposition. Let (X, g) be a metric space and let U C X. The following conditions are equivalent:

1) The set U is open.
2) For every x € U there exists ry > 0 such that B(x, r,) C U.

Proof Exercise. O
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3.7 Proposition. Let X be a set and let p1, 02 be two metrics on X. The following conditions are
equivalent:
1) The metrics o1 and g, are equivalent.

2) A set U C X is open with respect to the metric o1 if and only if it is open with respect to the
metric 0.

3.8 Proposition. Let (X, 0) be a metric space.

1) The sets X and & are open sets.
2) If U; is an open set for i € | then the set | ¢,
3) If Uy, Uy are open sets then the set Uy N U, is open.

U; is open.

Proof. Exercise. O
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3.10 Proposition. Let (X, 0), (Y, 1) be metric spaces and let f: X — Y be a function. The following
conditions are equivalent:

1) The function f is continuous.
2) For every open set U C Y the set f~'(U) is open in X.

3.11 Lemma. Let (X,0), (Y,u) be metric spaces and let f: X — Y be a continuous function. If
B := B(yo, r) is an open ball in Y then the set f~1(B) is open in X.

Proof. Exercise. O
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3.12 Definition. Let X be a set. A topology on X is a collection T of subsets of X satisfying the
following conditions:

) X, 2 €7,
2) If U € Tor i € I then Uy, Ui € T;
3) Iif Uy, U, € T then Un U, € 7.

Elements of T are called open sets.

A topological space is a pair (X,7T) where X is a set and T is a topology on X.

3.13 Definition. Let (X, Tx), (Y, Ty) be topological spaces. A function f: X — Y is continuous if for
every U € Ty we have f~1(U) € Ty.

3.14 Example. If (X, o) is a metric space then X is a topological space with the topology
T ={U C X | U is a union of open balls}
We say that the topology T is induced by the metric g.

3.16 Example. Let X be an arbitrary set and let
T = {all subsets of X}

The topology T is called the discrete topology on X. If X is equipped with this topology then we say
that it is a discrete topological space.

3.17 Example. Let X be an arbitrary set and let
T={X, o}
The topology 7 is called the antidiscrete topology on X.
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3.18 Example. Let X = R and let
T={UCR|U=gor U= (R\S) for some finite set S C R}

The topology T is called the Zariski topology on R.

3.19 Definition. A topological space (X, T) is metrizable if there exists a metric g on X such that T is
the topology induced by p.

3.20 Lemma. /f (X,7) is a metrizable topological space and x,y € X are points such that x #+ y then
there exists an open set U C X such that x € U and y ¢ U.

Proof. Exercise. O

3.21 Proposition. If X is a set containing more than one point then the antidiscrete topology on X is
not metrizable.
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